1 /*
2  * Copyright 2020-2024 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * RSA low level APIs are deprecated for public use, but still ok for
12  * internal use.
13  */
14 #include "internal/deprecated.h"
15 #include "internal/nelem.h"
16 #include <openssl/crypto.h>
17 #include <openssl/evp.h>
18 #include <openssl/core_dispatch.h>
19 #include <openssl/core_names.h>
20 #include <openssl/rsa.h>
21 #include <openssl/params.h>
22 #include <openssl/err.h>
23 #include <openssl/proverr.h>
24 #include "crypto/rsa.h"
25 #include "prov/provider_ctx.h"
26 #include "prov/providercommon.h"
27 #include "prov/implementations.h"
28 #include "prov/securitycheck.h"
29 
30 static OSSL_FUNC_kem_newctx_fn rsakem_newctx;
31 static OSSL_FUNC_kem_encapsulate_init_fn rsakem_encapsulate_init;
32 static OSSL_FUNC_kem_encapsulate_fn rsakem_generate;
33 static OSSL_FUNC_kem_decapsulate_init_fn rsakem_decapsulate_init;
34 static OSSL_FUNC_kem_decapsulate_fn rsakem_recover;
35 static OSSL_FUNC_kem_freectx_fn rsakem_freectx;
36 static OSSL_FUNC_kem_dupctx_fn rsakem_dupctx;
37 static OSSL_FUNC_kem_get_ctx_params_fn rsakem_get_ctx_params;
38 static OSSL_FUNC_kem_gettable_ctx_params_fn rsakem_gettable_ctx_params;
39 static OSSL_FUNC_kem_set_ctx_params_fn rsakem_set_ctx_params;
40 static OSSL_FUNC_kem_settable_ctx_params_fn rsakem_settable_ctx_params;
41 
42 /*
43  * Only the KEM for RSASVE as defined in SP800-56b r2 is implemented
44  * currently.
45  */
46 #define KEM_OP_UNDEFINED   -1
47 #define KEM_OP_RSASVE       0
48 
49 /*
50  * What's passed as an actual key is defined by the KEYMGMT interface.
51  * We happen to know that our KEYMGMT simply passes RSA structures, so
52  * we use that here too.
53  */
54 typedef struct {
55     OSSL_LIB_CTX *libctx;
56     RSA *rsa;
57     int op;
58     OSSL_FIPS_IND_DECLARE
59 } PROV_RSA_CTX;
60 
61 static const OSSL_ITEM rsakem_opname_id_map[] = {
62     { KEM_OP_RSASVE, OSSL_KEM_PARAM_OPERATION_RSASVE },
63 };
64 
name2id(const char * name,const OSSL_ITEM * map,size_t sz)65 static int name2id(const char *name, const OSSL_ITEM *map, size_t sz)
66 {
67     size_t i;
68 
69     if (name == NULL)
70         return -1;
71 
72     for (i = 0; i < sz; ++i) {
73         if (OPENSSL_strcasecmp(map[i].ptr, name) == 0)
74             return map[i].id;
75     }
76     return -1;
77 }
78 
rsakem_opname2id(const char * name)79 static int rsakem_opname2id(const char *name)
80 {
81     return name2id(name, rsakem_opname_id_map, OSSL_NELEM(rsakem_opname_id_map));
82 }
83 
rsakem_newctx(void * provctx)84 static void *rsakem_newctx(void *provctx)
85 {
86     PROV_RSA_CTX *prsactx;
87 
88     if (!ossl_prov_is_running())
89         return NULL;
90 
91     prsactx =  OPENSSL_zalloc(sizeof(PROV_RSA_CTX));
92     if (prsactx == NULL)
93         return NULL;
94     prsactx->libctx = PROV_LIBCTX_OF(provctx);
95     prsactx->op = KEM_OP_UNDEFINED;
96     OSSL_FIPS_IND_INIT(prsactx)
97 
98     return prsactx;
99 }
100 
rsakem_freectx(void * vprsactx)101 static void rsakem_freectx(void *vprsactx)
102 {
103     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
104 
105     RSA_free(prsactx->rsa);
106     OPENSSL_free(prsactx);
107 }
108 
rsakem_dupctx(void * vprsactx)109 static void *rsakem_dupctx(void *vprsactx)
110 {
111     PROV_RSA_CTX *srcctx = (PROV_RSA_CTX *)vprsactx;
112     PROV_RSA_CTX *dstctx;
113 
114     if (!ossl_prov_is_running())
115         return NULL;
116 
117     dstctx = OPENSSL_zalloc(sizeof(*srcctx));
118     if (dstctx == NULL)
119         return NULL;
120 
121     *dstctx = *srcctx;
122     if (dstctx->rsa != NULL && !RSA_up_ref(dstctx->rsa)) {
123         OPENSSL_free(dstctx);
124         return NULL;
125     }
126     return dstctx;
127 }
128 
rsakem_init(void * vprsactx,void * vrsa,const OSSL_PARAM params[],int operation,const char * desc)129 static int rsakem_init(void *vprsactx, void *vrsa,
130                        const OSSL_PARAM params[], int operation,
131                        const char *desc)
132 {
133     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
134     int protect = 0;
135 
136     if (!ossl_prov_is_running())
137         return 0;
138 
139     if (prsactx == NULL || vrsa == NULL)
140         return 0;
141 
142     if (!ossl_rsa_key_op_get_protect(vrsa, operation, &protect))
143         return 0;
144     if (!RSA_up_ref(vrsa))
145         return 0;
146     RSA_free(prsactx->rsa);
147     prsactx->rsa = vrsa;
148 
149     OSSL_FIPS_IND_SET_APPROVED(prsactx)
150     if (!rsakem_set_ctx_params(prsactx, params))
151         return 0;
152 #ifdef FIPS_MODULE
153     if (!ossl_fips_ind_rsa_key_check(OSSL_FIPS_IND_GET(prsactx),
154                                      OSSL_FIPS_IND_SETTABLE0, prsactx->libctx,
155                                      prsactx->rsa, desc, protect))
156         return 0;
157 #endif
158     return 1;
159 }
160 
rsakem_encapsulate_init(void * vprsactx,void * vrsa,const OSSL_PARAM params[])161 static int rsakem_encapsulate_init(void *vprsactx, void *vrsa,
162                                    const OSSL_PARAM params[])
163 {
164     return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_ENCAPSULATE,
165                        "RSA Encapsulate Init");
166 }
167 
rsakem_decapsulate_init(void * vprsactx,void * vrsa,const OSSL_PARAM params[])168 static int rsakem_decapsulate_init(void *vprsactx, void *vrsa,
169                                    const OSSL_PARAM params[])
170 {
171     return rsakem_init(vprsactx, vrsa, params, EVP_PKEY_OP_DECAPSULATE,
172                        "RSA Decapsulate Init");
173 }
174 
rsakem_get_ctx_params(void * vprsactx,OSSL_PARAM * params)175 static int rsakem_get_ctx_params(void *vprsactx, OSSL_PARAM *params)
176 {
177     PROV_RSA_CTX *ctx = (PROV_RSA_CTX *)vprsactx;
178 
179     if (ctx == NULL)
180         return 0;
181 
182     if (!OSSL_FIPS_IND_GET_CTX_PARAM(ctx, params))
183         return 0;
184     return 1;
185 }
186 
187 static const OSSL_PARAM known_gettable_rsakem_ctx_params[] = {
188     OSSL_FIPS_IND_GETTABLE_CTX_PARAM()
189     OSSL_PARAM_END
190 };
191 
rsakem_gettable_ctx_params(ossl_unused void * vprsactx,ossl_unused void * provctx)192 static const OSSL_PARAM *rsakem_gettable_ctx_params(ossl_unused void *vprsactx,
193                                                     ossl_unused void *provctx)
194 {
195     return known_gettable_rsakem_ctx_params;
196 }
197 
rsakem_set_ctx_params(void * vprsactx,const OSSL_PARAM params[])198 static int rsakem_set_ctx_params(void *vprsactx, const OSSL_PARAM params[])
199 {
200     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
201     const OSSL_PARAM *p;
202     int op;
203 
204     if (prsactx == NULL)
205         return 0;
206     if (ossl_param_is_empty(params))
207         return 1;
208 
209     if (!OSSL_FIPS_IND_SET_CTX_PARAM(prsactx, OSSL_FIPS_IND_SETTABLE0, params,
210                                      OSSL_KEM_PARAM_FIPS_KEY_CHECK))
211         return  0;
212     p = OSSL_PARAM_locate_const(params, OSSL_KEM_PARAM_OPERATION);
213     if (p != NULL) {
214         if (p->data_type != OSSL_PARAM_UTF8_STRING)
215             return 0;
216         op = rsakem_opname2id(p->data);
217         if (op < 0)
218             return 0;
219         prsactx->op = op;
220     }
221     return 1;
222 }
223 
224 static const OSSL_PARAM known_settable_rsakem_ctx_params[] = {
225     OSSL_PARAM_utf8_string(OSSL_KEM_PARAM_OPERATION, NULL, 0),
226     OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KEM_PARAM_FIPS_KEY_CHECK)
227     OSSL_PARAM_END
228 };
229 
rsakem_settable_ctx_params(ossl_unused void * vprsactx,ossl_unused void * provctx)230 static const OSSL_PARAM *rsakem_settable_ctx_params(ossl_unused void *vprsactx,
231                                                     ossl_unused void *provctx)
232 {
233     return known_settable_rsakem_ctx_params;
234 }
235 
236 /*
237  * NIST.SP.800-56Br2
238  * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
239  *
240  * Generate a random in the range 1 < z < (n – 1)
241  */
rsasve_gen_rand_bytes(RSA * rsa_pub,unsigned char * out,int outlen)242 static int rsasve_gen_rand_bytes(RSA *rsa_pub,
243                                  unsigned char *out, int outlen)
244 {
245     int ret = 0;
246     BN_CTX *bnctx;
247     BIGNUM *z, *nminus3;
248 
249     bnctx = BN_CTX_secure_new_ex(ossl_rsa_get0_libctx(rsa_pub));
250     if (bnctx == NULL)
251         return 0;
252 
253     /*
254      * Generate a random in the range 1 < z < (n – 1).
255      * Since BN_priv_rand_range_ex() returns a value in range 0 <= r < max
256      * We can achieve this by adding 2.. but then we need to subtract 3 from
257      * the upper bound i.e: 2 + (0 <= r < (n - 3))
258      */
259     BN_CTX_start(bnctx);
260     nminus3 = BN_CTX_get(bnctx);
261     z = BN_CTX_get(bnctx);
262     ret = (z != NULL
263            && (BN_copy(nminus3, RSA_get0_n(rsa_pub)) != NULL)
264            && BN_sub_word(nminus3, 3)
265            && BN_priv_rand_range_ex(z, nminus3, 0, bnctx)
266            && BN_add_word(z, 2)
267            && (BN_bn2binpad(z, out, outlen) == outlen));
268     BN_CTX_end(bnctx);
269     BN_CTX_free(bnctx);
270     return ret;
271 }
272 
273 /*
274  * NIST.SP.800-56Br2
275  * 7.2.1.2 RSASVE Generate Operation (RSASVE.GENERATE).
276  */
rsasve_generate(PROV_RSA_CTX * prsactx,unsigned char * out,size_t * outlen,unsigned char * secret,size_t * secretlen)277 static int rsasve_generate(PROV_RSA_CTX *prsactx,
278                            unsigned char *out, size_t *outlen,
279                            unsigned char *secret, size_t *secretlen)
280 {
281     int ret;
282     size_t nlen;
283 
284     /* Step (1): nlen = Ceil(len(n)/8) */
285     nlen = RSA_size(prsactx->rsa);
286 
287     if (out == NULL) {
288         if (nlen == 0) {
289             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
290             return 0;
291         }
292         if (outlen == NULL && secretlen == NULL)
293             return 0;
294         if (outlen != NULL)
295             *outlen = nlen;
296         if (secretlen != NULL)
297             *secretlen = nlen;
298         return 1;
299     }
300 
301     /*
302      * If outlen is specified, then it must report the length
303      * of the out buffer on input so that we can confirm
304      * its size is sufficent for encapsulation
305      */
306     if (outlen != NULL && *outlen < nlen) {
307         ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
308         return 0;
309     }
310 
311     /*
312      * Step (2): Generate a random byte string z of nlen bytes where
313      *            1 < z < n - 1
314      */
315     if (!rsasve_gen_rand_bytes(prsactx->rsa, secret, nlen))
316         return 0;
317 
318     /* Step(3): out = RSAEP((n,e), z) */
319     ret = RSA_public_encrypt(nlen, secret, out, prsactx->rsa, RSA_NO_PADDING);
320     if (ret) {
321         ret = 1;
322         if (outlen != NULL)
323             *outlen = nlen;
324         if (secretlen != NULL)
325             *secretlen = nlen;
326     } else {
327         OPENSSL_cleanse(secret, nlen);
328     }
329     return ret;
330 }
331 
332 /**
333  * rsasve_recover - Recovers a secret value from ciphertext using an RSA
334  * private key.  Once, recovered, the secret value is considered to be a
335  * shared secret.  Algorithm is preformed as per
336  * NIST SP 800-56B Rev 2
337  * 7.2.1.3 RSASVE Recovery Operation (RSASVE.RECOVER).
338  *
339  * This function performs RSA decryption using the private key from the
340  * provided RSA context (`prsactx`). It takes the input ciphertext, decrypts
341  * it, and writes the decrypted message to the output buffer.
342  *
343  * @prsactx:      The RSA context containing the private key.
344  * @out:          The output buffer to store the decrypted message.
345  * @outlen:       On input, the size of the output buffer. On successful
346  *                completion, the actual length of the decrypted message.
347  * @in:           The input buffer containing the ciphertext to be decrypted.
348  * @inlen:        The length of the input ciphertext in bytes.
349  *
350  * Returns 1 on success, or 0 on error. In case of error, appropriate
351  * error messages are raised using the ERR_raise function.
352  */
rsasve_recover(PROV_RSA_CTX * prsactx,unsigned char * out,size_t * outlen,const unsigned char * in,size_t inlen)353 static int rsasve_recover(PROV_RSA_CTX *prsactx,
354                           unsigned char *out, size_t *outlen,
355                           const unsigned char *in, size_t inlen)
356 {
357     size_t nlen;
358     int ret;
359 
360     /* Step (1): get the byte length of n */
361     nlen = RSA_size(prsactx->rsa);
362 
363     if (out == NULL) {
364         if (nlen == 0) {
365             ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY);
366             return 0;
367         }
368         *outlen = nlen;
369         return 1;
370     }
371 
372     /*
373      * Step (2): check the input ciphertext 'inlen' matches the nlen
374      * and that outlen is at least nlen bytes
375      */
376     if (inlen != nlen) {
377         ERR_raise(ERR_LIB_PROV, PROV_R_BAD_LENGTH);
378         return 0;
379     }
380 
381     /*
382      * If outlen is specified, then it must report the length
383      * of the out buffer, so that we can confirm that it is of
384      * sufficient size to hold the output of decapsulation
385      */
386     if (outlen != NULL && *outlen < nlen) {
387         ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH);
388         return 0;
389     }
390 
391     /* Step (3): out = RSADP((n,d), in) */
392     ret = RSA_private_decrypt(inlen, in, out, prsactx->rsa, RSA_NO_PADDING);
393     if (ret > 0 && outlen != NULL)
394         *outlen = ret;
395     return ret > 0;
396 }
397 
rsakem_generate(void * vprsactx,unsigned char * out,size_t * outlen,unsigned char * secret,size_t * secretlen)398 static int rsakem_generate(void *vprsactx, unsigned char *out, size_t *outlen,
399                            unsigned char *secret, size_t *secretlen)
400 {
401     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
402 
403     if (!ossl_prov_is_running())
404         return 0;
405 
406     switch (prsactx->op) {
407         case KEM_OP_RSASVE:
408             return rsasve_generate(prsactx, out, outlen, secret, secretlen);
409         default:
410             return -2;
411     }
412 }
413 
rsakem_recover(void * vprsactx,unsigned char * out,size_t * outlen,const unsigned char * in,size_t inlen)414 static int rsakem_recover(void *vprsactx, unsigned char *out, size_t *outlen,
415                           const unsigned char *in, size_t inlen)
416 {
417     PROV_RSA_CTX *prsactx = (PROV_RSA_CTX *)vprsactx;
418 
419     if (!ossl_prov_is_running())
420         return 0;
421 
422     switch (prsactx->op) {
423         case KEM_OP_RSASVE:
424             return rsasve_recover(prsactx, out, outlen, in, inlen);
425         default:
426             return -2;
427     }
428 }
429 
430 const OSSL_DISPATCH ossl_rsa_asym_kem_functions[] = {
431     { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))rsakem_newctx },
432     { OSSL_FUNC_KEM_ENCAPSULATE_INIT,
433       (void (*)(void))rsakem_encapsulate_init },
434     { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))rsakem_generate },
435     { OSSL_FUNC_KEM_DECAPSULATE_INIT,
436       (void (*)(void))rsakem_decapsulate_init },
437     { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))rsakem_recover },
438     { OSSL_FUNC_KEM_FREECTX, (void (*)(void))rsakem_freectx },
439     { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))rsakem_dupctx },
440     { OSSL_FUNC_KEM_GET_CTX_PARAMS,
441       (void (*)(void))rsakem_get_ctx_params },
442     { OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS,
443       (void (*)(void))rsakem_gettable_ctx_params },
444     { OSSL_FUNC_KEM_SET_CTX_PARAMS,
445       (void (*)(void))rsakem_set_ctx_params },
446     { OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS,
447       (void (*)(void))rsakem_settable_ctx_params },
448     OSSL_DISPATCH_END
449 };
450