xref: /openssl/crypto/sha/asm/sha512-armv8.pl (revision c6e65c1f)
1#! /usr/bin/env perl
2# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23#		SHA256-hw	SHA256(*)	SHA512
24# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
25# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
26# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
27# Denver	2.01		10.5 (+26%)	6.70 (+8%)
28# X-Gene			20.0 (+100%)	12.8 (+300%(***))
29# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
30# Kryo		1.92		17.4 (+30%)	11.2 (+8%)
31# ThunderX2	2.54		13.2 (+40%)	8.40 (+18%)
32#
33# (*)	Software SHA256 results are of lesser relevance, presented
34#	mostly for informational purposes.
35# (**)	The result is a trade-off: it's possible to improve it by
36#	10% (or by 1 cycle per round), but at the cost of 20% loss
37#	on Cortex-A53 (or by 4 cycles per round).
38# (***)	Super-impressive coefficients over gcc-generated code are
39#	indication of some compiler "pathology", most notably code
40#	generated with -mgeneral-regs-only is significantly faster
41#	and the gap is only 40-90%.
42#
43# October 2016.
44#
45# Originally it was reckoned that it makes no sense to implement NEON
46# version of SHA256 for 64-bit processors. This is because performance
47# improvement on most wide-spread Cortex-A5x processors was observed
48# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
49# observed that 32-bit NEON SHA256 performs significantly better than
50# 64-bit scalar version on *some* of the more recent processors. As
51# result 64-bit NEON version of SHA256 was added to provide best
52# all-round performance. For example it executes ~30% faster on X-Gene
53# and Mongoose. [For reference, NEON version of SHA512 is bound to
54# deliver much less improvement, likely *negative* on Cortex-A5x.
55# Which is why NEON support is limited to SHA256.]
56
57# $output is the last argument if it looks like a file (it has an extension)
58# $flavour is the first argument if it doesn't look like a file
59$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
60$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
61
62if ($flavour && $flavour ne "void") {
63    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
65    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
66    die "can't locate arm-xlate.pl";
67
68    open OUT,"| \"$^X\" $xlate $flavour \"$output\""
69        or die "can't call $xlate: $!";
70    *STDOUT=*OUT;
71} else {
72    $output and open STDOUT,">$output";
73}
74
75if ($output =~ /512/) {
76	$BITS=512;
77	$SZ=8;
78	@Sigma0=(28,34,39);
79	@Sigma1=(14,18,41);
80	@sigma0=(1,  8, 7);
81	@sigma1=(19,61, 6);
82	$rounds=80;
83	$reg_t="x";
84} else {
85	$BITS=256;
86	$SZ=4;
87	@Sigma0=( 2,13,22);
88	@Sigma1=( 6,11,25);
89	@sigma0=( 7,18, 3);
90	@sigma1=(17,19,10);
91	$rounds=64;
92	$reg_t="w";
93}
94
95$func="sha${BITS}_block_data_order";
96
97($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
98
99@X=map("$reg_t$_",(3..15,0..2));
100@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
101($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
102
103sub BODY_00_xx {
104my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
105my $j=($i+1)&15;
106my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
107   $T0=@X[$i+3] if ($i<11);
108
109$code.=<<___	if ($i<16);
110#ifndef	__AARCH64EB__
111	rev	@X[$i],@X[$i]			// $i
112#endif
113___
114$code.=<<___	if ($i<13 && ($i&1));
115	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
116___
117$code.=<<___	if ($i==13);
118	ldp	@X[14],@X[15],[$inp]
119___
120$code.=<<___	if ($i>=14);
121	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
122___
123$code.=<<___	if ($i>0 && $i<16);
124	add	$a,$a,$t1			// h+=Sigma0(a)
125___
126$code.=<<___	if ($i>=11);
127	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
128___
129# While ARMv8 specifies merged rotate-n-logical operation such as
130# 'eor x,y,z,ror#n', it was found to negatively affect performance
131# on Apple A7. The reason seems to be that it requires even 'y' to
132# be available earlier. This means that such merged instruction is
133# not necessarily best choice on critical path... On the other hand
134# Cortex-A5x handles merged instructions much better than disjoint
135# rotate and logical... See (**) footnote above.
136$code.=<<___	if ($i<15);
137	ror	$t0,$e,#$Sigma1[0]
138	add	$h,$h,$t2			// h+=K[i]
139	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
140	and	$t1,$f,$e
141	bic	$t2,$g,$e
142	add	$h,$h,@X[$i&15]			// h+=X[i]
143	orr	$t1,$t1,$t2			// Ch(e,f,g)
144	eor	$t2,$a,$b			// a^b, b^c in next round
145	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
146	ror	$T0,$a,#$Sigma0[0]
147	add	$h,$h,$t1			// h+=Ch(e,f,g)
148	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
149	add	$h,$h,$t0			// h+=Sigma1(e)
150	and	$t3,$t3,$t2			// (b^c)&=(a^b)
151	add	$d,$d,$h			// d+=h
152	eor	$t3,$t3,$b			// Maj(a,b,c)
153	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
154	add	$h,$h,$t3			// h+=Maj(a,b,c)
155	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
156	//add	$h,$h,$t1			// h+=Sigma0(a)
157___
158$code.=<<___	if ($i>=15);
159	ror	$t0,$e,#$Sigma1[0]
160	add	$h,$h,$t2			// h+=K[i]
161	ror	$T1,@X[($j+1)&15],#$sigma0[0]
162	and	$t1,$f,$e
163	ror	$T2,@X[($j+14)&15],#$sigma1[0]
164	bic	$t2,$g,$e
165	ror	$T0,$a,#$Sigma0[0]
166	add	$h,$h,@X[$i&15]			// h+=X[i]
167	eor	$t0,$t0,$e,ror#$Sigma1[1]
168	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
169	orr	$t1,$t1,$t2			// Ch(e,f,g)
170	eor	$t2,$a,$b			// a^b, b^c in next round
171	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
172	eor	$T0,$T0,$a,ror#$Sigma0[1]
173	add	$h,$h,$t1			// h+=Ch(e,f,g)
174	and	$t3,$t3,$t2			// (b^c)&=(a^b)
175	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
176	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
177	add	$h,$h,$t0			// h+=Sigma1(e)
178	eor	$t3,$t3,$b			// Maj(a,b,c)
179	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
180	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
181	add	@X[$j],@X[$j],@X[($j+9)&15]
182	add	$d,$d,$h			// d+=h
183	add	$h,$h,$t3			// h+=Maj(a,b,c)
184	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
185	add	@X[$j],@X[$j],$T1
186	add	$h,$h,$t1			// h+=Sigma0(a)
187	add	@X[$j],@X[$j],$T2
188___
189	($t2,$t3)=($t3,$t2);
190}
191
192$code.=<<___;
193#include "arm_arch.h"
194#ifndef	__KERNEL__
195.extern	OPENSSL_armcap_P
196.hidden	OPENSSL_armcap_P
197#endif
198
199.text
200
201.globl	$func
202.type	$func,%function
203.align	6
204$func:
205	AARCH64_VALID_CALL_TARGET
206#ifndef	__KERNEL__
207	adrp	x16,OPENSSL_armcap_P
208	ldr	w16,[x16,#:lo12:OPENSSL_armcap_P]
209___
210$code.=<<___	if ($SZ==4);
211	tst	w16,#ARMV8_SHA256
212	b.ne	.Lv8_entry
213	tst	w16,#ARMV7_NEON
214	b.ne	.Lneon_entry
215___
216$code.=<<___	if ($SZ==8);
217	tst	w16,#ARMV8_SHA512
218	b.ne	.Lv8_entry
219___
220$code.=<<___;
221#endif
222	AARCH64_SIGN_LINK_REGISTER
223	stp	x29,x30,[sp,#-128]!
224	add	x29,sp,#0
225
226	stp	x19,x20,[sp,#16]
227	stp	x21,x22,[sp,#32]
228	stp	x23,x24,[sp,#48]
229	stp	x25,x26,[sp,#64]
230	stp	x27,x28,[sp,#80]
231	sub	sp,sp,#4*$SZ
232
233	ldp	$A,$B,[$ctx]				// load context
234	ldp	$C,$D,[$ctx,#2*$SZ]
235	ldp	$E,$F,[$ctx,#4*$SZ]
236	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
237	ldp	$G,$H,[$ctx,#6*$SZ]
238	adrp	$Ktbl,.LK$BITS
239	add	$Ktbl,$Ktbl,:lo12:.LK$BITS
240	stp	$ctx,$num,[x29,#96]
241
242.Loop:
243	ldp	@X[0],@X[1],[$inp],#2*$SZ
244	ldr	$t2,[$Ktbl],#$SZ			// *K++
245	eor	$t3,$B,$C				// magic seed
246	str	$inp,[x29,#112]
247___
248for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
249$code.=".Loop_16_xx:\n";
250for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
251$code.=<<___;
252	cbnz	$t2,.Loop_16_xx
253
254	ldp	$ctx,$num,[x29,#96]
255	ldr	$inp,[x29,#112]
256	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
257
258	ldp	@X[0],@X[1],[$ctx]
259	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
260	add	$inp,$inp,#14*$SZ			// advance input pointer
261	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
262	add	$A,$A,@X[0]
263	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
264	add	$B,$B,@X[1]
265	add	$C,$C,@X[2]
266	add	$D,$D,@X[3]
267	stp	$A,$B,[$ctx]
268	add	$E,$E,@X[4]
269	add	$F,$F,@X[5]
270	stp	$C,$D,[$ctx,#2*$SZ]
271	add	$G,$G,@X[6]
272	add	$H,$H,@X[7]
273	cmp	$inp,$num
274	stp	$E,$F,[$ctx,#4*$SZ]
275	stp	$G,$H,[$ctx,#6*$SZ]
276	b.ne	.Loop
277
278	ldp	x19,x20,[x29,#16]
279	add	sp,sp,#4*$SZ
280	ldp	x21,x22,[x29,#32]
281	ldp	x23,x24,[x29,#48]
282	ldp	x25,x26,[x29,#64]
283	ldp	x27,x28,[x29,#80]
284	ldp	x29,x30,[sp],#128
285	AARCH64_VALIDATE_LINK_REGISTER
286	ret
287.size	$func,.-$func
288
289.rodata
290
291.align	6
292.type	.LK$BITS,%object
293.LK$BITS:
294___
295$code.=<<___ if ($SZ==8);
296	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
297	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
298	.quad	0x3956c25bf348b538,0x59f111f1b605d019
299	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
300	.quad	0xd807aa98a3030242,0x12835b0145706fbe
301	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
302	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
303	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
304	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
305	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
306	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
307	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
308	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
309	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
310	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
311	.quad	0x06ca6351e003826f,0x142929670a0e6e70
312	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
313	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
314	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
315	.quad	0x81c2c92e47edaee6,0x92722c851482353b
316	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
317	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
318	.quad	0xd192e819d6ef5218,0xd69906245565a910
319	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
320	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
321	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
322	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
323	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
324	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
325	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
326	.quad	0x90befffa23631e28,0xa4506cebde82bde9
327	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
328	.quad	0xca273eceea26619c,0xd186b8c721c0c207
329	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
330	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
331	.quad	0x113f9804bef90dae,0x1b710b35131c471b
332	.quad	0x28db77f523047d84,0x32caab7b40c72493
333	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
334	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
335	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
336	.quad	0	// terminator
337___
338$code.=<<___ if ($SZ==4);
339	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
340	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
341	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
342	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
343	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
344	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
345	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
346	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
347	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
348	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
349	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
350	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
351	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
352	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
353	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
354	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
355	.long	0	//terminator
356___
357$code.=<<___;
358.size	.LK$BITS,.-.LK$BITS
359.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
360.align	2
361
362.text
363___
364
365if ($SZ==4) {
366my $Ktbl="x3";
367
368my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
369my @MSG=map("v$_.16b",(4..7));
370my ($W0,$W1)=("v16.4s","v17.4s");
371my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
372
373$code.=<<___;
374#ifndef	__KERNEL__
375.type	sha256_block_armv8,%function
376.align	6
377sha256_block_armv8:
378.Lv8_entry:
379	// Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later.
380	stp		x29,x30,[sp,#-16]!
381	add		x29,sp,#0
382
383	ld1.32		{$ABCD,$EFGH},[$ctx]
384	adrp		$Ktbl,.LK256
385	add		$Ktbl,$Ktbl,:lo12:.LK256
386
387.Loop_hw:
388	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
389	sub		$num,$num,#1
390	ld1.32		{$W0},[$Ktbl],#16
391	rev32		@MSG[0],@MSG[0]
392	rev32		@MSG[1],@MSG[1]
393	rev32		@MSG[2],@MSG[2]
394	rev32		@MSG[3],@MSG[3]
395	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
396	orr		$EFGH_SAVE,$EFGH,$EFGH
397___
398for($i=0;$i<12;$i++) {
399$code.=<<___;
400	ld1.32		{$W1},[$Ktbl],#16
401	add.i32		$W0,$W0,@MSG[0]
402	sha256su0	@MSG[0],@MSG[1]
403	orr		$abcd,$ABCD,$ABCD
404	sha256h		$ABCD,$EFGH,$W0
405	sha256h2	$EFGH,$abcd,$W0
406	sha256su1	@MSG[0],@MSG[2],@MSG[3]
407___
408	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
409}
410$code.=<<___;
411	ld1.32		{$W1},[$Ktbl],#16
412	add.i32		$W0,$W0,@MSG[0]
413	orr		$abcd,$ABCD,$ABCD
414	sha256h		$ABCD,$EFGH,$W0
415	sha256h2	$EFGH,$abcd,$W0
416
417	ld1.32		{$W0},[$Ktbl],#16
418	add.i32		$W1,$W1,@MSG[1]
419	orr		$abcd,$ABCD,$ABCD
420	sha256h		$ABCD,$EFGH,$W1
421	sha256h2	$EFGH,$abcd,$W1
422
423	ld1.32		{$W1},[$Ktbl]
424	add.i32		$W0,$W0,@MSG[2]
425	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
426	orr		$abcd,$ABCD,$ABCD
427	sha256h		$ABCD,$EFGH,$W0
428	sha256h2	$EFGH,$abcd,$W0
429
430	add.i32		$W1,$W1,@MSG[3]
431	orr		$abcd,$ABCD,$ABCD
432	sha256h		$ABCD,$EFGH,$W1
433	sha256h2	$EFGH,$abcd,$W1
434
435	add.i32		$ABCD,$ABCD,$ABCD_SAVE
436	add.i32		$EFGH,$EFGH,$EFGH_SAVE
437
438	cbnz		$num,.Loop_hw
439
440	st1.32		{$ABCD,$EFGH},[$ctx]
441
442	ldr		x29,[sp],#16
443	ret
444.size	sha256_block_armv8,.-sha256_block_armv8
445#endif
446___
447}
448
449if ($SZ==4) {	######################################### NEON stuff #
450# You'll surely note a lot of similarities with sha256-armv4 module,
451# and of course it's not a coincidence. sha256-armv4 was used as
452# initial template, but was adapted for ARMv8 instruction set and
453# extensively re-tuned for all-round performance.
454
455my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
456my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
457my $Ktbl="x16";
458my $Xfer="x17";
459my @X = map("q$_",(0..3));
460my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
461my $j=0;
462
463sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
464{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
465  my $arg = pop;
466    $arg = "#$arg" if ($arg*1 eq $arg);
467    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
468}
469
470sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
471sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
472sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
473
474sub Xupdate()
475{ use integer;
476  my $body = shift;
477  my @insns = (&$body,&$body,&$body,&$body);
478  my ($a,$b,$c,$d,$e,$f,$g,$h);
479
480	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
481	 eval(shift(@insns));
482	 eval(shift(@insns));
483	 eval(shift(@insns));
484	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
485	 eval(shift(@insns));
486	 eval(shift(@insns));
487	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
488	 eval(shift(@insns));
489	 eval(shift(@insns));
490	&ushr_32	($T2,$T0,$sigma0[0]);
491	 eval(shift(@insns));
492	&ushr_32	($T1,$T0,$sigma0[2]);
493	 eval(shift(@insns));
494	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
495	 eval(shift(@insns));
496	&sli_32		($T2,$T0,32-$sigma0[0]);
497	 eval(shift(@insns));
498	 eval(shift(@insns));
499	&ushr_32	($T3,$T0,$sigma0[1]);
500	 eval(shift(@insns));
501	 eval(shift(@insns));
502	&eor_8		($T1,$T1,$T2);
503	 eval(shift(@insns));
504	 eval(shift(@insns));
505	&sli_32		($T3,$T0,32-$sigma0[1]);
506	 eval(shift(@insns));
507	 eval(shift(@insns));
508	  &ushr_32	($T4,$T7,$sigma1[0]);
509	 eval(shift(@insns));
510	 eval(shift(@insns));
511	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
512	 eval(shift(@insns));
513	 eval(shift(@insns));
514	  &sli_32	($T4,$T7,32-$sigma1[0]);
515	 eval(shift(@insns));
516	 eval(shift(@insns));
517	  &ushr_32	($T5,$T7,$sigma1[2]);
518	 eval(shift(@insns));
519	 eval(shift(@insns));
520	  &ushr_32	($T3,$T7,$sigma1[1]);
521	 eval(shift(@insns));
522	 eval(shift(@insns));
523	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
524	 eval(shift(@insns));
525	 eval(shift(@insns));
526	  &sli_u32	($T3,$T7,32-$sigma1[1]);
527	 eval(shift(@insns));
528	 eval(shift(@insns));
529	  &eor_8	($T5,$T5,$T4);
530	 eval(shift(@insns));
531	 eval(shift(@insns));
532	 eval(shift(@insns));
533	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
534	 eval(shift(@insns));
535	 eval(shift(@insns));
536	 eval(shift(@insns));
537	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
538	 eval(shift(@insns));
539	 eval(shift(@insns));
540	 eval(shift(@insns));
541	  &ushr_32	($T6,@X[0],$sigma1[0]);
542	 eval(shift(@insns));
543	  &ushr_32	($T7,@X[0],$sigma1[2]);
544	 eval(shift(@insns));
545	 eval(shift(@insns));
546	  &sli_32	($T6,@X[0],32-$sigma1[0]);
547	 eval(shift(@insns));
548	  &ushr_32	($T5,@X[0],$sigma1[1]);
549	 eval(shift(@insns));
550	 eval(shift(@insns));
551	  &eor_8	($T7,$T7,$T6);
552	 eval(shift(@insns));
553	 eval(shift(@insns));
554	  &sli_32	($T5,@X[0],32-$sigma1[1]);
555	 eval(shift(@insns));
556	 eval(shift(@insns));
557	&ld1_32		("{$T0}","[$Ktbl], #16");
558	 eval(shift(@insns));
559	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
560	 eval(shift(@insns));
561	 eval(shift(@insns));
562	&eor_8		($T5,$T5,$T5);
563	 eval(shift(@insns));
564	 eval(shift(@insns));
565	&mov		(&Dhi($T5), &Dlo($T7));
566	 eval(shift(@insns));
567	 eval(shift(@insns));
568	 eval(shift(@insns));
569	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
570	 eval(shift(@insns));
571	 eval(shift(@insns));
572	 eval(shift(@insns));
573	&add_32		($T0,$T0,@X[0]);
574	 while($#insns>=1) { eval(shift(@insns)); }
575	&st1_32		("{$T0}","[$Xfer], #16");
576	 eval(shift(@insns));
577
578	push(@X,shift(@X));		# "rotate" X[]
579}
580
581sub Xpreload()
582{ use integer;
583  my $body = shift;
584  my @insns = (&$body,&$body,&$body,&$body);
585  my ($a,$b,$c,$d,$e,$f,$g,$h);
586
587	 eval(shift(@insns));
588	 eval(shift(@insns));
589	&ld1_8		("{@X[0]}","[$inp],#16");
590	 eval(shift(@insns));
591	 eval(shift(@insns));
592	&ld1_32		("{$T0}","[$Ktbl],#16");
593	 eval(shift(@insns));
594	 eval(shift(@insns));
595	 eval(shift(@insns));
596	 eval(shift(@insns));
597	&rev32		(@X[0],@X[0]);
598	 eval(shift(@insns));
599	 eval(shift(@insns));
600	 eval(shift(@insns));
601	 eval(shift(@insns));
602	&add_32		($T0,$T0,@X[0]);
603	 foreach (@insns) { eval; }	# remaining instructions
604	&st1_32		("{$T0}","[$Xfer], #16");
605
606	push(@X,shift(@X));		# "rotate" X[]
607}
608
609sub body_00_15 () {
610	(
611	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
612	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
613	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
614	'&and	($t1,$f,$e)',
615	'&bic	($t4,$g,$e)',
616	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
617	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
618	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
619	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
620	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
621	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
622	'&ror	($t0,$t0,"#$Sigma1[0]")',
623	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
624	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
625	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
626	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
627	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
628	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
629	'&ror	($t4,$t4,"#$Sigma0[0]")',
630	'&add	($d,$d,$h)',			# d+=h
631	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
632	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
633	)
634}
635
636$code.=<<___;
637#ifdef	__KERNEL__
638.globl	sha256_block_neon
639#endif
640.type	sha256_block_neon,%function
641.align	4
642sha256_block_neon:
643	AARCH64_VALID_CALL_TARGET
644.Lneon_entry:
645	// Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later
646	stp	x29, x30, [sp, #-16]!
647	mov	x29, sp
648	sub	sp,sp,#16*4
649
650	adrp	$Ktbl,.LK256
651	add	$Ktbl,$Ktbl,:lo12:.LK256
652	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
653
654	ld1.8	{@X[0]},[$inp], #16
655	ld1.8	{@X[1]},[$inp], #16
656	ld1.8	{@X[2]},[$inp], #16
657	ld1.8	{@X[3]},[$inp], #16
658	ld1.32	{$T0},[$Ktbl], #16
659	ld1.32	{$T1},[$Ktbl], #16
660	ld1.32	{$T2},[$Ktbl], #16
661	ld1.32	{$T3},[$Ktbl], #16
662	rev32	@X[0],@X[0]		// yes, even on
663	rev32	@X[1],@X[1]		// big-endian
664	rev32	@X[2],@X[2]
665	rev32	@X[3],@X[3]
666	mov	$Xfer,sp
667	add.32	$T0,$T0,@X[0]
668	add.32	$T1,$T1,@X[1]
669	add.32	$T2,$T2,@X[2]
670	st1.32	{$T0-$T1},[$Xfer], #32
671	add.32	$T3,$T3,@X[3]
672	st1.32	{$T2-$T3},[$Xfer]
673	sub	$Xfer,$Xfer,#32
674
675	ldp	$A,$B,[$ctx]
676	ldp	$C,$D,[$ctx,#8]
677	ldp	$E,$F,[$ctx,#16]
678	ldp	$G,$H,[$ctx,#24]
679	ldr	$t1,[sp,#0]
680	mov	$t2,wzr
681	eor	$t3,$B,$C
682	mov	$t4,wzr
683	b	.L_00_48
684
685.align	4
686.L_00_48:
687___
688	&Xupdate(\&body_00_15);
689	&Xupdate(\&body_00_15);
690	&Xupdate(\&body_00_15);
691	&Xupdate(\&body_00_15);
692$code.=<<___;
693	cmp	$t1,#0				// check for K256 terminator
694	ldr	$t1,[sp,#0]
695	sub	$Xfer,$Xfer,#64
696	bne	.L_00_48
697
698	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
699	cmp	$inp,$num
700	mov	$Xfer, #64
701	csel	$Xfer, $Xfer, xzr, eq
702	sub	$inp,$inp,$Xfer			// avoid SEGV
703	mov	$Xfer,sp
704___
705	&Xpreload(\&body_00_15);
706	&Xpreload(\&body_00_15);
707	&Xpreload(\&body_00_15);
708	&Xpreload(\&body_00_15);
709$code.=<<___;
710	add	$A,$A,$t4			// h+=Sigma0(a) from the past
711	ldp	$t0,$t1,[$ctx,#0]
712	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
713	ldp	$t2,$t3,[$ctx,#8]
714	add	$A,$A,$t0			// accumulate
715	add	$B,$B,$t1
716	ldp	$t0,$t1,[$ctx,#16]
717	add	$C,$C,$t2
718	add	$D,$D,$t3
719	ldp	$t2,$t3,[$ctx,#24]
720	add	$E,$E,$t0
721	add	$F,$F,$t1
722	 ldr	$t1,[sp,#0]
723	stp	$A,$B,[$ctx,#0]
724	add	$G,$G,$t2
725	 mov	$t2,wzr
726	stp	$C,$D,[$ctx,#8]
727	add	$H,$H,$t3
728	stp	$E,$F,[$ctx,#16]
729	 eor	$t3,$B,$C
730	stp	$G,$H,[$ctx,#24]
731	 mov	$t4,wzr
732	 mov	$Xfer,sp
733	b.ne	.L_00_48
734
735	ldr	x29,[x29]
736	add	sp,sp,#16*4+16
737	ret
738.size	sha256_block_neon,.-sha256_block_neon
739___
740}
741
742if ($SZ==8) {
743my $Ktbl="x3";
744
745my @H = map("v$_.16b",(0..4));
746my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
747my @MSG=map("v$_.16b",(16..23));
748my ($W0,$W1)=("v24.2d","v25.2d");
749my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
750
751$code.=<<___;
752#ifndef	__KERNEL__
753.type	sha512_block_armv8,%function
754.align	6
755sha512_block_armv8:
756.Lv8_entry:
757	// Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later
758	stp		x29,x30,[sp,#-16]!
759	add		x29,sp,#0
760
761	ld1		{@MSG[0]-@MSG[3]},[$inp],#64	// load input
762	ld1		{@MSG[4]-@MSG[7]},[$inp],#64
763
764	ld1.64		{@H[0]-@H[3]},[$ctx]		// load context
765	adrp		$Ktbl,.LK512
766	add		$Ktbl,$Ktbl,:lo12:.LK512
767
768	rev64		@MSG[0],@MSG[0]
769	rev64		@MSG[1],@MSG[1]
770	rev64		@MSG[2],@MSG[2]
771	rev64		@MSG[3],@MSG[3]
772	rev64		@MSG[4],@MSG[4]
773	rev64		@MSG[5],@MSG[5]
774	rev64		@MSG[6],@MSG[6]
775	rev64		@MSG[7],@MSG[7]
776	b		.Loop_hw
777
778.align	4
779.Loop_hw:
780	ld1.64		{$W0},[$Ktbl],#16
781	subs		$num,$num,#1
782	sub		x4,$inp,#128
783	orr		$AB,@H[0],@H[0]			// offload
784	orr		$CD,@H[1],@H[1]
785	orr		$EF,@H[2],@H[2]
786	orr		$GH,@H[3],@H[3]
787	csel		$inp,$inp,x4,ne			// conditional rewind
788___
789for($i=0;$i<32;$i++) {
790$code.=<<___;
791	add.i64		$W0,$W0,@MSG[0]
792	ld1.64		{$W1},[$Ktbl],#16
793	ext		$W0,$W0,$W0,#8
794	ext		$fg,@H[2],@H[3],#8
795	ext		$de,@H[1],@H[2],#8
796	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
797	 sha512su0	@MSG[0],@MSG[1]
798	 ext		$m9_10,@MSG[4],@MSG[5],#8
799	sha512h		@H[3],$fg,$de
800	 sha512su1	@MSG[0],@MSG[7],$m9_10
801	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
802	sha512h2	@H[3],$H[1],@H[0]
803___
804	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
805	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
806}
807for(;$i<40;$i++) {
808$code.=<<___	if ($i<39);
809	ld1.64		{$W1},[$Ktbl],#16
810___
811$code.=<<___	if ($i==39);
812	sub		$Ktbl,$Ktbl,#$rounds*$SZ	// rewind
813___
814$code.=<<___;
815	add.i64		$W0,$W0,@MSG[0]
816	 ld1		{@MSG[0]},[$inp],#16		// load next input
817	ext		$W0,$W0,$W0,#8
818	ext		$fg,@H[2],@H[3],#8
819	ext		$de,@H[1],@H[2],#8
820	add.i64		@H[3],@H[3],$W0			// "T1 + H + K512[i]"
821	sha512h		@H[3],$fg,$de
822	 rev64		@MSG[0],@MSG[0]
823	add.i64		@H[4],@H[1],@H[3]		// "D + T1"
824	sha512h2	@H[3],$H[1],@H[0]
825___
826	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
827	@H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
828}
829$code.=<<___;
830	add.i64		@H[0],@H[0],$AB			// accumulate
831	add.i64		@H[1],@H[1],$CD
832	add.i64		@H[2],@H[2],$EF
833	add.i64		@H[3],@H[3],$GH
834
835	cbnz		$num,.Loop_hw
836
837	st1.64		{@H[0]-@H[3]},[$ctx]		// store context
838
839	ldr		x29,[sp],#16
840	ret
841.size	sha512_block_armv8,.-sha512_block_armv8
842#endif
843___
844}
845
846{   my  %opcode = (
847	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
848	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
849
850    sub unsha256 {
851	my ($mnemonic,$arg)=@_;
852
853	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
854	&&
855	sprintf ".inst\t0x%08x\t//%s %s",
856			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
857			$mnemonic,$arg;
858    }
859}
860
861{   my  %opcode = (
862	"sha512h"	=> 0xce608000,	"sha512h2"	=> 0xce608400,
863	"sha512su0"	=> 0xcec08000,	"sha512su1"	=> 0xce608800	);
864
865    sub unsha512 {
866	my ($mnemonic,$arg)=@_;
867
868	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
869	&&
870	sprintf ".inst\t0x%08x\t//%s %s",
871			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
872			$mnemonic,$arg;
873    }
874}
875
876open SELF,$0;
877while(<SELF>) {
878        next if (/^#!/);
879        last if (!s/^#/\/\// and !/^$/);
880        print;
881}
882close SELF;
883
884foreach(split("\n",$code)) {
885
886	s/\`([^\`]*)\`/eval($1)/ge;
887
888	s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge	or
889	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
890
891	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
892
893	s/\.[ui]?8(\s)/$1/;
894	s/\.\w?64\b//		and s/\.16b/\.2d/g	or
895	s/\.\w?32\b//		and s/\.16b/\.4s/g;
896	m/\bext\b/		and s/\.2d/\.16b/g	or
897	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
898
899	print $_,"\n";
900}
901
902close STDOUT or die "error closing STDOUT: $!";
903