1#! /usr/bin/env perl 2# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the Apache License 2.0 (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16 17# September 2010. 18# 19# The module implements "4-bit" GCM GHASH function and underlying 20# single multiplication operation in GF(2^128). "4-bit" means that it 21# uses 256 bytes per-key table [+128 bytes shared table]. Performance 22# was measured to be ~18 cycles per processed byte on z10, which is 23# almost 40% better than gcc-generated code. It should be noted that 24# 18 cycles is worse result than expected: loop is scheduled for 12 25# and the result should be close to 12. In the lack of instruction- 26# level profiling data it's impossible to tell why... 27 28# November 2010. 29# 30# Adapt for -m31 build. If kernel supports what's called "highgprs" 31# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit 32# instructions and achieve "64-bit" performance even in 31-bit legacy 33# application context. The feature is not specific to any particular 34# processor, as long as it's "z-CPU". Latter implies that the code 35# remains z/Architecture specific. On z990 it was measured to perform 36# 2.8x better than 32-bit code generated by gcc 4.3. 37 38# March 2011. 39# 40# Support for hardware KIMD-GHASH is verified to produce correct 41# result and therefore is engaged. On z196 it was measured to process 42# 8KB buffer ~7 faster than software implementation. It's not as 43# impressive for smaller buffer sizes and for smallest 16-bytes buffer 44# it's actually almost 2 times slower. Which is the reason why 45# KIMD-GHASH is not used in gcm_gmult_4bit. 46 47# $output is the last argument if it looks like a file (it has an extension) 48# $flavour is the first argument if it doesn't look like a file 49$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; 50$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; 51 52if ($flavour =~ /3[12]/) { 53 $SIZE_T=4; 54 $g=""; 55} else { 56 $SIZE_T=8; 57 $g="g"; 58} 59 60$output and open STDOUT,">$output"; 61 62$softonly=0; 63 64$Zhi="%r0"; 65$Zlo="%r1"; 66 67$Xi="%r2"; # argument block 68$Htbl="%r3"; 69$inp="%r4"; 70$len="%r5"; 71 72$rem0="%r6"; # variables 73$rem1="%r7"; 74$nlo="%r8"; 75$nhi="%r9"; 76$xi="%r10"; 77$cnt="%r11"; 78$tmp="%r12"; 79$x78="%r13"; 80$rem_4bit="%r14"; 81 82$sp="%r15"; 83 84$code.=<<___; 85#include "s390x_arch.h" 86 87.text 88 89.globl gcm_gmult_4bit 90.align 32 91gcm_gmult_4bit: 92___ 93$code.=<<___; 94 stm${g} %r6,%r14,6*$SIZE_T($sp) 95 96 aghi $Xi,-1 97 lghi $len,1 98 lghi $x78,`0xf<<3` 99 larl $rem_4bit,rem_4bit 100 101 lg $Zlo,8+1($Xi) # Xi 102 j .Lgmult_shortcut 103.type gcm_gmult_4bit,\@function 104.size gcm_gmult_4bit,(.-gcm_gmult_4bit) 105 106.globl gcm_ghash_4bit 107.align 32 108gcm_ghash_4bit: 109___ 110$code.=<<___ if(!$softonly); 111 larl %r1,OPENSSL_s390xcap_P 112 lg %r0,S390X_KIMD+8(%r1) # load second word of kimd capabilities 113 # vector 114 tmhh %r0,0x4000 # check for function 65 115 jz .Lsoft_ghash 116 # Do not assume this function is called from a gcm128_context. 117 # This is not true, e.g., for AES-GCM-SIV. 118 # Parameter Block: 119 # Chaining Value (XI) 128byte 120 # Key (Htable[8]) 128byte 121 lmg %r0,%r1,0($Xi) 122 stmg %r0,%r1,8($sp) 123 lmg %r0,%r1,8*16($Htbl) 124 stmg %r0,%r1,24($sp) 125 la %r1,8($sp) 126 lghi %r0,S390X_GHASH # function 65 127 .long 0xb93e0004 # kimd %r0,$inp 128 brc 1,.-4 # pay attention to "partial completion" 129 lmg %r0,%r1,8($sp) 130 stmg %r0,%r1,0($Xi) 131 br %r14 132.align 32 133.Lsoft_ghash: 134___ 135$code.=<<___ if ($flavour =~ /3[12]/); 136 llgfr $len,$len 137___ 138$code.=<<___; 139 stm${g} %r6,%r14,6*$SIZE_T($sp) 140 141 aghi $Xi,-1 142 srlg $len,$len,4 143 lghi $x78,`0xf<<3` 144 larl $rem_4bit,rem_4bit 145 146 lg $Zlo,8+1($Xi) # Xi 147 lg $Zhi,0+1($Xi) 148 lghi $tmp,0 149.Louter: 150 xg $Zhi,0($inp) # Xi ^= inp 151 xg $Zlo,8($inp) 152 xgr $Zhi,$tmp 153 stg $Zlo,8+1($Xi) 154 stg $Zhi,0+1($Xi) 155 156.Lgmult_shortcut: 157 lghi $tmp,0xf0 158 sllg $nlo,$Zlo,4 159 srlg $xi,$Zlo,8 # extract second byte 160 ngr $nlo,$tmp 161 lgr $nhi,$Zlo 162 lghi $cnt,14 163 ngr $nhi,$tmp 164 165 lg $Zlo,8($nlo,$Htbl) 166 lg $Zhi,0($nlo,$Htbl) 167 168 sllg $nlo,$xi,4 169 sllg $rem0,$Zlo,3 170 ngr $nlo,$tmp 171 ngr $rem0,$x78 172 ngr $xi,$tmp 173 174 sllg $tmp,$Zhi,60 175 srlg $Zlo,$Zlo,4 176 srlg $Zhi,$Zhi,4 177 xg $Zlo,8($nhi,$Htbl) 178 xg $Zhi,0($nhi,$Htbl) 179 lgr $nhi,$xi 180 sllg $rem1,$Zlo,3 181 xgr $Zlo,$tmp 182 ngr $rem1,$x78 183 sllg $tmp,$Zhi,60 184 j .Lghash_inner 185.align 16 186.Lghash_inner: 187 srlg $Zlo,$Zlo,4 188 srlg $Zhi,$Zhi,4 189 xg $Zlo,8($nlo,$Htbl) 190 llgc $xi,0($cnt,$Xi) 191 xg $Zhi,0($nlo,$Htbl) 192 sllg $nlo,$xi,4 193 xg $Zhi,0($rem0,$rem_4bit) 194 nill $nlo,0xf0 195 sllg $rem0,$Zlo,3 196 xgr $Zlo,$tmp 197 ngr $rem0,$x78 198 nill $xi,0xf0 199 200 sllg $tmp,$Zhi,60 201 srlg $Zlo,$Zlo,4 202 srlg $Zhi,$Zhi,4 203 xg $Zlo,8($nhi,$Htbl) 204 xg $Zhi,0($nhi,$Htbl) 205 lgr $nhi,$xi 206 xg $Zhi,0($rem1,$rem_4bit) 207 sllg $rem1,$Zlo,3 208 xgr $Zlo,$tmp 209 ngr $rem1,$x78 210 sllg $tmp,$Zhi,60 211 brct $cnt,.Lghash_inner 212 213 srlg $Zlo,$Zlo,4 214 srlg $Zhi,$Zhi,4 215 xg $Zlo,8($nlo,$Htbl) 216 xg $Zhi,0($nlo,$Htbl) 217 sllg $xi,$Zlo,3 218 xg $Zhi,0($rem0,$rem_4bit) 219 xgr $Zlo,$tmp 220 ngr $xi,$x78 221 222 sllg $tmp,$Zhi,60 223 srlg $Zlo,$Zlo,4 224 srlg $Zhi,$Zhi,4 225 xg $Zlo,8($nhi,$Htbl) 226 xg $Zhi,0($nhi,$Htbl) 227 xgr $Zlo,$tmp 228 xg $Zhi,0($rem1,$rem_4bit) 229 230 lg $tmp,0($xi,$rem_4bit) 231 la $inp,16($inp) 232 sllg $tmp,$tmp,4 # correct last rem_4bit[rem] 233 brctg $len,.Louter 234 235 xgr $Zhi,$tmp 236 stg $Zlo,8+1($Xi) 237 stg $Zhi,0+1($Xi) 238 lm${g} %r6,%r14,6*$SIZE_T($sp) 239 br %r14 240.type gcm_ghash_4bit,\@function 241.size gcm_ghash_4bit,(.-gcm_ghash_4bit) 242 243.align 64 244rem_4bit: 245 .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 246 .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 247 .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 248 .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 249.type rem_4bit,\@object 250.size rem_4bit,(.-rem_4bit) 251.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>" 252___ 253 254$code =~ s/\`([^\`]*)\`/eval $1/gem; 255print $code; 256close STDOUT or die "error closing STDOUT: $!"; 257