xref: /openssl/crypto/bn/bn_rsa_fips186_4.c (revision da1c088f)
1 /*
2  * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10 
11 /*
12  * According to NIST SP800-131A "Transitioning the use of cryptographic
13  * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14  * allowed for signatures (Table 2) or key transport (Table 5). In the code
15  * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16  * that digital signature verification can still use deprecated 1024 bit keys).
17  *
18  * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
19  * must be generated before the module generates the RSA primes p and q.
20  * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
21  * 3072 bits only, the min/max total length of the auxiliary primes.
22  * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
23  * included here.
24  */
25 #include <stdio.h>
26 #include <openssl/bn.h>
27 #include "bn_local.h"
28 #include "crypto/bn.h"
29 #include "internal/nelem.h"
30 
31 #if BN_BITS2 == 64
32 # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
33 #else
34 # define BN_DEF(lo, hi) lo, hi
35 #endif
36 
37 /* 1 / sqrt(2) * 2^256, rounded up */
38 static const BN_ULONG inv_sqrt_2_val[] = {
39     BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
40     BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
41 };
42 
43 const BIGNUM ossl_bn_inv_sqrt_2 = {
44     (BN_ULONG *)inv_sqrt_2_val,
45     OSSL_NELEM(inv_sqrt_2_val),
46     OSSL_NELEM(inv_sqrt_2_val),
47     0,
48     BN_FLG_STATIC_DATA
49 };
50 
51 /*
52  * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin
53  * required for generation of RSA aux primes (p1, p2, q1 and q2).
54  */
bn_rsa_fips186_5_aux_prime_MR_rounds(int nbits)55 static int bn_rsa_fips186_5_aux_prime_MR_rounds(int nbits)
56 {
57     if (nbits >= 4096)
58         return 44;
59     if (nbits >= 3072)
60         return 41;
61     if (nbits >= 2048)
62         return 38;
63     return 0; /* Error */
64 }
65 
66 /*
67  * Refer to FIPS 186-5 Table B.1 for minimum rounds of Miller Rabin
68  * required for generation of RSA primes (p and q)
69  */
bn_rsa_fips186_5_prime_MR_rounds(int nbits)70 static int bn_rsa_fips186_5_prime_MR_rounds(int nbits)
71 {
72     if (nbits >= 3072)
73         return 4;
74     if (nbits >= 2048)
75         return 5;
76     return 0; /* Error */
77 }
78 
79 /*
80  * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
81  * (FIPS 186-5 has an entry for >= 4096 bits).
82  *
83  * Params:
84  *     nbits The key size in bits.
85  * Returns:
86  *     The minimum size of the auxiliary primes or 0 if nbits is invalid.
87  */
bn_rsa_fips186_5_aux_prime_min_size(int nbits)88 static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
89 {
90     if (nbits >= 4096)
91         return 201;
92     if (nbits >= 3072)
93         return 171;
94     if (nbits >= 2048)
95         return 141;
96     return 0;
97 }
98 
99 /*
100  * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
101  * len(q1) + len(q2) for p,q Probable Primes".
102  * (FIPS 186-5 has an entry for >= 4096 bits).
103  * Params:
104  *     nbits The key size in bits.
105  * Returns:
106  *     The maximum length or 0 if nbits is invalid.
107  */
bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)108 static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
109 {
110     if (nbits >= 4096)
111         return 2030;
112     if (nbits >= 3072)
113         return 1518;
114     if (nbits >= 2048)
115         return 1007;
116     return 0;
117 }
118 
119 /*
120  * Find the first odd integer that is a probable prime.
121  *
122  * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
123  *
124  * Params:
125  *     Xp1 The passed in starting point to find a probably prime.
126  *     p1 The returned probable prime (first odd integer >= Xp1)
127  *     ctx A BN_CTX object.
128  *     rounds The number of Miller Rabin rounds
129  *     cb An optional BIGNUM callback.
130  * Returns: 1 on success otherwise it returns 0.
131  */
bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM * Xp1,BIGNUM * p1,BN_CTX * ctx,int rounds,BN_GENCB * cb)132 static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
133                                                 BIGNUM *p1, BN_CTX *ctx,
134                                                 int rounds,
135                                                 BN_GENCB *cb)
136 {
137     int ret = 0;
138     int i = 0;
139     int tmp = 0;
140 
141     if (BN_copy(p1, Xp1) == NULL)
142         return 0;
143     BN_set_flags(p1, BN_FLG_CONSTTIME);
144 
145     /* Find the first odd number >= Xp1 that is probably prime */
146     for (;;) {
147         i++;
148         BN_GENCB_call(cb, 0, i);
149         /* MR test with trial division */
150         tmp = ossl_bn_check_generated_prime(p1, rounds, ctx, cb);
151         if (tmp > 0)
152             break;
153         if (tmp < 0)
154             goto err;
155         /* Get next odd number */
156         if (!BN_add_word(p1, 2))
157             goto err;
158     }
159     BN_GENCB_call(cb, 2, i);
160     ret = 1;
161 err:
162     return ret;
163 }
164 
165 /*
166  * Generate a probable prime (p or q).
167  *
168  * See FIPS 186-4 B.3.6 (Steps 4 & 5)
169  *
170  * Params:
171  *     p The returned probable prime.
172  *     Xpout An optionally returned random number used during generation of p.
173  *     p1, p2 The returned auxiliary primes. If NULL they are not returned.
174  *     Xp An optional passed in value (that is random number used during
175  *        generation of p).
176  *     Xp1, Xp2 Optional passed in values that are normally generated
177  *              internally. Used to find p1, p2.
178  *     nlen The bit length of the modulus (the key size).
179  *     e The public exponent.
180  *     ctx A BN_CTX object.
181  *     cb An optional BIGNUM callback.
182  * Returns: 1 on success otherwise it returns 0.
183  */
ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM * p,BIGNUM * Xpout,BIGNUM * p1,BIGNUM * p2,const BIGNUM * Xp,const BIGNUM * Xp1,const BIGNUM * Xp2,int nlen,const BIGNUM * e,BN_CTX * ctx,BN_GENCB * cb)184 int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
185                                           BIGNUM *p1, BIGNUM *p2,
186                                           const BIGNUM *Xp, const BIGNUM *Xp1,
187                                           const BIGNUM *Xp2, int nlen,
188                                           const BIGNUM *e, BN_CTX *ctx,
189                                           BN_GENCB *cb)
190 {
191     int ret = 0;
192     BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
193     int bitlen, rounds;
194 
195     if (p == NULL || Xpout == NULL)
196         return 0;
197 
198     BN_CTX_start(ctx);
199 
200     p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
201     p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
202     Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
203     Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
204     if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
205         goto err;
206 
207     bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
208     if (bitlen == 0)
209         goto err;
210     rounds = bn_rsa_fips186_5_aux_prime_MR_rounds(nlen);
211 
212     /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
213     if (Xp1 == NULL) {
214         /* Set the top and bottom bits to make it odd and the correct size */
215         if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
216                              0, ctx))
217             goto err;
218     }
219     /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
220     if (Xp2 == NULL) {
221         /* Set the top and bottom bits to make it odd and the correct size */
222         if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
223                              0, ctx))
224             goto err;
225     }
226 
227     /* (Steps 4.2/5.2) - find first auxiliary probable primes */
228     if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, rounds, cb)
229             || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, rounds, cb))
230         goto err;
231     /* (Table B.1) auxiliary prime Max length check */
232     if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
233             bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
234         goto err;
235     /* (Steps 4.3/5.3) - generate prime */
236     if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
237                                             ctx, cb))
238         goto err;
239     ret = 1;
240 err:
241     /* Zeroize any internally generated values that are not returned */
242     if (p1 == NULL)
243         BN_clear(p1i);
244     if (p2 == NULL)
245         BN_clear(p2i);
246     if (Xp1 == NULL)
247         BN_clear(Xp1i);
248     if (Xp2 == NULL)
249         BN_clear(Xp2i);
250     BN_CTX_end(ctx);
251     return ret;
252 }
253 
254 /*
255  * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
256  * prime numbers and the Chinese Remainder Theorem.
257  *
258  * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
259  * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
260  *
261  * Params:
262  *     Y The returned prime factor (private_prime_factor) of the modulus n.
263  *     X The returned random number used during generation of the prime factor.
264  *     Xin An optional passed in value for X used for testing purposes.
265  *     r1 An auxiliary prime.
266  *     r2 An auxiliary prime.
267  *     nlen The desired length of n (the RSA modulus).
268  *     e The public exponent.
269  *     ctx A BN_CTX object.
270  *     cb An optional BIGNUM callback object.
271  * Returns: 1 on success otherwise it returns 0.
272  * Assumptions:
273  *     Y, X, r1, r2, e are not NULL.
274  */
ossl_bn_rsa_fips186_4_derive_prime(BIGNUM * Y,BIGNUM * X,const BIGNUM * Xin,const BIGNUM * r1,const BIGNUM * r2,int nlen,const BIGNUM * e,BN_CTX * ctx,BN_GENCB * cb)275 int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
276                                        const BIGNUM *r1, const BIGNUM *r2,
277                                        int nlen, const BIGNUM *e,
278                                        BN_CTX *ctx, BN_GENCB *cb)
279 {
280     int ret = 0;
281     int i, imax, rounds;
282     int bits = nlen >> 1;
283     BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
284     BIGNUM *base, *range;
285 
286     BN_CTX_start(ctx);
287 
288     base = BN_CTX_get(ctx);
289     range = BN_CTX_get(ctx);
290     R = BN_CTX_get(ctx);
291     tmp = BN_CTX_get(ctx);
292     r1r2x2 = BN_CTX_get(ctx);
293     y1 = BN_CTX_get(ctx);
294     r1x2 = BN_CTX_get(ctx);
295     if (r1x2 == NULL)
296         goto err;
297 
298     if (Xin != NULL && BN_copy(X, Xin) == NULL)
299         goto err;
300 
301     /*
302      * We need to generate a random number X in the range
303      * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
304      * We can rewrite that as:
305      * base = 1/sqrt(2) * 2^(nlen/2)
306      * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
307      * X = base + random(range)
308      * We only have the first 256 bit of 1/sqrt(2)
309      */
310     if (Xin == NULL) {
311         if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
312             goto err;
313         if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
314                        bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
315             || !BN_lshift(range, BN_value_one(), bits)
316             || !BN_sub(range, range, base))
317             goto err;
318     }
319 
320     /*
321      * (Step 1) GCD(2r1, r2) = 1.
322      *    Note: This algorithm was doing a gcd(2r1, r2)=1 test before doing an
323      *    mod_inverse(2r1, r2) which are effectively the same operation.
324      *    (The algorithm assumed that the gcd test would be faster). Since the
325      *    mod_inverse is currently faster than calling the constant time
326      *    BN_gcd(), the call to BN_gcd() has been omitted. The inverse result
327      *    is used further down.
328      */
329     if (!(BN_lshift1(r1x2, r1)
330             && (BN_mod_inverse(tmp, r1x2, r2, ctx) != NULL)
331             /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
332             && (BN_mod_inverse(R, r2, r1x2, ctx) != NULL)
333             && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
334             && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
335             && BN_sub(R, R, tmp)
336             /* Calculate 2r1r2 */
337             && BN_mul(r1r2x2, r1x2, r2, ctx)))
338         goto err;
339     /* Make positive by adding the modulus */
340     if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
341         goto err;
342 
343     /*
344      * In FIPS 186-4 imax was set to 5 * nlen/2.
345      * Analysis by Allen Roginsky
346      * (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
347      * page 68) indicates this has a 1 in 2 million chance of failure.
348      * The number has been updated to 20 * nlen/2 as used in
349      * FIPS186-5 Appendix B.9 Step 9.
350      */
351     rounds = bn_rsa_fips186_5_prime_MR_rounds(nlen);
352     imax = 20 * bits; /* max = 20/2 * nbits */
353     for (;;) {
354         if (Xin == NULL) {
355             /*
356              * (Step 3) Choose Random X such that
357              *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
358              */
359             if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
360                 goto err;
361         }
362         /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
363         if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
364             goto err;
365         /* (Step 5) */
366         i = 0;
367         for (;;) {
368             /* (Step 6) */
369             if (BN_num_bits(Y) > bits) {
370                 if (Xin == NULL)
371                     break; /* Randomly Generated X so Go back to Step 3 */
372                 else
373                     goto err; /* X is not random so it will always fail */
374             }
375             BN_GENCB_call(cb, 0, 2);
376 
377             /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
378             if (BN_copy(y1, Y) == NULL
379                     || !BN_sub_word(y1, 1))
380                 goto err;
381 
382             if (BN_are_coprime(y1, e, ctx)) {
383                 int rv = ossl_bn_check_generated_prime(Y, rounds, ctx, cb);
384 
385                 if (rv > 0)
386                     goto end;
387                 if (rv < 0)
388                     goto err;
389             }
390             /* (Step 8-10) */
391             if (++i >= imax) {
392                 ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
393                 goto err;
394             }
395             if (!BN_add(Y, Y, r1r2x2))
396                 goto err;
397         }
398     }
399 end:
400     ret = 1;
401     BN_GENCB_call(cb, 3, 0);
402 err:
403     BN_clear(y1);
404     BN_CTX_end(ctx);
405     return ret;
406 }
407