xref: /openssl/crypto/bn/bn_lib.c (revision a644cb7c)
1 /*
2  * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <assert.h>
11 #include <limits.h>
12 #include "internal/cryptlib.h"
13 #include "internal/endian.h"
14 #include "bn_local.h"
15 #include <openssl/opensslconf.h>
16 #include "internal/constant_time.h"
17 
18 /* This stuff appears to be completely unused, so is deprecated */
19 #ifndef OPENSSL_NO_DEPRECATED_0_9_8
20 /*-
21  * For a 32 bit machine
22  * 2 -   4 ==  128
23  * 3 -   8 ==  256
24  * 4 -  16 ==  512
25  * 5 -  32 == 1024
26  * 6 -  64 == 2048
27  * 7 - 128 == 4096
28  * 8 - 256 == 8192
29  */
30 static int bn_limit_bits = 0;
31 static int bn_limit_num = 8;    /* (1<<bn_limit_bits) */
32 static int bn_limit_bits_low = 0;
33 static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
34 static int bn_limit_bits_high = 0;
35 static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
36 static int bn_limit_bits_mont = 0;
37 static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
38 
BN_set_params(int mult,int high,int low,int mont)39 void BN_set_params(int mult, int high, int low, int mont)
40 {
41     if (mult >= 0) {
42         if (mult > (int)(sizeof(int) * 8) - 1)
43             mult = sizeof(int) * 8 - 1;
44         bn_limit_bits = mult;
45         bn_limit_num = 1 << mult;
46     }
47     if (high >= 0) {
48         if (high > (int)(sizeof(int) * 8) - 1)
49             high = sizeof(int) * 8 - 1;
50         bn_limit_bits_high = high;
51         bn_limit_num_high = 1 << high;
52     }
53     if (low >= 0) {
54         if (low > (int)(sizeof(int) * 8) - 1)
55             low = sizeof(int) * 8 - 1;
56         bn_limit_bits_low = low;
57         bn_limit_num_low = 1 << low;
58     }
59     if (mont >= 0) {
60         if (mont > (int)(sizeof(int) * 8) - 1)
61             mont = sizeof(int) * 8 - 1;
62         bn_limit_bits_mont = mont;
63         bn_limit_num_mont = 1 << mont;
64     }
65 }
66 
BN_get_params(int which)67 int BN_get_params(int which)
68 {
69     if (which == 0)
70         return bn_limit_bits;
71     else if (which == 1)
72         return bn_limit_bits_high;
73     else if (which == 2)
74         return bn_limit_bits_low;
75     else if (which == 3)
76         return bn_limit_bits_mont;
77     else
78         return 0;
79 }
80 #endif
81 
BN_value_one(void)82 const BIGNUM *BN_value_one(void)
83 {
84     static const BN_ULONG data_one = 1L;
85     static const BIGNUM const_one =
86         { (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA };
87 
88     return &const_one;
89 }
90 
91 /*
92  * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
93  * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
94  */
95 #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
96     && _MSC_VER>=1400 && _MSC_VER<1501
97 # define MS_BROKEN_BN_num_bits_word
98 # pragma optimize("", off)
99 #endif
BN_num_bits_word(BN_ULONG l)100 int BN_num_bits_word(BN_ULONG l)
101 {
102     BN_ULONG x, mask;
103     int bits = (l != 0);
104 
105 #if BN_BITS2 > 32
106     x = l >> 32;
107     mask = (0 - x) & BN_MASK2;
108     mask = (0 - (mask >> (BN_BITS2 - 1)));
109     bits += 32 & mask;
110     l ^= (x ^ l) & mask;
111 #endif
112 
113     x = l >> 16;
114     mask = (0 - x) & BN_MASK2;
115     mask = (0 - (mask >> (BN_BITS2 - 1)));
116     bits += 16 & mask;
117     l ^= (x ^ l) & mask;
118 
119     x = l >> 8;
120     mask = (0 - x) & BN_MASK2;
121     mask = (0 - (mask >> (BN_BITS2 - 1)));
122     bits += 8 & mask;
123     l ^= (x ^ l) & mask;
124 
125     x = l >> 4;
126     mask = (0 - x) & BN_MASK2;
127     mask = (0 - (mask >> (BN_BITS2 - 1)));
128     bits += 4 & mask;
129     l ^= (x ^ l) & mask;
130 
131     x = l >> 2;
132     mask = (0 - x) & BN_MASK2;
133     mask = (0 - (mask >> (BN_BITS2 - 1)));
134     bits += 2 & mask;
135     l ^= (x ^ l) & mask;
136 
137     x = l >> 1;
138     mask = (0 - x) & BN_MASK2;
139     mask = (0 - (mask >> (BN_BITS2 - 1)));
140     bits += 1 & mask;
141 
142     return bits;
143 }
144 #ifdef MS_BROKEN_BN_num_bits_word
145 # pragma optimize("", on)
146 #endif
147 
148 /*
149  * This function still leaks `a->dmax`: it's caller's responsibility to
150  * expand the input `a` in advance to a public length.
151  */
152 static ossl_inline
bn_num_bits_consttime(const BIGNUM * a)153 int bn_num_bits_consttime(const BIGNUM *a)
154 {
155     int j, ret;
156     unsigned int mask, past_i;
157     int i = a->top - 1;
158     bn_check_top(a);
159 
160     for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
161         mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
162 
163         ret += BN_BITS2 & (~mask & ~past_i);
164         ret += BN_num_bits_word(a->d[j]) & mask;
165 
166         past_i |= mask; /* past_i will become 0xff..ff after i==j */
167     }
168 
169     /*
170      * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
171      * final result.
172      */
173     mask = ~(constant_time_eq_int(i, ((int)-1)));
174 
175     return ret & mask;
176 }
177 
BN_num_bits(const BIGNUM * a)178 int BN_num_bits(const BIGNUM *a)
179 {
180     int i = a->top - 1;
181     bn_check_top(a);
182 
183     if (a->flags & BN_FLG_CONSTTIME) {
184         /*
185          * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
186          * so that a->dmax is not leaking secret information.
187          *
188          * In other words, it's the caller's responsibility to ensure `a` has
189          * been preallocated in advance to a public length if we hit this
190          * branch.
191          *
192          */
193         return bn_num_bits_consttime(a);
194     }
195 
196     if (BN_is_zero(a))
197         return 0;
198 
199     return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
200 }
201 
bn_free_d(BIGNUM * a,int clear)202 static void bn_free_d(BIGNUM *a, int clear)
203 {
204     if (BN_get_flags(a, BN_FLG_SECURE))
205         OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
206     else if (clear != 0)
207         OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
208     else
209         OPENSSL_free(a->d);
210 }
211 
212 
BN_clear_free(BIGNUM * a)213 void BN_clear_free(BIGNUM *a)
214 {
215     if (a == NULL)
216         return;
217     if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
218         bn_free_d(a, 1);
219     if (BN_get_flags(a, BN_FLG_MALLOCED)) {
220         OPENSSL_cleanse(a, sizeof(*a));
221         OPENSSL_free(a);
222     }
223 }
224 
BN_free(BIGNUM * a)225 void BN_free(BIGNUM *a)
226 {
227     if (a == NULL)
228         return;
229     if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
230         bn_free_d(a, 0);
231     if (a->flags & BN_FLG_MALLOCED)
232         OPENSSL_free(a);
233 }
234 
bn_init(BIGNUM * a)235 void bn_init(BIGNUM *a)
236 {
237     static BIGNUM nilbn;
238 
239     *a = nilbn;
240     bn_check_top(a);
241 }
242 
BN_new(void)243 BIGNUM *BN_new(void)
244 {
245     BIGNUM *ret;
246 
247     if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
248         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
249         return NULL;
250     }
251     ret->flags = BN_FLG_MALLOCED;
252     bn_check_top(ret);
253     return ret;
254 }
255 
BN_secure_new(void)256  BIGNUM *BN_secure_new(void)
257  {
258      BIGNUM *ret = BN_new();
259      if (ret != NULL)
260          ret->flags |= BN_FLG_SECURE;
261      return ret;
262  }
263 
264 /* This is used by bn_expand2() */
265 /* The caller MUST check that words > b->dmax before calling this */
bn_expand_internal(const BIGNUM * b,int words)266 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
267 {
268     BN_ULONG *a = NULL;
269 
270     if (words > (INT_MAX / (4 * BN_BITS2))) {
271         ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG);
272         return NULL;
273     }
274     if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
275         ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
276         return NULL;
277     }
278     if (BN_get_flags(b, BN_FLG_SECURE))
279         a = OPENSSL_secure_zalloc(words * sizeof(*a));
280     else
281         a = OPENSSL_zalloc(words * sizeof(*a));
282     if (a == NULL) {
283         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
284         return NULL;
285     }
286 
287     assert(b->top <= words);
288     if (b->top > 0)
289         memcpy(a, b->d, sizeof(*a) * b->top);
290 
291     return a;
292 }
293 
294 /*
295  * This is an internal function that should not be used in applications. It
296  * ensures that 'b' has enough room for a 'words' word number and initialises
297  * any unused part of b->d with leading zeros. It is mostly used by the
298  * various BIGNUM routines. If there is an error, NULL is returned. If not,
299  * 'b' is returned.
300  */
301 
bn_expand2(BIGNUM * b,int words)302 BIGNUM *bn_expand2(BIGNUM *b, int words)
303 {
304     if (words > b->dmax) {
305         BN_ULONG *a = bn_expand_internal(b, words);
306         if (!a)
307             return NULL;
308         if (b->d != NULL)
309             bn_free_d(b, 1);
310         b->d = a;
311         b->dmax = words;
312     }
313 
314     return b;
315 }
316 
BN_dup(const BIGNUM * a)317 BIGNUM *BN_dup(const BIGNUM *a)
318 {
319     BIGNUM *t;
320 
321     if (a == NULL)
322         return NULL;
323     bn_check_top(a);
324 
325     t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
326     if (t == NULL)
327         return NULL;
328     if (!BN_copy(t, a)) {
329         BN_free(t);
330         return NULL;
331     }
332     bn_check_top(t);
333     return t;
334 }
335 
BN_copy(BIGNUM * a,const BIGNUM * b)336 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
337 {
338     int bn_words;
339 
340     bn_check_top(b);
341 
342     bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
343 
344     if (a == b)
345         return a;
346     if (bn_wexpand(a, bn_words) == NULL)
347         return NULL;
348 
349     if (b->top > 0)
350         memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
351 
352     a->neg = b->neg;
353     a->top = b->top;
354     a->flags |= b->flags & BN_FLG_FIXED_TOP;
355     bn_check_top(a);
356     return a;
357 }
358 
359 #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
360                                     | BN_FLG_CONSTTIME   \
361                                     | BN_FLG_SECURE      \
362                                     | BN_FLG_FIXED_TOP))
363 #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
364 
BN_swap(BIGNUM * a,BIGNUM * b)365 void BN_swap(BIGNUM *a, BIGNUM *b)
366 {
367     int flags_old_a, flags_old_b;
368     BN_ULONG *tmp_d;
369     int tmp_top, tmp_dmax, tmp_neg;
370 
371     bn_check_top(a);
372     bn_check_top(b);
373 
374     flags_old_a = a->flags;
375     flags_old_b = b->flags;
376 
377     tmp_d = a->d;
378     tmp_top = a->top;
379     tmp_dmax = a->dmax;
380     tmp_neg = a->neg;
381 
382     a->d = b->d;
383     a->top = b->top;
384     a->dmax = b->dmax;
385     a->neg = b->neg;
386 
387     b->d = tmp_d;
388     b->top = tmp_top;
389     b->dmax = tmp_dmax;
390     b->neg = tmp_neg;
391 
392     a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
393     b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
394     bn_check_top(a);
395     bn_check_top(b);
396 }
397 
BN_clear(BIGNUM * a)398 void BN_clear(BIGNUM *a)
399 {
400     if (a == NULL)
401         return;
402     bn_check_top(a);
403     if (a->d != NULL)
404         OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
405     a->neg = 0;
406     a->top = 0;
407     a->flags &= ~BN_FLG_FIXED_TOP;
408 }
409 
BN_get_word(const BIGNUM * a)410 BN_ULONG BN_get_word(const BIGNUM *a)
411 {
412     if (a->top > 1)
413         return BN_MASK2;
414     else if (a->top == 1)
415         return a->d[0];
416     /* a->top == 0 */
417     return 0;
418 }
419 
BN_set_word(BIGNUM * a,BN_ULONG w)420 int BN_set_word(BIGNUM *a, BN_ULONG w)
421 {
422     bn_check_top(a);
423     if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
424         return 0;
425     a->neg = 0;
426     a->d[0] = w;
427     a->top = (w ? 1 : 0);
428     a->flags &= ~BN_FLG_FIXED_TOP;
429     bn_check_top(a);
430     return 1;
431 }
432 
433 typedef enum {BIG, LITTLE} endianess_t;
434 typedef enum {SIGNED, UNSIGNED} signedness_t;
435 
bin2bn(const unsigned char * s,int len,BIGNUM * ret,endianess_t endianess,signedness_t signedness)436 static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret,
437                       endianess_t endianess, signedness_t signedness)
438 {
439     int inc;
440     const unsigned char *s2;
441     int inc2;
442     int neg = 0, xor = 0, carry = 0;
443     unsigned int i;
444     unsigned int n;
445     BIGNUM *bn = NULL;
446 
447     if (ret == NULL)
448         ret = bn = BN_new();
449     if (ret == NULL)
450         return NULL;
451     bn_check_top(ret);
452 
453     /*
454      * The loop that does the work iterates from least to most
455      * significant BIGNUM chunk, so we adapt parameters to transfer
456      * input bytes accordingly.
457      */
458     if (endianess == LITTLE) {
459         s2 = s + len - 1;
460         inc2 = -1;
461         inc = 1;
462     } else {
463         s2 = s;
464         inc2 = 1;
465         inc = -1;
466         s += len - 1;
467     }
468 
469     /* Take note of the signedness of the input bytes*/
470     if (signedness == SIGNED) {
471         neg = !!(*s2 & 0x80);
472         xor = neg ? 0xff : 0x00;
473         carry = neg;
474     }
475 
476     /*
477      * Skip leading sign extensions (the value of |xor|).
478      * This is the only spot where |s2| and |inc2| are used.
479      */
480     for ( ; len > 0 && *s2 == xor; s2 += inc2, len--)
481         continue;
482 
483     /*
484      * If there was a set of 0xff, we backtrack one byte unless the next
485      * one has a sign bit, as the last 0xff is then part of the actual
486      * number, rather then a mere sign extension.
487      */
488     if (xor == 0xff) {
489         if (len == 0 || !(*s2 & 0x80))
490             len++;
491     }
492     /* If it was all zeros, we're done */
493     if (len == 0) {
494         ret->top = 0;
495         return ret;
496     }
497     n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */
498     if (!ossl_assert(bn_wexpand(ret, (int)n) != NULL)) {
499         BN_free(bn);
500         return NULL;
501     }
502     ret->top = n;
503     ret->neg = neg;
504     for (i = 0; n-- > 0; i++) {
505         BN_ULONG l = 0;        /* Accumulator */
506         unsigned int m = 0;    /* Offset in a bignum chunk, in bits */
507 
508         for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) {
509             BN_ULONG byte_xored = *s ^ xor;
510             BN_ULONG byte = (byte_xored + carry) & 0xff;
511 
512             carry = byte_xored > byte; /* Implicit 1 or 0 */
513             l |= (byte << m);
514         }
515         ret->d[i] = l;
516     }
517     /*
518      * need to call this due to clear byte at top if avoiding having the top
519      * bit set (-ve number)
520      */
521     bn_correct_top(ret);
522     return ret;
523 }
524 
BN_bin2bn(const unsigned char * s,int len,BIGNUM * ret)525 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
526 {
527     return bin2bn(s, len, ret, BIG, UNSIGNED);
528 }
529 
BN_signed_bin2bn(const unsigned char * s,int len,BIGNUM * ret)530 BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
531 {
532     return bin2bn(s, len, ret, BIG, SIGNED);
533 }
534 
bn2binpad(const BIGNUM * a,unsigned char * to,int tolen,endianess_t endianess,signedness_t signedness)535 static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen,
536                      endianess_t endianess, signedness_t signedness)
537 {
538     int inc;
539     int n, n8;
540     int xor = 0, carry = 0, ext = 0;
541     size_t i, lasti, j, atop, mask;
542     BN_ULONG l;
543 
544     /*
545      * In case |a| is fixed-top, BN_num_bits can return bogus length,
546      * but it's assumed that fixed-top inputs ought to be "nominated"
547      * even for padded output, so it works out...
548      */
549     n8 = BN_num_bits(a);
550     n = (n8 + 7) / 8;           /* This is what BN_num_bytes() does */
551 
552     /* Take note of the signedness of the bignum */
553     if (signedness == SIGNED) {
554         xor = a->neg ? 0xff : 0x00;
555         carry = a->neg;
556 
557         /*
558          * if |n * 8 == n|, then the MSbit is set, otherwise unset.
559          * We must compensate with one extra byte if that doesn't
560          * correspond to the signedness of the bignum with regards
561          * to 2's complement.
562          */
563         ext = (n * 8 == n8)
564             ? !a->neg            /* MSbit set on nonnegative bignum */
565             : a->neg;            /* MSbit unset on negative bignum */
566     }
567 
568     if (tolen == -1) {
569         tolen = n + ext;
570     } else if (tolen < n + ext) { /* uncommon/unlike case */
571         BIGNUM temp = *a;
572 
573         bn_correct_top(&temp);
574         n8 = BN_num_bits(&temp);
575         n = (n8 + 7) / 8;       /* This is what BN_num_bytes() does */
576         if (tolen < n + ext)
577             return -1;
578     }
579 
580     /* Swipe through whole available data and don't give away padded zero. */
581     atop = a->dmax * BN_BYTES;
582     if (atop == 0) {
583         if (tolen != 0)
584             memset(to, '\0', tolen);
585         return tolen;
586     }
587 
588     /*
589      * The loop that does the work iterates from least significant
590      * to most significant BIGNUM limb, so we adapt parameters to
591      * transfer output bytes accordingly.
592      */
593     if (endianess == LITTLE) {
594         inc = 1;
595     } else {
596         inc = -1;
597         to += tolen - 1;         /* Move to the last byte, not beyond */
598     }
599 
600     lasti = atop - 1;
601     atop = a->top * BN_BYTES;
602     for (i = 0, j = 0; j < (size_t)tolen; j++) {
603         unsigned char byte, byte_xored;
604 
605         l = a->d[i / BN_BYTES];
606         mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
607         byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
608         byte_xored = byte ^ xor;
609         *to = (unsigned char)(byte_xored + carry);
610         carry = byte_xored > *to; /* Implicit 1 or 0 */
611         to += inc;
612         i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
613     }
614 
615     return tolen;
616 }
617 
BN_bn2binpad(const BIGNUM * a,unsigned char * to,int tolen)618 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
619 {
620     if (tolen < 0)
621         return -1;
622     return bn2binpad(a, to, tolen, BIG, UNSIGNED);
623 }
624 
BN_signed_bn2bin(const BIGNUM * a,unsigned char * to,int tolen)625 int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen)
626 {
627     if (tolen < 0)
628         return -1;
629     return bn2binpad(a, to, tolen, BIG, SIGNED);
630 }
631 
BN_bn2bin(const BIGNUM * a,unsigned char * to)632 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
633 {
634     return bn2binpad(a, to, -1, BIG, UNSIGNED);
635 }
636 
BN_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)637 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
638 {
639     return bin2bn(s, len, ret, LITTLE, UNSIGNED);
640 }
641 
BN_signed_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)642 BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
643 {
644     return bin2bn(s, len, ret, LITTLE, SIGNED);
645 }
646 
BN_bn2lebinpad(const BIGNUM * a,unsigned char * to,int tolen)647 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
648 {
649     if (tolen < 0)
650         return -1;
651     return bn2binpad(a, to, tolen, LITTLE, UNSIGNED);
652 }
653 
BN_signed_bn2lebin(const BIGNUM * a,unsigned char * to,int tolen)654 int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen)
655 {
656     if (tolen < 0)
657         return -1;
658     return bn2binpad(a, to, tolen, LITTLE, SIGNED);
659 }
660 
BN_native2bn(const unsigned char * s,int len,BIGNUM * ret)661 BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret)
662 {
663     DECLARE_IS_ENDIAN;
664 
665     if (IS_LITTLE_ENDIAN)
666         return BN_lebin2bn(s, len, ret);
667     return BN_bin2bn(s, len, ret);
668 }
669 
BN_signed_native2bn(const unsigned char * s,int len,BIGNUM * ret)670 BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret)
671 {
672     DECLARE_IS_ENDIAN;
673 
674     if (IS_LITTLE_ENDIAN)
675         return BN_signed_lebin2bn(s, len, ret);
676     return BN_signed_bin2bn(s, len, ret);
677 }
678 
BN_bn2nativepad(const BIGNUM * a,unsigned char * to,int tolen)679 int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen)
680 {
681     DECLARE_IS_ENDIAN;
682 
683     if (IS_LITTLE_ENDIAN)
684         return BN_bn2lebinpad(a, to, tolen);
685     return BN_bn2binpad(a, to, tolen);
686 }
687 
BN_signed_bn2native(const BIGNUM * a,unsigned char * to,int tolen)688 int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen)
689 {
690     DECLARE_IS_ENDIAN;
691 
692     if (IS_LITTLE_ENDIAN)
693         return BN_signed_bn2lebin(a, to, tolen);
694     return BN_signed_bn2bin(a, to, tolen);
695 }
696 
BN_ucmp(const BIGNUM * a,const BIGNUM * b)697 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
698 {
699     int i;
700     BN_ULONG t1, t2, *ap, *bp;
701 
702     bn_check_top(a);
703     bn_check_top(b);
704 
705     i = a->top - b->top;
706     if (i != 0)
707         return i;
708     ap = a->d;
709     bp = b->d;
710     for (i = a->top - 1; i >= 0; i--) {
711         t1 = ap[i];
712         t2 = bp[i];
713         if (t1 != t2)
714             return ((t1 > t2) ? 1 : -1);
715     }
716     return 0;
717 }
718 
BN_cmp(const BIGNUM * a,const BIGNUM * b)719 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
720 {
721     int i;
722     int gt, lt;
723     BN_ULONG t1, t2;
724 
725     if ((a == NULL) || (b == NULL)) {
726         if (a != NULL)
727             return -1;
728         else if (b != NULL)
729             return 1;
730         else
731             return 0;
732     }
733 
734     bn_check_top(a);
735     bn_check_top(b);
736 
737     if (a->neg != b->neg) {
738         if (a->neg)
739             return -1;
740         else
741             return 1;
742     }
743     if (a->neg == 0) {
744         gt = 1;
745         lt = -1;
746     } else {
747         gt = -1;
748         lt = 1;
749     }
750 
751     if (a->top > b->top)
752         return gt;
753     if (a->top < b->top)
754         return lt;
755     for (i = a->top - 1; i >= 0; i--) {
756         t1 = a->d[i];
757         t2 = b->d[i];
758         if (t1 > t2)
759             return gt;
760         if (t1 < t2)
761             return lt;
762     }
763     return 0;
764 }
765 
BN_set_bit(BIGNUM * a,int n)766 int BN_set_bit(BIGNUM *a, int n)
767 {
768     int i, j, k;
769 
770     if (n < 0)
771         return 0;
772 
773     i = n / BN_BITS2;
774     j = n % BN_BITS2;
775     if (a->top <= i) {
776         if (bn_wexpand(a, i + 1) == NULL)
777             return 0;
778         for (k = a->top; k < i + 1; k++)
779             a->d[k] = 0;
780         a->top = i + 1;
781         a->flags &= ~BN_FLG_FIXED_TOP;
782     }
783 
784     a->d[i] |= (((BN_ULONG)1) << j);
785     bn_check_top(a);
786     return 1;
787 }
788 
BN_clear_bit(BIGNUM * a,int n)789 int BN_clear_bit(BIGNUM *a, int n)
790 {
791     int i, j;
792 
793     bn_check_top(a);
794     if (n < 0)
795         return 0;
796 
797     i = n / BN_BITS2;
798     j = n % BN_BITS2;
799     if (a->top <= i)
800         return 0;
801 
802     a->d[i] &= (~(((BN_ULONG)1) << j));
803     bn_correct_top(a);
804     return 1;
805 }
806 
BN_is_bit_set(const BIGNUM * a,int n)807 int BN_is_bit_set(const BIGNUM *a, int n)
808 {
809     int i, j;
810 
811     bn_check_top(a);
812     if (n < 0)
813         return 0;
814     i = n / BN_BITS2;
815     j = n % BN_BITS2;
816     if (a->top <= i)
817         return 0;
818     return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
819 }
820 
BN_mask_bits(BIGNUM * a,int n)821 int BN_mask_bits(BIGNUM *a, int n)
822 {
823     int b, w;
824 
825     bn_check_top(a);
826     if (n < 0)
827         return 0;
828 
829     w = n / BN_BITS2;
830     b = n % BN_BITS2;
831     if (w >= a->top)
832         return 0;
833     if (b == 0)
834         a->top = w;
835     else {
836         a->top = w + 1;
837         a->d[w] &= ~(BN_MASK2 << b);
838     }
839     bn_correct_top(a);
840     return 1;
841 }
842 
BN_set_negative(BIGNUM * a,int b)843 void BN_set_negative(BIGNUM *a, int b)
844 {
845     if (b && !BN_is_zero(a))
846         a->neg = 1;
847     else
848         a->neg = 0;
849 }
850 
bn_cmp_words(const BN_ULONG * a,const BN_ULONG * b,int n)851 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
852 {
853     int i;
854     BN_ULONG aa, bb;
855 
856     if (n == 0)
857         return 0;
858 
859     aa = a[n - 1];
860     bb = b[n - 1];
861     if (aa != bb)
862         return ((aa > bb) ? 1 : -1);
863     for (i = n - 2; i >= 0; i--) {
864         aa = a[i];
865         bb = b[i];
866         if (aa != bb)
867             return ((aa > bb) ? 1 : -1);
868     }
869     return 0;
870 }
871 
872 /*
873  * Here follows a specialised variants of bn_cmp_words().  It has the
874  * capability of performing the operation on arrays of different sizes. The
875  * sizes of those arrays is expressed through cl, which is the common length
876  * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
877  * two lengths, calculated as len(a)-len(b). All lengths are the number of
878  * BN_ULONGs...
879  */
880 
bn_cmp_part_words(const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)881 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
882 {
883     int n, i;
884     n = cl - 1;
885 
886     if (dl < 0) {
887         for (i = dl; i < 0; i++) {
888             if (b[n - i] != 0)
889                 return -1;      /* a < b */
890         }
891     }
892     if (dl > 0) {
893         for (i = dl; i > 0; i--) {
894             if (a[n + i] != 0)
895                 return 1;       /* a > b */
896         }
897     }
898     return bn_cmp_words(a, b, cl);
899 }
900 
901 /*-
902  * Constant-time conditional swap of a and b.
903  * a and b are swapped if condition is not 0.
904  * nwords is the number of words to swap.
905  * Assumes that at least nwords are allocated in both a and b.
906  * Assumes that no more than nwords are used by either a or b.
907  */
BN_consttime_swap(BN_ULONG condition,BIGNUM * a,BIGNUM * b,int nwords)908 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
909 {
910     BN_ULONG t;
911     int i;
912 
913     bn_wcheck_size(a, nwords);
914     bn_wcheck_size(b, nwords);
915 
916     condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
917 
918     t = (a->top ^ b->top) & condition;
919     a->top ^= t;
920     b->top ^= t;
921 
922     t = (a->neg ^ b->neg) & condition;
923     a->neg ^= t;
924     b->neg ^= t;
925 
926     /*-
927      * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
928      * is actually to treat it as it's read-only data, and some (if not most)
929      * of it does reside in read-only segment. In other words observation of
930      * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
931      * condition. It would either cause SEGV or effectively cause data
932      * corruption.
933      *
934      * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
935      * preserved.
936      *
937      * BN_FLG_SECURE: must be preserved, because it determines how x->d was
938      * allocated and hence how to free it.
939      *
940      * BN_FLG_CONSTTIME: sufficient to mask and swap
941      *
942      * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
943      * the data, so the d array may be padded with additional 0 values (i.e.
944      * top could be greater than the minimal value that it could be). We should
945      * be swapping it
946      */
947 
948 #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
949 
950     t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
951     a->flags ^= t;
952     b->flags ^= t;
953 
954     /* conditionally swap the data */
955     for (i = 0; i < nwords; i++) {
956         t = (a->d[i] ^ b->d[i]) & condition;
957         a->d[i] ^= t;
958         b->d[i] ^= t;
959     }
960 }
961 
962 #undef BN_CONSTTIME_SWAP_FLAGS
963 
964 /* Bits of security, see SP800-57 */
965 
BN_security_bits(int L,int N)966 int BN_security_bits(int L, int N)
967 {
968     int secbits, bits;
969     if (L >= 15360)
970         secbits = 256;
971     else if (L >= 7680)
972         secbits = 192;
973     else if (L >= 3072)
974         secbits = 128;
975     else if (L >= 2048)
976         secbits = 112;
977     else if (L >= 1024)
978         secbits = 80;
979     else
980         return 0;
981     if (N == -1)
982         return secbits;
983     bits = N / 2;
984     if (bits < 80)
985         return 0;
986     return bits >= secbits ? secbits : bits;
987 }
988 
BN_zero_ex(BIGNUM * a)989 void BN_zero_ex(BIGNUM *a)
990 {
991     a->neg = 0;
992     a->top = 0;
993     a->flags &= ~BN_FLG_FIXED_TOP;
994 }
995 
BN_abs_is_word(const BIGNUM * a,const BN_ULONG w)996 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
997 {
998     return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
999 }
1000 
BN_is_zero(const BIGNUM * a)1001 int BN_is_zero(const BIGNUM *a)
1002 {
1003     return a->top == 0;
1004 }
1005 
BN_is_one(const BIGNUM * a)1006 int BN_is_one(const BIGNUM *a)
1007 {
1008     return BN_abs_is_word(a, 1) && !a->neg;
1009 }
1010 
BN_is_word(const BIGNUM * a,const BN_ULONG w)1011 int BN_is_word(const BIGNUM *a, const BN_ULONG w)
1012 {
1013     return BN_abs_is_word(a, w) && (!w || !a->neg);
1014 }
1015 
BN_is_odd(const BIGNUM * a)1016 int BN_is_odd(const BIGNUM *a)
1017 {
1018     return (a->top > 0) && (a->d[0] & 1);
1019 }
1020 
BN_is_negative(const BIGNUM * a)1021 int BN_is_negative(const BIGNUM *a)
1022 {
1023     return (a->neg != 0);
1024 }
1025 
BN_to_montgomery(BIGNUM * r,const BIGNUM * a,BN_MONT_CTX * mont,BN_CTX * ctx)1026 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
1027                      BN_CTX *ctx)
1028 {
1029     return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
1030 }
1031 
BN_with_flags(BIGNUM * dest,const BIGNUM * b,int flags)1032 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
1033 {
1034     dest->d = b->d;
1035     dest->top = b->top;
1036     dest->dmax = b->dmax;
1037     dest->neg = b->neg;
1038     dest->flags = ((dest->flags & BN_FLG_MALLOCED)
1039                    | (b->flags & ~BN_FLG_MALLOCED)
1040                    | BN_FLG_STATIC_DATA | flags);
1041 }
1042 
BN_GENCB_new(void)1043 BN_GENCB *BN_GENCB_new(void)
1044 {
1045     BN_GENCB *ret;
1046 
1047     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
1048         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
1049         return NULL;
1050     }
1051 
1052     return ret;
1053 }
1054 
BN_GENCB_free(BN_GENCB * cb)1055 void BN_GENCB_free(BN_GENCB *cb)
1056 {
1057     if (cb == NULL)
1058         return;
1059     OPENSSL_free(cb);
1060 }
1061 
BN_set_flags(BIGNUM * b,int n)1062 void BN_set_flags(BIGNUM *b, int n)
1063 {
1064     b->flags |= n;
1065 }
1066 
BN_get_flags(const BIGNUM * b,int n)1067 int BN_get_flags(const BIGNUM *b, int n)
1068 {
1069     return b->flags & n;
1070 }
1071 
1072 /* Populate a BN_GENCB structure with an "old"-style callback */
BN_GENCB_set_old(BN_GENCB * gencb,void (* callback)(int,int,void *),void * cb_arg)1073 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
1074                       void *cb_arg)
1075 {
1076     BN_GENCB *tmp_gencb = gencb;
1077     tmp_gencb->ver = 1;
1078     tmp_gencb->arg = cb_arg;
1079     tmp_gencb->cb.cb_1 = callback;
1080 }
1081 
1082 /* Populate a BN_GENCB structure with a "new"-style callback */
BN_GENCB_set(BN_GENCB * gencb,int (* callback)(int,int,BN_GENCB *),void * cb_arg)1083 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
1084                   void *cb_arg)
1085 {
1086     BN_GENCB *tmp_gencb = gencb;
1087     tmp_gencb->ver = 2;
1088     tmp_gencb->arg = cb_arg;
1089     tmp_gencb->cb.cb_2 = callback;
1090 }
1091 
BN_GENCB_get_arg(BN_GENCB * cb)1092 void *BN_GENCB_get_arg(BN_GENCB *cb)
1093 {
1094     return cb->arg;
1095 }
1096 
bn_wexpand(BIGNUM * a,int words)1097 BIGNUM *bn_wexpand(BIGNUM *a, int words)
1098 {
1099     return (words <= a->dmax) ? a : bn_expand2(a, words);
1100 }
1101 
bn_correct_top(BIGNUM * a)1102 void bn_correct_top(BIGNUM *a)
1103 {
1104     BN_ULONG *ftl;
1105     int tmp_top = a->top;
1106 
1107     if (tmp_top > 0) {
1108         for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1109             ftl--;
1110             if (*ftl != 0)
1111                 break;
1112         }
1113         a->top = tmp_top;
1114     }
1115     if (a->top == 0)
1116         a->neg = 0;
1117     a->flags &= ~BN_FLG_FIXED_TOP;
1118     bn_pollute(a);
1119 }
1120