xref: /openssl/crypto/bn/asm/rsaz-2k-avx512.pl (revision 7ed6de99)
1# Copyright 2020-2024 The OpenSSL Project Authors. All Rights Reserved.
2# Copyright (c) 2020, Intel Corporation. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8#
9#
10# Originally written by Sergey Kirillov and Andrey Matyukov.
11# Special thanks to Ilya Albrekht for his valuable hints.
12# Intel Corporation
13#
14# December 2020
15#
16# Initial release.
17#
18# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
19#
20# IceLake-Client @ 1.3GHz
21# |---------+----------------------+--------------+-------------|
22# |         | OpenSSL 3.0.0-alpha9 | this         | Unit        |
23# |---------+----------------------+--------------+-------------|
24# | rsa2048 | 2 127 659            | 1 015 625    | cycles/sign |
25# |         | 611                  | 1280 / +109% | sign/s      |
26# |---------+----------------------+--------------+-------------|
27#
28
29# $output is the last argument if it looks like a file (it has an extension)
30# $flavour is the first argument if it doesn't look like a file
31$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
32$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
33
34$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
35$avx512ifma=0;
36
37$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
38( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
39( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
40die "can't locate x86_64-xlate.pl";
41
42if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
43        =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
44    $avx512ifma = ($1>=2.26);
45}
46
47if (!$avx512ifma && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
48       `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
49    $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
50}
51
52if (!$avx512ifma && `$ENV{CC} -v 2>&1`
53    =~ /(Apple)?\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
54    my $ver = $3 + $4/100.0 + $5/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
55    if ($1) {
56        # Apple conditions, they use a different version series, see
57        # https://en.wikipedia.org/wiki/Xcode#Xcode_7.0_-_10.x_(since_Free_On-Device_Development)_2
58        # clang 7.0.0 is Apple clang 10.0.1
59        $avx512ifma = ($ver>=10.0001)
60    } else {
61        $avx512ifma = ($ver>=7.0);
62    }
63}
64
65open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
66    or die "can't call $xlate: $!";
67*STDOUT=*OUT;
68
69if ($avx512ifma>0) {{{
70@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
71
72$code.=<<___;
73.extern OPENSSL_ia32cap_P
74.globl  ossl_rsaz_avx512ifma_eligible
75.type   ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
76.align  32
77ossl_rsaz_avx512ifma_eligible:
78    mov OPENSSL_ia32cap_P+8(%rip), %ecx
79    xor %eax,%eax
80    and \$`1<<31|1<<21|1<<17|1<<16`, %ecx     # avx512vl + avx512ifma + avx512dq + avx512f
81    cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
82    cmove %ecx,%eax
83    ret
84.size   ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
85___
86
87###############################################################################
88# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
89#
90# AMM is defined as presented in the paper [1].
91#
92# The input and output are presented in 2^52 radix domain, i.e.
93#   |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
94#   |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
95#
96# NB: the AMM implementation does not perform "conditional" subtraction step
97# specified in the original algorithm as according to the Lemma 1 from the paper
98# [2], the result will be always < 2*m and can be used as a direct input to
99# the next AMM iteration.  This post-condition is true, provided the correct
100# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e.  s >= n + 2 * k,
101# which matches our case: 1040 > 1024 + 2 * 1.
102#
103# [1] Gueron, S. Efficient software implementations of modular exponentiation.
104#     DOI: 10.1007/s13389-012-0031-5
105# [2] Gueron, S. Enhanced Montgomery Multiplication.
106#     DOI: 10.1007/3-540-36400-5_5
107#
108# void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res,
109#                                    const BN_ULONG *a,
110#                                    const BN_ULONG *b,
111#                                    const BN_ULONG *m,
112#                                    BN_ULONG k0);
113###############################################################################
114{
115# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
116my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
117
118my $mask52     = "%rax";
119my $acc0_0     = "%r9";
120my $acc0_0_low = "%r9d";
121my $acc0_1     = "%r15";
122my $acc0_1_low = "%r15d";
123my $b_ptr      = "%r11";
124
125my $iter = "%ebx";
126
127my $zero = "%ymm0";
128my $Bi   = "%ymm1";
129my $Yi   = "%ymm2";
130my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(16..19)));
131my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(20..23)));
132
133# Registers mapping for normalization.
134my ($T0,$T0h,$T1,$T1h,$T2) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (25..26)));
135
136sub amm52x20_x1() {
137# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
138#                of data for corresponding AMM operation;
139# _b_offset    - offset in the |b| array pointing to the next qword digit;
140my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
141my $_R0_xmm = $_R0;
142$_R0_xmm =~ s/%y/%x/;
143$code.=<<___;
144    movq    $_b_offset($b_ptr), %r13             # b[i]
145
146    vpbroadcastq    %r13, $Bi                    # broadcast b[i]
147    movq    $_data_offset($a), %rdx
148    mulx    %r13, %r13, %r12                     # a[0]*b[i] = (t0,t2)
149    addq    %r13, $_acc                          # acc += t0
150    movq    %r12, %r10
151    adcq    \$0, %r10                            # t2 += CF
152
153    movq    $_k0, %r13
154    imulq   $_acc, %r13                          # acc * k0
155    andq    $mask52, %r13                        # yi = (acc * k0) & mask52
156
157    vpbroadcastq    %r13, $Yi                    # broadcast y[i]
158    movq    $_data_offset($m), %rdx
159    mulx    %r13, %r13, %r12                     # yi * m[0] = (t0,t1)
160    addq    %r13, $_acc                          # acc += t0
161    adcq    %r12, %r10                           # t2 += (t1 + CF)
162
163    shrq    \$52, $_acc
164    salq    \$12, %r10
165    or      %r10, $_acc                          # acc = ((acc >> 52) | (t2 << 12))
166
167    vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
168    vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
169    vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
170    vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
171    vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
172
173    vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
174    vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
175    vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
176    vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
177    vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
178
179    # Shift accumulators right by 1 qword, zero extending the highest one
180    valignq     \$1, $_R0, $_R0h, $_R0
181    valignq     \$1, $_R0h, $_R1, $_R0h
182    valignq     \$1, $_R1, $_R1h, $_R1
183    valignq     \$1, $_R1h, $_R2, $_R1h
184    valignq     \$1, $_R2, $zero, $_R2
185
186    vmovq   $_R0_xmm, %r13
187    addq    %r13, $_acc    # acc += R0[0]
188
189    vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
190    vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
191    vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
192    vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
193    vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
194
195    vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
196    vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
197    vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
198    vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
199    vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
200___
201}
202
203# Normalization routine: handles carry bits and gets bignum qwords to normalized
204# 2^52 representation.
205#
206# Uses %r8-14,%e[bcd]x
207sub amm52x20_x1_norm {
208my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
209$code.=<<___;
210    # Put accumulator to low qword in R0
211    vpbroadcastq    $_acc, $T0
212    vpblendd \$3, $T0, $_R0, $_R0
213
214    # Extract "carries" (12 high bits) from each QW of R0..R2
215    # Save them to LSB of QWs in T0..T2
216    vpsrlq    \$52, $_R0,   $T0
217    vpsrlq    \$52, $_R0h,  $T0h
218    vpsrlq    \$52, $_R1,   $T1
219    vpsrlq    \$52, $_R1h,  $T1h
220    vpsrlq    \$52, $_R2,   $T2
221
222    # "Shift left" T0..T2 by 1 QW
223    valignq \$3, $T1h,  $T2,  $T2
224    valignq \$3, $T1,   $T1h, $T1h
225    valignq \$3, $T0h,  $T1,  $T1
226    valignq \$3, $T0,   $T0h, $T0h
227    valignq \$3, .Lzeros(%rip), $T0,  $T0
228
229    # Drop "carries" from R0..R2 QWs
230    vpandq    .Lmask52x4(%rip), $_R0,  $_R0
231    vpandq    .Lmask52x4(%rip), $_R0h, $_R0h
232    vpandq    .Lmask52x4(%rip), $_R1,  $_R1
233    vpandq    .Lmask52x4(%rip), $_R1h, $_R1h
234    vpandq    .Lmask52x4(%rip), $_R2,  $_R2
235
236    # Sum R0..R2 with corresponding adjusted carries
237    vpaddq  $T0,  $_R0,  $_R0
238    vpaddq  $T0h, $_R0h, $_R0h
239    vpaddq  $T1,  $_R1,  $_R1
240    vpaddq  $T1h, $_R1h, $_R1h
241    vpaddq  $T2,  $_R2,  $_R2
242
243    # Now handle carry bits from this addition
244    # Get mask of QWs which 52-bit parts overflow...
245    vpcmpuq   \$6, .Lmask52x4(%rip), $_R0,  %k1 # OP=nle (i.e. gt)
246    vpcmpuq   \$6, .Lmask52x4(%rip), $_R0h, %k2
247    vpcmpuq   \$6, .Lmask52x4(%rip), $_R1,  %k3
248    vpcmpuq   \$6, .Lmask52x4(%rip), $_R1h, %k4
249    vpcmpuq   \$6, .Lmask52x4(%rip), $_R2,  %k5
250    kmovb   %k1, %r14d                   # k1
251    kmovb   %k2, %r13d                   # k1h
252    kmovb   %k3, %r12d                   # k2
253    kmovb   %k4, %r11d                   # k2h
254    kmovb   %k5, %r10d                   # k3
255
256    # ...or saturated
257    vpcmpuq   \$0, .Lmask52x4(%rip), $_R0,  %k1 # OP=eq
258    vpcmpuq   \$0, .Lmask52x4(%rip), $_R0h, %k2
259    vpcmpuq   \$0, .Lmask52x4(%rip), $_R1,  %k3
260    vpcmpuq   \$0, .Lmask52x4(%rip), $_R1h, %k4
261    vpcmpuq   \$0, .Lmask52x4(%rip), $_R2,  %k5
262    kmovb   %k1, %r9d                    # k4
263    kmovb   %k2, %r8d                    # k4h
264    kmovb   %k3, %ebx                    # k5
265    kmovb   %k4, %ecx                    # k5h
266    kmovb   %k5, %edx                    # k6
267
268    # Get mask of QWs where carries shall be propagated to.
269    # Merge 4-bit masks to 8-bit values to use add with carry.
270    shl   \$4, %r13b
271    or    %r13b, %r14b
272    shl   \$4, %r11b
273    or    %r11b, %r12b
274
275    add   %r14b, %r14b
276    adc   %r12b, %r12b
277    adc   %r10b, %r10b
278
279    shl   \$4, %r8b
280    or    %r8b,%r9b
281    shl   \$4, %cl
282    or    %cl, %bl
283
284    add   %r9b, %r14b
285    adc   %bl, %r12b
286    adc   %dl, %r10b
287
288    xor   %r9b, %r14b
289    xor   %bl, %r12b
290    xor   %dl, %r10b
291
292    kmovb   %r14d, %k1
293    shr     \$4, %r14b
294    kmovb   %r14d, %k2
295    kmovb   %r12d, %k3
296    shr     \$4, %r12b
297    kmovb   %r12d, %k4
298    kmovb   %r10d, %k5
299
300    # Add carries according to the obtained mask
301    vpsubq  .Lmask52x4(%rip), $_R0,  ${_R0}{%k1}
302    vpsubq  .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
303    vpsubq  .Lmask52x4(%rip), $_R1,  ${_R1}{%k3}
304    vpsubq  .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
305    vpsubq  .Lmask52x4(%rip), $_R2,  ${_R2}{%k5}
306
307    vpandq   .Lmask52x4(%rip), $_R0,  $_R0
308    vpandq   .Lmask52x4(%rip), $_R0h, $_R0h
309    vpandq   .Lmask52x4(%rip), $_R1,  $_R1
310    vpandq   .Lmask52x4(%rip), $_R1h, $_R1h
311    vpandq   .Lmask52x4(%rip), $_R2,  $_R2
312___
313}
314
315$code.=<<___;
316.text
317
318.globl  ossl_rsaz_amm52x20_x1_ifma256
319.type   ossl_rsaz_amm52x20_x1_ifma256,\@function,5
320.align 32
321ossl_rsaz_amm52x20_x1_ifma256:
322.cfi_startproc
323    endbranch
324    push    %rbx
325.cfi_push   %rbx
326    push    %rbp
327.cfi_push   %rbp
328    push    %r12
329.cfi_push   %r12
330    push    %r13
331.cfi_push   %r13
332    push    %r14
333.cfi_push   %r14
334    push    %r15
335.cfi_push   %r15
336.Lossl_rsaz_amm52x20_x1_ifma256_body:
337
338    # Zeroing accumulators
339    vpxord   $zero, $zero, $zero
340    vmovdqa64   $zero, $R0_0
341    vmovdqa64   $zero, $R0_0h
342    vmovdqa64   $zero, $R1_0
343    vmovdqa64   $zero, $R1_0h
344    vmovdqa64   $zero, $R2_0
345
346    xorl    $acc0_0_low, $acc0_0_low
347
348    movq    $b, $b_ptr                       # backup address of b
349    movq    \$0xfffffffffffff, $mask52       # 52-bit mask
350
351    # Loop over 20 digits unrolled by 4
352    mov     \$5, $iter
353
354.align 32
355.Lloop5:
356___
357    foreach my $idx (0..3) {
358        &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
359    }
360$code.=<<___;
361    lea    `4*8`($b_ptr), $b_ptr
362    dec    $iter
363    jne    .Lloop5
364___
365    &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
366$code.=<<___;
367
368    vmovdqu64   $R0_0,  `0*32`($res)
369    vmovdqu64   $R0_0h, `1*32`($res)
370    vmovdqu64   $R1_0,  `2*32`($res)
371    vmovdqu64   $R1_0h, `3*32`($res)
372    vmovdqu64   $R2_0,  `4*32`($res)
373
374    vzeroupper
375    mov  0(%rsp),%r15
376.cfi_restore    %r15
377    mov  8(%rsp),%r14
378.cfi_restore    %r14
379    mov  16(%rsp),%r13
380.cfi_restore    %r13
381    mov  24(%rsp),%r12
382.cfi_restore    %r12
383    mov  32(%rsp),%rbp
384.cfi_restore    %rbp
385    mov  40(%rsp),%rbx
386.cfi_restore    %rbx
387    lea  48(%rsp),%rsp
388.cfi_adjust_cfa_offset  -48
389.Lossl_rsaz_amm52x20_x1_ifma256_epilogue:
390    ret
391.cfi_endproc
392.size   ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
393___
394
395$code.=<<___;
396.section .rodata align=32
397.align 32
398.Lmask52x4:
399    .quad   0xfffffffffffff
400    .quad   0xfffffffffffff
401    .quad   0xfffffffffffff
402    .quad   0xfffffffffffff
403___
404
405###############################################################################
406# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
407#
408# See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
409# Montgomery Multiplication algorithm and function input parameters description.
410#
411# This function does two AMMs for two independent inputs, hence dual.
412#
413# void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG out[2][20],
414#                                    const BN_ULONG a[2][20],
415#                                    const BN_ULONG b[2][20],
416#                                    const BN_ULONG m[2][20],
417#                                    const BN_ULONG k0[2]);
418###############################################################################
419
420$code.=<<___;
421.text
422
423.globl  ossl_rsaz_amm52x20_x2_ifma256
424.type   ossl_rsaz_amm52x20_x2_ifma256,\@function,5
425.align 32
426ossl_rsaz_amm52x20_x2_ifma256:
427.cfi_startproc
428    endbranch
429    push    %rbx
430.cfi_push   %rbx
431    push    %rbp
432.cfi_push   %rbp
433    push    %r12
434.cfi_push   %r12
435    push    %r13
436.cfi_push   %r13
437    push    %r14
438.cfi_push   %r14
439    push    %r15
440.cfi_push   %r15
441.Lossl_rsaz_amm52x20_x2_ifma256_body:
442
443    # Zeroing accumulators
444    vpxord   $zero, $zero, $zero
445    vmovdqa64   $zero, $R0_0
446    vmovdqa64   $zero, $R0_0h
447    vmovdqa64   $zero, $R1_0
448    vmovdqa64   $zero, $R1_0h
449    vmovdqa64   $zero, $R2_0
450    vmovdqa64   $zero, $R0_1
451    vmovdqa64   $zero, $R0_1h
452    vmovdqa64   $zero, $R1_1
453    vmovdqa64   $zero, $R1_1h
454    vmovdqa64   $zero, $R2_1
455
456    xorl    $acc0_0_low, $acc0_0_low
457    xorl    $acc0_1_low, $acc0_1_low
458
459    movq    $b, $b_ptr                       # backup address of b
460    movq    \$0xfffffffffffff, $mask52       # 52-bit mask
461
462    mov    \$20, $iter
463
464.align 32
465.Lloop20:
466___
467    &amm52x20_x1(   0,   0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
468    # 20*8 = offset of the next dimension in two-dimension array
469    &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
470$code.=<<___;
471    lea    8($b_ptr), $b_ptr
472    dec    $iter
473    jne    .Lloop20
474___
475    &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
476    &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
477$code.=<<___;
478
479    vmovdqu64   $R0_0,  `0*32`($res)
480    vmovdqu64   $R0_0h, `1*32`($res)
481    vmovdqu64   $R1_0,  `2*32`($res)
482    vmovdqu64   $R1_0h, `3*32`($res)
483    vmovdqu64   $R2_0,  `4*32`($res)
484
485    vmovdqu64   $R0_1,  `5*32`($res)
486    vmovdqu64   $R0_1h, `6*32`($res)
487    vmovdqu64   $R1_1,  `7*32`($res)
488    vmovdqu64   $R1_1h, `8*32`($res)
489    vmovdqu64   $R2_1,  `9*32`($res)
490
491    vzeroupper
492    mov  0(%rsp),%r15
493.cfi_restore    %r15
494    mov  8(%rsp),%r14
495.cfi_restore    %r14
496    mov  16(%rsp),%r13
497.cfi_restore    %r13
498    mov  24(%rsp),%r12
499.cfi_restore    %r12
500    mov  32(%rsp),%rbp
501.cfi_restore    %rbp
502    mov  40(%rsp),%rbx
503.cfi_restore    %rbx
504    lea  48(%rsp),%rsp
505.cfi_adjust_cfa_offset  -48
506.Lossl_rsaz_amm52x20_x2_ifma256_epilogue:
507    ret
508.cfi_endproc
509.size   ossl_rsaz_amm52x20_x2_ifma256, .-ossl_rsaz_amm52x20_x2_ifma256
510___
511}
512
513###############################################################################
514# Constant time extraction from the precomputed table of powers base^i, where
515#    i = 0..2^EXP_WIN_SIZE-1
516#
517# The input |red_table| contains precomputations for two independent base values.
518# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
519#
520# Extracted value (output) is 2 20 digit numbers in 2^52 radix.
521#
522# void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
523#                                        const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
524#                                        int red_table_idx1, int red_table_idx2);
525#
526# EXP_WIN_SIZE = 5
527###############################################################################
528{
529# input parameters
530my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
531                                                        ("%rdi","%rsi","%rdx","%rcx");  # Unix order
532
533my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
534my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
535my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
536
537my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
538my $t0xmm = $t0;
539$t0xmm =~ s/%y/%x/;
540
541$code.=<<___;
542.text
543
544.align 32
545.globl  ossl_extract_multiplier_2x20_win5
546.type   ossl_extract_multiplier_2x20_win5,\@abi-omnipotent
547ossl_extract_multiplier_2x20_win5:
548.cfi_startproc
549    endbranch
550    vmovdqa64   .Lones(%rip), $ones         # broadcast ones
551    vpbroadcastq    $red_tbl_idx1, $idx1
552    vpbroadcastq    $red_tbl_idx2, $idx2
553    leaq   `(1<<5)*2*20*8`($red_tbl), %rax  # holds end of the tbl
554
555    # zeroing t0..n, cur_idx
556    vpxor   $t0xmm, $t0xmm, $t0xmm
557    vmovdqa64   $t0, $cur_idx
558___
559foreach (1..9) {
560    $code.="vmovdqa64   $t0, $t[$_] \n";
561}
562$code.=<<___;
563
564.align 32
565.Lloop:
566    vpcmpq  \$0, $cur_idx, $idx1, %k1      # mask of (idx1 == cur_idx)
567    vpcmpq  \$0, $cur_idx, $idx2, %k2      # mask of (idx2 == cur_idx)
568___
569foreach (0..9) {
570    my $mask = $_<5?"%k1":"%k2";
571$code.=<<___;
572    vmovdqu64  `${_}*32`($red_tbl), $tmp     # load data from red_tbl
573    vpblendmq  $tmp, $t[$_], ${t[$_]}{$mask} # extract data when mask is not zero
574___
575}
576$code.=<<___;
577    vpaddq  $ones, $cur_idx, $cur_idx      # increment cur_idx
578    addq    \$`2*20*8`, $red_tbl
579    cmpq    $red_tbl, %rax
580    jne .Lloop
581___
582# store t0..n
583foreach (0..9) {
584    $code.="vmovdqu64   $t[$_], `${_}*32`($out) \n";
585}
586$code.=<<___;
587    ret
588.cfi_endproc
589.size   ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
590___
591$code.=<<___;
592.section .rodata align=32
593.align 32
594.Lones:
595    .quad   1,1,1,1
596.Lzeros:
597    .quad   0,0,0,0
598___
599}
600
601if ($win64) {
602$rec="%rcx";
603$frame="%rdx";
604$context="%r8";
605$disp="%r9";
606
607$code.=<<___;
608.extern     __imp_RtlVirtualUnwind
609.type   rsaz_def_handler,\@abi-omnipotent
610.align  16
611rsaz_def_handler:
612    push    %rsi
613    push    %rdi
614    push    %rbx
615    push    %rbp
616    push    %r12
617    push    %r13
618    push    %r14
619    push    %r15
620    pushfq
621    sub     \$64,%rsp
622
623    mov     120($context),%rax # pull context->Rax
624    mov     248($context),%rbx # pull context->Rip
625
626    mov     8($disp),%rsi      # disp->ImageBase
627    mov     56($disp),%r11     # disp->HandlerData
628
629    mov     0(%r11),%r10d      # HandlerData[0]
630    lea     (%rsi,%r10),%r10   # prologue label
631    cmp     %r10,%rbx          # context->Rip<.Lprologue
632    jb  .Lcommon_seh_tail
633
634    mov     152($context),%rax # pull context->Rsp
635
636    mov     4(%r11),%r10d      # HandlerData[1]
637    lea     (%rsi,%r10),%r10   # epilogue label
638    cmp     %r10,%rbx          # context->Rip>=.Lepilogue
639    jae     .Lcommon_seh_tail
640
641    lea     48(%rax),%rax
642
643    mov     -8(%rax),%rbx
644    mov     -16(%rax),%rbp
645    mov     -24(%rax),%r12
646    mov     -32(%rax),%r13
647    mov     -40(%rax),%r14
648    mov     -48(%rax),%r15
649    mov     %rbx,144($context) # restore context->Rbx
650    mov     %rbp,160($context) # restore context->Rbp
651    mov     %r12,216($context) # restore context->R12
652    mov     %r13,224($context) # restore context->R13
653    mov     %r14,232($context) # restore context->R14
654    mov     %r15,240($context) # restore context->R14
655
656.Lcommon_seh_tail:
657    mov     8(%rax),%rdi
658    mov     16(%rax),%rsi
659    mov     %rax,152($context) # restore context->Rsp
660    mov     %rsi,168($context) # restore context->Rsi
661    mov     %rdi,176($context) # restore context->Rdi
662
663    mov     40($disp),%rdi     # disp->ContextRecord
664    mov     $context,%rsi      # context
665    mov     \$154,%ecx         # sizeof(CONTEXT)
666    .long   0xa548f3fc         # cld; rep movsq
667
668    mov     $disp,%rsi
669    xor     %rcx,%rcx          # arg1, UNW_FLAG_NHANDLER
670    mov     8(%rsi),%rdx       # arg2, disp->ImageBase
671    mov     0(%rsi),%r8        # arg3, disp->ControlPc
672    mov     16(%rsi),%r9       # arg4, disp->FunctionEntry
673    mov     40(%rsi),%r10      # disp->ContextRecord
674    lea     56(%rsi),%r11      # &disp->HandlerData
675    lea     24(%rsi),%r12      # &disp->EstablisherFrame
676    mov     %r10,32(%rsp)      # arg5
677    mov     %r11,40(%rsp)      # arg6
678    mov     %r12,48(%rsp)      # arg7
679    mov     %rcx,56(%rsp)      # arg8, (NULL)
680    call    *__imp_RtlVirtualUnwind(%rip)
681
682    mov     \$1,%eax           # ExceptionContinueSearch
683    add     \$64,%rsp
684    popfq
685    pop     %r15
686    pop     %r14
687    pop     %r13
688    pop     %r12
689    pop     %rbp
690    pop     %rbx
691    pop     %rdi
692    pop     %rsi
693    ret
694.size   rsaz_def_handler,.-rsaz_def_handler
695
696.section    .pdata
697.align  4
698    .rva    .LSEH_begin_ossl_rsaz_amm52x20_x1_ifma256
699    .rva    .LSEH_end_ossl_rsaz_amm52x20_x1_ifma256
700    .rva    .LSEH_info_ossl_rsaz_amm52x20_x1_ifma256
701
702    .rva    .LSEH_begin_ossl_rsaz_amm52x20_x2_ifma256
703    .rva    .LSEH_end_ossl_rsaz_amm52x20_x2_ifma256
704    .rva    .LSEH_info_ossl_rsaz_amm52x20_x2_ifma256
705
706.section    .xdata
707.align  8
708.LSEH_info_ossl_rsaz_amm52x20_x1_ifma256:
709    .byte   9,0,0,0
710    .rva    rsaz_def_handler
711    .rva    .Lossl_rsaz_amm52x20_x1_ifma256_body,.Lossl_rsaz_amm52x20_x1_ifma256_epilogue
712.LSEH_info_ossl_rsaz_amm52x20_x2_ifma256:
713    .byte   9,0,0,0
714    .rva    rsaz_def_handler
715    .rva    .Lossl_rsaz_amm52x20_x2_ifma256_body,.Lossl_rsaz_amm52x20_x2_ifma256_epilogue
716___
717}
718}}} else {{{                # fallback for old assembler
719$code.=<<___;
720.text
721
722.globl  ossl_rsaz_avx512ifma_eligible
723.type   ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
724ossl_rsaz_avx512ifma_eligible:
725    xor     %eax,%eax
726    ret
727.size   ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
728
729.globl  ossl_rsaz_amm52x20_x1_ifma256
730.globl  ossl_rsaz_amm52x20_x2_ifma256
731.globl  ossl_extract_multiplier_2x20_win5
732.type   ossl_rsaz_amm52x20_x1_ifma256,\@abi-omnipotent
733ossl_rsaz_amm52x20_x1_ifma256:
734ossl_rsaz_amm52x20_x2_ifma256:
735ossl_extract_multiplier_2x20_win5:
736    .byte   0x0f,0x0b    # ud2
737    ret
738.size   ossl_rsaz_amm52x20_x1_ifma256, .-ossl_rsaz_amm52x20_x1_ifma256
739___
740}}}
741
742$code =~ s/\`([^\`]*)\`/eval $1/gem;
743print $code;
744close STDOUT or die "error closing STDOUT: $!";
745