1 /*
2 * xxHash - Extremely Fast Hash algorithm
3 * Header File
4 * Copyright (C) 2012-2020 Yann Collet
5 *
6 * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following disclaimer
16 * in the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You can contact the author at:
32 * - xxHash homepage: https://www.xxhash.com
33 * - xxHash source repository: https://github.com/Cyan4973/xxHash
34 */
35 /*!
36 * @mainpage xxHash
37 *
38 * @file xxhash.h
39 * xxHash prototypes and implementation
40 */
41 /* TODO: update */
42 /* Notice extracted from xxHash homepage:
43
44 xxHash is an extremely fast hash algorithm, running at RAM speed limits.
45 It also successfully passes all tests from the SMHasher suite.
46
47 Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
48
49 Name Speed Q.Score Author
50 xxHash 5.4 GB/s 10
51 CrapWow 3.2 GB/s 2 Andrew
52 MurmurHash 3a 2.7 GB/s 10 Austin Appleby
53 SpookyHash 2.0 GB/s 10 Bob Jenkins
54 SBox 1.4 GB/s 9 Bret Mulvey
55 Lookup3 1.2 GB/s 9 Bob Jenkins
56 SuperFastHash 1.2 GB/s 1 Paul Hsieh
57 CityHash64 1.05 GB/s 10 Pike & Alakuijala
58 FNV 0.55 GB/s 5 Fowler, Noll, Vo
59 CRC32 0.43 GB/s 9
60 MD5-32 0.33 GB/s 10 Ronald L. Rivest
61 SHA1-32 0.28 GB/s 10
62
63 Q.Score is a measure of quality of the hash function.
64 It depends on successfully passing SMHasher test set.
65 10 is a perfect score.
66
67 Note: SMHasher's CRC32 implementation is not the fastest one.
68 Other speed-oriented implementations can be faster,
69 especially in combination with PCLMUL instruction:
70 https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
71
72 A 64-bit version, named XXH64, is available since r35.
73 It offers much better speed, but for 64-bit applications only.
74 Name Speed on 64 bits Speed on 32 bits
75 XXH64 13.8 GB/s 1.9 GB/s
76 XXH32 6.8 GB/s 6.0 GB/s
77 */
78
79 #if defined (__cplusplus)
80 extern "C" {
81 #endif
82
83 /* ****************************
84 * INLINE mode
85 ******************************/
86 /*!
87 * XXH_INLINE_ALL (and XXH_PRIVATE_API)
88 * Use these build macros to inline xxhash into the target unit.
89 * Inlining improves performance on small inputs, especially when the length is
90 * expressed as a compile-time constant:
91 *
92 * https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
93 *
94 * It also keeps xxHash symbols private to the unit, so they are not exported.
95 *
96 * Usage:
97 * #define XXH_INLINE_ALL
98 * #include "xxhash.h"
99 *
100 * Do not compile and link xxhash.o as a separate object, as it is not useful.
101 */
102 #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
103 && !defined(XXH_INLINE_ALL_31684351384)
104 /* this section should be traversed only once */
105 # define XXH_INLINE_ALL_31684351384
106 /* give access to the advanced API, required to compile implementations */
107 # undef XXH_STATIC_LINKING_ONLY /* avoid macro redef */
108 # define XXH_STATIC_LINKING_ONLY
109 /* make all functions private */
110 # undef XXH_PUBLIC_API
111 # if defined(__GNUC__)
112 # define XXH_PUBLIC_API static __inline __attribute__((unused))
113 # elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
114 # define XXH_PUBLIC_API static inline
115 # elif defined(_MSC_VER)
116 # define XXH_PUBLIC_API static __inline
117 # else
118 /* note: this version may generate warnings for unused static functions */
119 # define XXH_PUBLIC_API static
120 # endif
121
122 /*
123 * This part deals with the special case where a unit wants to inline xxHash,
124 * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
125 * such as part of some previously included *.h header file.
126 * Without further action, the new include would just be ignored,
127 * and functions would effectively _not_ be inlined (silent failure).
128 * The following macros solve this situation by prefixing all inlined names,
129 * avoiding naming collision with previous inclusions.
130 */
131 /* Before that, we unconditionally #undef all symbols,
132 * in case they were already defined with XXH_NAMESPACE.
133 * They will then be redefined for XXH_INLINE_ALL
134 */
135 # undef XXH_versionNumber
136 /* XXH32 */
137 # undef XXH32
138 # undef XXH32_createState
139 # undef XXH32_freeState
140 # undef XXH32_reset
141 # undef XXH32_update
142 # undef XXH32_digest
143 # undef XXH32_copyState
144 # undef XXH32_canonicalFromHash
145 # undef XXH32_hashFromCanonical
146 /* XXH64 */
147 # undef XXH64
148 # undef XXH64_createState
149 # undef XXH64_freeState
150 # undef XXH64_reset
151 # undef XXH64_update
152 # undef XXH64_digest
153 # undef XXH64_copyState
154 # undef XXH64_canonicalFromHash
155 # undef XXH64_hashFromCanonical
156 /* XXH3_64bits */
157 # undef XXH3_64bits
158 # undef XXH3_64bits_withSecret
159 # undef XXH3_64bits_withSeed
160 # undef XXH3_64bits_withSecretandSeed
161 # undef XXH3_createState
162 # undef XXH3_freeState
163 # undef XXH3_copyState
164 # undef XXH3_64bits_reset
165 # undef XXH3_64bits_reset_withSeed
166 # undef XXH3_64bits_reset_withSecret
167 # undef XXH3_64bits_update
168 # undef XXH3_64bits_digest
169 # undef XXH3_generateSecret
170 /* XXH3_128bits */
171 # undef XXH128
172 # undef XXH3_128bits
173 # undef XXH3_128bits_withSeed
174 # undef XXH3_128bits_withSecret
175 # undef XXH3_128bits_reset
176 # undef XXH3_128bits_reset_withSeed
177 # undef XXH3_128bits_reset_withSecret
178 # undef XXH3_128bits_reset_withSecretandSeed
179 # undef XXH3_128bits_update
180 # undef XXH3_128bits_digest
181 # undef XXH128_isEqual
182 # undef XXH128_cmp
183 # undef XXH128_canonicalFromHash
184 # undef XXH128_hashFromCanonical
185 /* Finally, free the namespace itself */
186 # undef XXH_NAMESPACE
187
188 /* employ the namespace for XXH_INLINE_ALL */
189 # define XXH_NAMESPACE XXH_INLINE_
190 /*
191 * Some identifiers (enums, type names) are not symbols,
192 * but they must nonetheless be renamed to avoid redeclaration.
193 * Alternative solution: do not redeclare them.
194 * However, this requires some #ifdefs, and has a more dispersed impact.
195 * Meanwhile, renaming can be achieved in a single place.
196 */
197 # define XXH_IPREF(Id) XXH_NAMESPACE ## Id
198 # define XXH_OK XXH_IPREF(XXH_OK)
199 # define XXH_ERROR XXH_IPREF(XXH_ERROR)
200 # define XXH_errorcode XXH_IPREF(XXH_errorcode)
201 # define XXH32_canonical_t XXH_IPREF(XXH32_canonical_t)
202 # define XXH64_canonical_t XXH_IPREF(XXH64_canonical_t)
203 # define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
204 # define XXH32_state_s XXH_IPREF(XXH32_state_s)
205 # define XXH32_state_t XXH_IPREF(XXH32_state_t)
206 # define XXH64_state_s XXH_IPREF(XXH64_state_s)
207 # define XXH64_state_t XXH_IPREF(XXH64_state_t)
208 # define XXH3_state_s XXH_IPREF(XXH3_state_s)
209 # define XXH3_state_t XXH_IPREF(XXH3_state_t)
210 # define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
211 /* Ensure the header is parsed again, even if it was previously included */
212 # undef XXHASH_H_5627135585666179
213 # undef XXHASH_H_STATIC_13879238742
214 #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
215
216
217
218 /* ****************************************************************
219 * Stable API
220 *****************************************************************/
221 #ifndef XXHASH_H_5627135585666179
222 #define XXHASH_H_5627135585666179 1
223
224
225 /*!
226 * @defgroup public Public API
227 * Contains details on the public xxHash functions.
228 * @{
229 */
230 /* specific declaration modes for Windows */
231 #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
232 # if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
233 # ifdef XXH_EXPORT
234 # define XXH_PUBLIC_API __declspec(dllexport)
235 # elif XXH_IMPORT
236 # define XXH_PUBLIC_API __declspec(dllimport)
237 # endif
238 # else
239 # define XXH_PUBLIC_API /* do nothing */
240 # endif
241 #endif
242
243 #ifdef XXH_DOXYGEN
244 /*!
245 * @brief Emulate a namespace by transparently prefixing all symbols.
246 *
247 * If you want to include _and expose_ xxHash functions from within your own
248 * library, but also want to avoid symbol collisions with other libraries which
249 * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
250 * any public symbol from xxhash library with the value of XXH_NAMESPACE
251 * (therefore, avoid empty or numeric values).
252 *
253 * Note that no change is required within the calling program as long as it
254 * includes `xxhash.h`: Regular symbol names will be automatically translated
255 * by this header.
256 */
257 # define XXH_NAMESPACE /* YOUR NAME HERE */
258 # undef XXH_NAMESPACE
259 #endif
260
261 #ifdef XXH_NAMESPACE
262 # define XXH_CAT(A,B) A##B
263 # define XXH_NAME2(A,B) XXH_CAT(A,B)
264 # define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
265 /* XXH32 */
266 # define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
267 # define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
268 # define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
269 # define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
270 # define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
271 # define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
272 # define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
273 # define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
274 # define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
275 /* XXH64 */
276 # define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
277 # define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
278 # define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
279 # define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
280 # define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
281 # define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
282 # define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
283 # define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
284 # define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
285 /* XXH3_64bits */
286 # define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
287 # define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
288 # define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
289 # define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
290 # define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
291 # define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
292 # define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
293 # define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
294 # define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
295 # define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
296 # define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
297 # define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
298 # define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
299 # define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
300 # define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
301 /* XXH3_128bits */
302 # define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
303 # define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
304 # define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
305 # define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
306 # define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
307 # define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
308 # define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
309 # define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
310 # define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
311 # define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
312 # define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
313 # define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
314 # define XXH128_cmp XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
315 # define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
316 # define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
317 #endif
318
319
320 /* *************************************
321 * Version
322 ***************************************/
323 #define XXH_VERSION_MAJOR 0
324 #define XXH_VERSION_MINOR 8
325 #define XXH_VERSION_RELEASE 1
326 #define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
327
328 /*!
329 * @brief Obtains the xxHash version.
330 *
331 * This is mostly useful when xxHash is compiled as a shared library,
332 * since the returned value comes from the library, as opposed to header file.
333 *
334 * @return `XXH_VERSION_NUMBER` of the invoked library.
335 */
336 XXH_PUBLIC_API unsigned XXH_versionNumber (void);
337
338
339 /* ****************************
340 * Common basic types
341 ******************************/
342 #include <stddef.h> /* size_t */
343 typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
344
345
346 /*-**********************************************************************
347 * 32-bit hash
348 ************************************************************************/
349 #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
350 /*!
351 * @brief An unsigned 32-bit integer.
352 *
353 * Not necessarily defined to `uint32_t` but functionally equivalent.
354 */
355 typedef uint32_t XXH32_hash_t;
356
357 #elif !defined (__VMS) \
358 && (defined (__cplusplus) \
359 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
360 # include <stdint.h>
361 typedef uint32_t XXH32_hash_t;
362
363 #else
364 # include <limits.h>
365 # if UINT_MAX == 0xFFFFFFFFUL
366 typedef unsigned int XXH32_hash_t;
367 # else
368 # if ULONG_MAX == 0xFFFFFFFFUL
369 typedef unsigned long XXH32_hash_t;
370 # else
371 # error "unsupported platform: need a 32-bit type"
372 # endif
373 # endif
374 #endif
375
376 /*!
377 * @}
378 *
379 * @defgroup xxh32_family XXH32 family
380 * @ingroup public
381 * Contains functions used in the classic 32-bit xxHash algorithm.
382 *
383 * @note
384 * XXH32 is useful for older platforms, with no or poor 64-bit performance.
385 * Note that @ref xxh3_family provides competitive speed
386 * for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
387 *
388 * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
389 * @see @ref xxh32_impl for implementation details
390 * @{
391 */
392
393 /*!
394 * @brief Calculates the 32-bit hash of @p input using xxHash32.
395 *
396 * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
397 *
398 * @param input The block of data to be hashed, at least @p length bytes in size.
399 * @param length The length of @p input, in bytes.
400 * @param seed The 32-bit seed to alter the hash's output predictably.
401 *
402 * @pre
403 * The memory between @p input and @p input + @p length must be valid,
404 * readable, contiguous memory. However, if @p length is `0`, @p input may be
405 * `NULL`. In C++, this also must be *TriviallyCopyable*.
406 *
407 * @return The calculated 32-bit hash value.
408 *
409 * @see
410 * XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
411 * Direct equivalents for the other variants of xxHash.
412 * @see
413 * XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
414 */
415 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
416
417 /*!
418 * Streaming functions generate the xxHash value from an incremental input.
419 * This method is slower than single-call functions, due to state management.
420 * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
421 *
422 * An XXH state must first be allocated using `XXH*_createState()`.
423 *
424 * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
425 *
426 * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
427 *
428 * The function returns an error code, with 0 meaning OK, and any other value
429 * meaning there is an error.
430 *
431 * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
432 * This function returns the nn-bits hash as an int or long long.
433 *
434 * It's still possible to continue inserting input into the hash state after a
435 * digest, and generate new hash values later on by invoking `XXH*_digest()`.
436 *
437 * When done, release the state using `XXH*_freeState()`.
438 *
439 * Example code for incrementally hashing a file:
440 * @code{.c}
441 * #include <stdio.h>
442 * #include <xxhash.h>
443 * #define BUFFER_SIZE 256
444 *
445 * // Note: XXH64 and XXH3 use the same interface.
446 * XXH32_hash_t
447 * hashFile(FILE* stream)
448 * {
449 * XXH32_state_t* state;
450 * unsigned char buf[BUFFER_SIZE];
451 * size_t amt;
452 * XXH32_hash_t hash;
453 *
454 * state = XXH32_createState(); // Create a state
455 * assert(state != NULL); // Error check here
456 * XXH32_reset(state, 0xbaad5eed); // Reset state with our seed
457 * while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
458 * XXH32_update(state, buf, amt); // Hash the file in chunks
459 * }
460 * hash = XXH32_digest(state); // Finalize the hash
461 * XXH32_freeState(state); // Clean up
462 * return hash;
463 * }
464 * @endcode
465 */
466
467 /*!
468 * @typedef struct XXH32_state_s XXH32_state_t
469 * @brief The opaque state struct for the XXH32 streaming API.
470 *
471 * @see XXH32_state_s for details.
472 */
473 typedef struct XXH32_state_s XXH32_state_t;
474
475 /*!
476 * @brief Allocates an @ref XXH32_state_t.
477 *
478 * Must be freed with XXH32_freeState().
479 * @return An allocated XXH32_state_t on success, `NULL` on failure.
480 */
481 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
482 /*!
483 * @brief Frees an @ref XXH32_state_t.
484 *
485 * Must be allocated with XXH32_createState().
486 * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
487 * @return XXH_OK.
488 */
489 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
490 /*!
491 * @brief Copies one @ref XXH32_state_t to another.
492 *
493 * @param dst_state The state to copy to.
494 * @param src_state The state to copy from.
495 * @pre
496 * @p dst_state and @p src_state must not be `NULL` and must not overlap.
497 */
498 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
499
500 /*!
501 * @brief Resets an @ref XXH32_state_t to begin a new hash.
502 *
503 * This function resets and seeds a state. Call it before @ref XXH32_update().
504 *
505 * @param statePtr The state struct to reset.
506 * @param seed The 32-bit seed to alter the hash result predictably.
507 *
508 * @pre
509 * @p statePtr must not be `NULL`.
510 *
511 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
512 */
513 XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, XXH32_hash_t seed);
514
515 /*!
516 * @brief Consumes a block of @p input to an @ref XXH32_state_t.
517 *
518 * Call this to incrementally consume blocks of data.
519 *
520 * @param statePtr The state struct to update.
521 * @param input The block of data to be hashed, at least @p length bytes in size.
522 * @param length The length of @p input, in bytes.
523 *
524 * @pre
525 * @p statePtr must not be `NULL`.
526 * @pre
527 * The memory between @p input and @p input + @p length must be valid,
528 * readable, contiguous memory. However, if @p length is `0`, @p input may be
529 * `NULL`. In C++, this also must be *TriviallyCopyable*.
530 *
531 * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
532 */
533 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
534
535 /*!
536 * @brief Returns the calculated hash value from an @ref XXH32_state_t.
537 *
538 * @note
539 * Calling XXH32_digest() will not affect @p statePtr, so you can update,
540 * digest, and update again.
541 *
542 * @param statePtr The state struct to calculate the hash from.
543 *
544 * @pre
545 * @p statePtr must not be `NULL`.
546 *
547 * @return The calculated xxHash32 value from that state.
548 */
549 XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr);
550
551 /******* Canonical representation *******/
552
553 /*
554 * The default return values from XXH functions are unsigned 32 and 64 bit
555 * integers.
556 * This the simplest and fastest format for further post-processing.
557 *
558 * However, this leaves open the question of what is the order on the byte level,
559 * since little and big endian conventions will store the same number differently.
560 *
561 * The canonical representation settles this issue by mandating big-endian
562 * convention, the same convention as human-readable numbers (large digits first).
563 *
564 * When writing hash values to storage, sending them over a network, or printing
565 * them, it's highly recommended to use the canonical representation to ensure
566 * portability across a wider range of systems, present and future.
567 *
568 * The following functions allow transformation of hash values to and from
569 * canonical format.
570 */
571
572 /*!
573 * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
574 */
575 typedef struct {
576 unsigned char digest[4]; /*!< Hash bytes, big endian */
577 } XXH32_canonical_t;
578
579 /*!
580 * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
581 *
582 * @param dst The @ref XXH32_canonical_t pointer to be stored to.
583 * @param hash The @ref XXH32_hash_t to be converted.
584 *
585 * @pre
586 * @p dst must not be `NULL`.
587 */
588 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
589
590 /*!
591 * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
592 *
593 * @param src The @ref XXH32_canonical_t to convert.
594 *
595 * @pre
596 * @p src must not be `NULL`.
597 *
598 * @return The converted hash.
599 */
600 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
601
602
603 #ifdef __has_attribute
604 # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
605 #else
606 # define XXH_HAS_ATTRIBUTE(x) 0
607 #endif
608
609 /* C-language Attributes are added in C23. */
610 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
611 # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
612 #else
613 # define XXH_HAS_C_ATTRIBUTE(x) 0
614 #endif
615
616 #if defined(__cplusplus) && defined(__has_cpp_attribute)
617 # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
618 #else
619 # define XXH_HAS_CPP_ATTRIBUTE(x) 0
620 #endif
621
622 /*
623 Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
624 introduced in CPP17 and C23.
625 CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
626 C23 : https://en.cppreference.com/w/c/language/attributes/fallthrough
627 */
628 #if XXH_HAS_C_ATTRIBUTE(x)
629 # define XXH_FALLTHROUGH [[fallthrough]]
630 #elif XXH_HAS_CPP_ATTRIBUTE(x)
631 # define XXH_FALLTHROUGH [[fallthrough]]
632 #elif XXH_HAS_ATTRIBUTE(__fallthrough__)
633 # define XXH_FALLTHROUGH __attribute__ ((fallthrough))
634 #else
635 # define XXH_FALLTHROUGH
636 #endif
637
638 /*!
639 * @}
640 * @ingroup public
641 * @{
642 */
643
644 #ifndef XXH_NO_LONG_LONG
645 /*-**********************************************************************
646 * 64-bit hash
647 ************************************************************************/
648 #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
649 /*!
650 * @brief An unsigned 64-bit integer.
651 *
652 * Not necessarily defined to `uint64_t` but functionally equivalent.
653 */
654 typedef uint64_t XXH64_hash_t;
655 #elif !defined (__VMS) \
656 && (defined (__cplusplus) \
657 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
658 # include <stdint.h>
659 typedef uint64_t XXH64_hash_t;
660 #else
661 # include <limits.h>
662 # if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
663 /* LP64 ABI says uint64_t is unsigned long */
664 typedef unsigned long XXH64_hash_t;
665 # else
666 /* the following type must have a width of 64-bit */
667 typedef unsigned long long XXH64_hash_t;
668 # endif
669 #endif
670
671 /*!
672 * @}
673 *
674 * @defgroup xxh64_family XXH64 family
675 * @ingroup public
676 * @{
677 * Contains functions used in the classic 64-bit xxHash algorithm.
678 *
679 * @note
680 * XXH3 provides competitive speed for both 32-bit and 64-bit systems,
681 * and offers true 64/128 bit hash results.
682 * It provides better speed for systems with vector processing capabilities.
683 */
684
685
686 /*!
687 * @brief Calculates the 64-bit hash of @p input using xxHash64.
688 *
689 * This function usually runs faster on 64-bit systems, but slower on 32-bit
690 * systems (see benchmark).
691 *
692 * @param input The block of data to be hashed, at least @p length bytes in size.
693 * @param length The length of @p input, in bytes.
694 * @param seed The 64-bit seed to alter the hash's output predictably.
695 *
696 * @pre
697 * The memory between @p input and @p input + @p length must be valid,
698 * readable, contiguous memory. However, if @p length is `0`, @p input may be
699 * `NULL`. In C++, this also must be *TriviallyCopyable*.
700 *
701 * @return The calculated 64-bit hash.
702 *
703 * @see
704 * XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
705 * Direct equivalents for the other variants of xxHash.
706 * @see
707 * XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
708 */
709 XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
710
711 /******* Streaming *******/
712 /*!
713 * @brief The opaque state struct for the XXH64 streaming API.
714 *
715 * @see XXH64_state_s for details.
716 */
717 typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */
718 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
719 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
720 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
721
722 XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, XXH64_hash_t seed);
723 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
724 XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr);
725
726 /******* Canonical representation *******/
727 typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
728 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
729 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
730
731 /*!
732 * @}
733 * ************************************************************************
734 * @defgroup xxh3_family XXH3 family
735 * @ingroup public
736 * @{
737 *
738 * XXH3 is a more recent hash algorithm featuring:
739 * - Improved speed for both small and large inputs
740 * - True 64-bit and 128-bit outputs
741 * - SIMD acceleration
742 * - Improved 32-bit viability
743 *
744 * Speed analysis methodology is explained here:
745 *
746 * https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
747 *
748 * Compared to XXH64, expect XXH3 to run approximately
749 * ~2x faster on large inputs and >3x faster on small ones,
750 * exact differences vary depending on platform.
751 *
752 * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
753 * but does not require it.
754 * Any 32-bit and 64-bit targets that can run XXH32 smoothly
755 * can run XXH3 at competitive speeds, even without vector support.
756 * Further details are explained in the implementation.
757 *
758 * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
759 * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
760 *
761 * XXH3 implementation is portable:
762 * it has a generic C90 formulation that can be compiled on any platform,
763 * all implementations generage exactly the same hash value on all platforms.
764 * Starting from v0.8.0, it's also labelled "stable", meaning that
765 * any future version will also generate the same hash value.
766 *
767 * XXH3 offers 2 variants, _64bits and _128bits.
768 *
769 * When only 64 bits are needed, prefer invoking the _64bits variant, as it
770 * reduces the amount of mixing, resulting in faster speed on small inputs.
771 * It's also generally simpler to manipulate a scalar return type than a struct.
772 *
773 * The API supports one-shot hashing, streaming mode, and custom secrets.
774 */
775
776 /*-**********************************************************************
777 * XXH3 64-bit variant
778 ************************************************************************/
779
780 /* XXH3_64bits():
781 * default 64-bit variant, using default secret and default seed of 0.
782 * It's the fastest variant. */
783 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
784
785 /*
786 * XXH3_64bits_withSeed():
787 * This variant generates a custom secret on the fly
788 * based on default secret altered using the `seed` value.
789 * While this operation is decently fast, note that it's not completely free.
790 * Note: seed==0 produces the same results as XXH3_64bits().
791 */
792 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
793
794 /*!
795 * The bare minimum size for a custom secret.
796 *
797 * @see
798 * XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
799 * XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
800 */
801 #define XXH3_SECRET_SIZE_MIN 136
802
803 /*
804 * XXH3_64bits_withSecret():
805 * It's possible to provide any blob of bytes as a "secret" to generate the hash.
806 * This makes it more difficult for an external actor to prepare an intentional collision.
807 * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
808 * However, the quality of the secret impacts the dispersion of the hash algorithm.
809 * Therefore, the secret _must_ look like a bunch of random bytes.
810 * Avoid "trivial" or structured data such as repeated sequences or a text document.
811 * Whenever in doubt about the "randomness" of the blob of bytes,
812 * consider employing "XXH3_generateSecret()" instead (see below).
813 * It will generate a proper high entropy secret derived from the blob of bytes.
814 * Another advantage of using XXH3_generateSecret() is that
815 * it guarantees that all bits within the initial blob of bytes
816 * will impact every bit of the output.
817 * This is not necessarily the case when using the blob of bytes directly
818 * because, when hashing _small_ inputs, only a portion of the secret is employed.
819 */
820 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
821
822
823 /******* Streaming *******/
824 /*
825 * Streaming requires state maintenance.
826 * This operation costs memory and CPU.
827 * As a consequence, streaming is slower than one-shot hashing.
828 * For better performance, prefer one-shot functions whenever applicable.
829 */
830
831 /*!
832 * @brief The state struct for the XXH3 streaming API.
833 *
834 * @see XXH3_state_s for details.
835 */
836 typedef struct XXH3_state_s XXH3_state_t;
837 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
838 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
839 XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
840
841 /*
842 * XXH3_64bits_reset():
843 * Initialize with default parameters.
844 * digest will be equivalent to `XXH3_64bits()`.
845 */
846 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
847 /*
848 * XXH3_64bits_reset_withSeed():
849 * Generate a custom secret from `seed`, and store it into `statePtr`.
850 * digest will be equivalent to `XXH3_64bits_withSeed()`.
851 */
852 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
853 /*
854 * XXH3_64bits_reset_withSecret():
855 * `secret` is referenced, it _must outlive_ the hash streaming session.
856 * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
857 * and the quality of produced hash values depends on secret's entropy
858 * (secret's content should look like a bunch of random bytes).
859 * When in doubt about the randomness of a candidate `secret`,
860 * consider employing `XXH3_generateSecret()` instead (see below).
861 */
862 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
863
864 XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
865 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* statePtr);
866
867 /* note : canonical representation of XXH3 is the same as XXH64
868 * since they both produce XXH64_hash_t values */
869
870
871 /*-**********************************************************************
872 * XXH3 128-bit variant
873 ************************************************************************/
874
875 /*!
876 * @brief The return value from 128-bit hashes.
877 *
878 * Stored in little endian order, although the fields themselves are in native
879 * endianness.
880 */
881 typedef struct {
882 XXH64_hash_t low64; /*!< `value & 0xFFFFFFFFFFFFFFFF` */
883 XXH64_hash_t high64; /*!< `value >> 64` */
884 } XXH128_hash_t;
885
886 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
887 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
888 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
889
890 /******* Streaming *******/
891 /*
892 * Streaming requires state maintenance.
893 * This operation costs memory and CPU.
894 * As a consequence, streaming is slower than one-shot hashing.
895 * For better performance, prefer one-shot functions whenever applicable.
896 *
897 * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
898 * Use already declared XXH3_createState() and XXH3_freeState().
899 *
900 * All reset and streaming functions have same meaning as their 64-bit counterpart.
901 */
902
903 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
904 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
905 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
906
907 XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
908 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
909
910 /* Following helper functions make it possible to compare XXH128_hast_t values.
911 * Since XXH128_hash_t is a structure, this capability is not offered by the language.
912 * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
913
914 /*!
915 * XXH128_isEqual():
916 * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
917 */
918 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
919
920 /*!
921 * XXH128_cmp():
922 *
923 * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
924 *
925 * return: >0 if *h128_1 > *h128_2
926 * =0 if *h128_1 == *h128_2
927 * <0 if *h128_1 < *h128_2
928 */
929 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
930
931
932 /******* Canonical representation *******/
933 typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
934 XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
935 XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
936
937
938 #endif /* XXH_NO_LONG_LONG */
939
940 /*!
941 * @}
942 */
943 #endif /* XXHASH_H_5627135585666179 */
944
945
946
947 #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
948 #define XXHASH_H_STATIC_13879238742
949 /* ****************************************************************************
950 * This section contains declarations which are not guaranteed to remain stable.
951 * They may change in future versions, becoming incompatible with a different
952 * version of the library.
953 * These declarations should only be used with static linking.
954 * Never use them in association with dynamic linking!
955 ***************************************************************************** */
956
957 /*
958 * These definitions are only present to allow static allocation
959 * of XXH states, on stack or in a struct, for example.
960 * Never **ever** access their members directly.
961 */
962
963 /*!
964 * @internal
965 * @brief Structure for XXH32 streaming API.
966 *
967 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
968 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
969 * an opaque type. This allows fields to safely be changed.
970 *
971 * Typedef'd to @ref XXH32_state_t.
972 * Do not access the members of this struct directly.
973 * @see XXH64_state_s, XXH3_state_s
974 */
975 struct XXH32_state_s {
976 XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
977 XXH32_hash_t large_len; /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
978 XXH32_hash_t v[4]; /*!< Accumulator lanes */
979 XXH32_hash_t mem32[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
980 XXH32_hash_t memsize; /*!< Amount of data in @ref mem32 */
981 XXH32_hash_t reserved; /*!< Reserved field. Do not read or write to it, it may be removed. */
982 }; /* typedef'd to XXH32_state_t */
983
984
985 #ifndef XXH_NO_LONG_LONG /* defined when there is no 64-bit support */
986
987 /*!
988 * @internal
989 * @brief Structure for XXH64 streaming API.
990 *
991 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
992 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
993 * an opaque type. This allows fields to safely be changed.
994 *
995 * Typedef'd to @ref XXH64_state_t.
996 * Do not access the members of this struct directly.
997 * @see XXH32_state_s, XXH3_state_s
998 */
999 struct XXH64_state_s {
1000 XXH64_hash_t total_len; /*!< Total length hashed. This is always 64-bit. */
1001 XXH64_hash_t v[4]; /*!< Accumulator lanes */
1002 XXH64_hash_t mem64[4]; /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
1003 XXH32_hash_t memsize; /*!< Amount of data in @ref mem64 */
1004 XXH32_hash_t reserved32; /*!< Reserved field, needed for padding anyways*/
1005 XXH64_hash_t reserved64; /*!< Reserved field. Do not read or write to it, it may be removed. */
1006 }; /* typedef'd to XXH64_state_t */
1007
1008 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
1009 # include <stdalign.h>
1010 # define XXH_ALIGN(n) alignas(n)
1011 #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
1012 /* In C++ alignas() is a keyword */
1013 # define XXH_ALIGN(n) alignas(n)
1014 #elif defined(__GNUC__)
1015 # define XXH_ALIGN(n) __attribute__ ((aligned(n)))
1016 #elif defined(_MSC_VER)
1017 # define XXH_ALIGN(n) __declspec(align(n))
1018 #else
1019 # define XXH_ALIGN(n) /* disabled */
1020 #endif
1021
1022 /* Old GCC versions only accept the attribute after the type in structures. */
1023 #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)) /* C11+ */ \
1024 && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
1025 && defined(__GNUC__)
1026 # define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
1027 #else
1028 # define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
1029 #endif
1030
1031 /*!
1032 * @brief The size of the internal XXH3 buffer.
1033 *
1034 * This is the optimal update size for incremental hashing.
1035 *
1036 * @see XXH3_64b_update(), XXH3_128b_update().
1037 */
1038 #define XXH3_INTERNALBUFFER_SIZE 256
1039
1040 /*!
1041 * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
1042 *
1043 * This is the size used in @ref XXH3_kSecret and the seeded functions.
1044 *
1045 * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
1046 */
1047 #define XXH3_SECRET_DEFAULT_SIZE 192
1048
1049 /*!
1050 * @internal
1051 * @brief Structure for XXH3 streaming API.
1052 *
1053 * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
1054 * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
1055 * Otherwise it is an opaque type.
1056 * Never use this definition in combination with dynamic library.
1057 * This allows fields to safely be changed in the future.
1058 *
1059 * @note ** This structure has a strict alignment requirement of 64 bytes!! **
1060 * Do not allocate this with `malloc()` or `new`,
1061 * it will not be sufficiently aligned.
1062 * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
1063 *
1064 * Typedef'd to @ref XXH3_state_t.
1065 * Do never access the members of this struct directly.
1066 *
1067 * @see XXH3_INITSTATE() for stack initialization.
1068 * @see XXH3_createState(), XXH3_freeState().
1069 * @see XXH32_state_s, XXH64_state_s
1070 */
1071 struct XXH3_state_s {
1072 XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
1073 /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
1074 XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
1075 /*!< Used to store a custom secret generated from a seed. */
1076 XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
1077 /*!< The internal buffer. @see XXH32_state_s::mem32 */
1078 XXH32_hash_t bufferedSize;
1079 /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
1080 XXH32_hash_t useSeed;
1081 /*!< Reserved field. Needed for padding on 64-bit. */
1082 size_t nbStripesSoFar;
1083 /*!< Number or stripes processed. */
1084 XXH64_hash_t totalLen;
1085 /*!< Total length hashed. 64-bit even on 32-bit targets. */
1086 size_t nbStripesPerBlock;
1087 /*!< Number of stripes per block. */
1088 size_t secretLimit;
1089 /*!< Size of @ref customSecret or @ref extSecret */
1090 XXH64_hash_t seed;
1091 /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
1092 XXH64_hash_t reserved64;
1093 /*!< Reserved field. */
1094 const unsigned char* extSecret;
1095 /*!< Reference to an external secret for the _withSecret variants, NULL
1096 * for other variants. */
1097 /* note: there may be some padding at the end due to alignment on 64 bytes */
1098 }; /* typedef'd to XXH3_state_t */
1099
1100 #undef XXH_ALIGN_MEMBER
1101
1102 /*!
1103 * @brief Initializes a stack-allocated `XXH3_state_s`.
1104 *
1105 * When the @ref XXH3_state_t structure is merely emplaced on stack,
1106 * it should be initialized with XXH3_INITSTATE() or a memset()
1107 * in case its first reset uses XXH3_NNbits_reset_withSeed().
1108 * This init can be omitted if the first reset uses default or _withSecret mode.
1109 * This operation isn't necessary when the state is created with XXH3_createState().
1110 * Note that this doesn't prepare the state for a streaming operation,
1111 * it's still necessary to use XXH3_NNbits_reset*() afterwards.
1112 */
1113 #define XXH3_INITSTATE(XXH3_state_ptr) { (XXH3_state_ptr)->seed = 0; }
1114
1115
1116 /* XXH128() :
1117 * simple alias to pre-selected XXH3_128bits variant
1118 */
1119 XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
1120
1121
1122 /* === Experimental API === */
1123 /* Symbols defined below must be considered tied to a specific library version. */
1124
1125 /*
1126 * XXH3_generateSecret():
1127 *
1128 * Derive a high-entropy secret from any user-defined content, named customSeed.
1129 * The generated secret can be used in combination with `*_withSecret()` functions.
1130 * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
1131 * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
1132 *
1133 * The function accepts as input a custom seed of any length and any content,
1134 * and derives from it a high-entropy secret of length @secretSize
1135 * into an already allocated buffer @secretBuffer.
1136 * @secretSize must be >= XXH3_SECRET_SIZE_MIN
1137 *
1138 * The generated secret can then be used with any `*_withSecret()` variant.
1139 * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
1140 * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
1141 * are part of this list. They all accept a `secret` parameter
1142 * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
1143 * _and_ feature very high entropy (consist of random-looking bytes).
1144 * These conditions can be a high bar to meet, so
1145 * XXH3_generateSecret() can be employed to ensure proper quality.
1146 *
1147 * customSeed can be anything. It can have any size, even small ones,
1148 * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
1149 * The resulting `secret` will nonetheless provide all required qualities.
1150 *
1151 * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
1152 */
1153 XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
1154
1155
1156 /*
1157 * XXH3_generateSecret_fromSeed():
1158 *
1159 * Generate the same secret as the _withSeed() variants.
1160 *
1161 * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
1162 * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
1163 *
1164 * The generated secret can be used in combination with
1165 *`*_withSecret()` and `_withSecretandSeed()` variants.
1166 * This generator is notably useful in combination with `_withSecretandSeed()`,
1167 * as a way to emulate a faster `_withSeed()` variant.
1168 */
1169 XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
1170
1171 /*
1172 * *_withSecretandSeed() :
1173 * These variants generate hash values using either
1174 * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
1175 * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
1176 *
1177 * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
1178 * `_withSeed()` has to generate the secret on the fly for "large" keys.
1179 * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
1180 * `_withSecret()` has to generate the masks on the fly for "small" keys,
1181 * which requires more instructions than _withSeed() variants.
1182 * Therefore, _withSecretandSeed variant combines the best of both worlds.
1183 *
1184 * When @secret has been generated by XXH3_generateSecret_fromSeed(),
1185 * this variant produces *exactly* the same results as `_withSeed()` variant,
1186 * hence offering only a pure speed benefit on "large" input,
1187 * by skipping the need to regenerate the secret for every large input.
1188 *
1189 * Another usage scenario is to hash the secret to a 64-bit hash value,
1190 * for example with XXH3_64bits(), which then becomes the seed,
1191 * and then employ both the seed and the secret in _withSecretandSeed().
1192 * On top of speed, an added benefit is that each bit in the secret
1193 * has a 50% chance to swap each bit in the output,
1194 * via its impact to the seed.
1195 * This is not guaranteed when using the secret directly in "small data" scenarios,
1196 * because only portions of the secret are employed for small data.
1197 */
1198 XXH_PUBLIC_API XXH64_hash_t
1199 XXH3_64bits_withSecretandSeed(const void* data, size_t len,
1200 const void* secret, size_t secretSize,
1201 XXH64_hash_t seed);
1202
1203 XXH_PUBLIC_API XXH128_hash_t
1204 XXH3_128bits_withSecretandSeed(const void* data, size_t len,
1205 const void* secret, size_t secretSize,
1206 XXH64_hash_t seed64);
1207
1208 XXH_PUBLIC_API XXH_errorcode
1209 XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
1210 const void* secret, size_t secretSize,
1211 XXH64_hash_t seed64);
1212
1213 XXH_PUBLIC_API XXH_errorcode
1214 XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
1215 const void* secret, size_t secretSize,
1216 XXH64_hash_t seed64);
1217
1218
1219 #endif /* XXH_NO_LONG_LONG */
1220 #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
1221 # define XXH_IMPLEMENTATION
1222 #endif
1223
1224 #endif /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
1225
1226
1227 /* ======================================================================== */
1228 /* ======================================================================== */
1229 /* ======================================================================== */
1230
1231
1232 /*-**********************************************************************
1233 * xxHash implementation
1234 *-**********************************************************************
1235 * xxHash's implementation used to be hosted inside xxhash.c.
1236 *
1237 * However, inlining requires implementation to be visible to the compiler,
1238 * hence be included alongside the header.
1239 * Previously, implementation was hosted inside xxhash.c,
1240 * which was then #included when inlining was activated.
1241 * This construction created issues with a few build and install systems,
1242 * as it required xxhash.c to be stored in /include directory.
1243 *
1244 * xxHash implementation is now directly integrated within xxhash.h.
1245 * As a consequence, xxhash.c is no longer needed in /include.
1246 *
1247 * xxhash.c is still available and is still useful.
1248 * In a "normal" setup, when xxhash is not inlined,
1249 * xxhash.h only exposes the prototypes and public symbols,
1250 * while xxhash.c can be built into an object file xxhash.o
1251 * which can then be linked into the final binary.
1252 ************************************************************************/
1253
1254 #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
1255 || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
1256 # define XXH_IMPLEM_13a8737387
1257
1258 /* *************************************
1259 * Tuning parameters
1260 ***************************************/
1261
1262 /*!
1263 * @defgroup tuning Tuning parameters
1264 * @{
1265 *
1266 * Various macros to control xxHash's behavior.
1267 */
1268 #ifdef XXH_DOXYGEN
1269 /*!
1270 * @brief Define this to disable 64-bit code.
1271 *
1272 * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
1273 */
1274 # define XXH_NO_LONG_LONG
1275 # undef XXH_NO_LONG_LONG /* don't actually */
1276 /*!
1277 * @brief Controls how unaligned memory is accessed.
1278 *
1279 * By default, access to unaligned memory is controlled by `memcpy()`, which is
1280 * safe and portable.
1281 *
1282 * Unfortunately, on some target/compiler combinations, the generated assembly
1283 * is sub-optimal.
1284 *
1285 * The below switch allow selection of a different access method
1286 * in the search for improved performance.
1287 *
1288 * @par Possible options:
1289 *
1290 * - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
1291 * @par
1292 * Use `memcpy()`. Safe and portable. Note that most modern compilers will
1293 * eliminate the function call and treat it as an unaligned access.
1294 *
1295 * - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
1296 * @par
1297 * Depends on compiler extensions and is therefore not portable.
1298 * This method is safe _if_ your compiler supports it,
1299 * and *generally* as fast or faster than `memcpy`.
1300 *
1301 * - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
1302 * @par
1303 * Casts directly and dereferences. This method doesn't depend on the
1304 * compiler, but it violates the C standard as it directly dereferences an
1305 * unaligned pointer. It can generate buggy code on targets which do not
1306 * support unaligned memory accesses, but in some circumstances, it's the
1307 * only known way to get the most performance.
1308 *
1309 * - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
1310 * @par
1311 * Also portable. This can generate the best code on old compilers which don't
1312 * inline small `memcpy()` calls, and it might also be faster on big-endian
1313 * systems which lack a native byteswap instruction. However, some compilers
1314 * will emit literal byteshifts even if the target supports unaligned access.
1315 * .
1316 *
1317 * @warning
1318 * Methods 1 and 2 rely on implementation-defined behavior. Use these with
1319 * care, as what works on one compiler/platform/optimization level may cause
1320 * another to read garbage data or even crash.
1321 *
1322 * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
1323 *
1324 * Prefer these methods in priority order (0 > 3 > 1 > 2)
1325 */
1326 # define XXH_FORCE_MEMORY_ACCESS 0
1327
1328 /*!
1329 * @def XXH_FORCE_ALIGN_CHECK
1330 * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
1331 * and XXH64() only).
1332 *
1333 * This is an important performance trick for architectures without decent
1334 * unaligned memory access performance.
1335 *
1336 * It checks for input alignment, and when conditions are met, uses a "fast
1337 * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
1338 * faster_ read speed.
1339 *
1340 * The check costs one initial branch per hash, which is generally negligible,
1341 * but not zero.
1342 *
1343 * Moreover, it's not useful to generate an additional code path if memory
1344 * access uses the same instruction for both aligned and unaligned
1345 * addresses (e.g. x86 and aarch64).
1346 *
1347 * In these cases, the alignment check can be removed by setting this macro to 0.
1348 * Then the code will always use unaligned memory access.
1349 * Align check is automatically disabled on x86, x64 & arm64,
1350 * which are platforms known to offer good unaligned memory accesses performance.
1351 *
1352 * This option does not affect XXH3 (only XXH32 and XXH64).
1353 */
1354 # define XXH_FORCE_ALIGN_CHECK 0
1355
1356 /*!
1357 * @def XXH_NO_INLINE_HINTS
1358 * @brief When non-zero, sets all functions to `static`.
1359 *
1360 * By default, xxHash tries to force the compiler to inline almost all internal
1361 * functions.
1362 *
1363 * This can usually improve performance due to reduced jumping and improved
1364 * constant folding, but significantly increases the size of the binary which
1365 * might not be favorable.
1366 *
1367 * Additionally, sometimes the forced inlining can be detrimental to performance,
1368 * depending on the architecture.
1369 *
1370 * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
1371 * compiler full control on whether to inline or not.
1372 *
1373 * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
1374 * -fno-inline with GCC or Clang, this will automatically be defined.
1375 */
1376 # define XXH_NO_INLINE_HINTS 0
1377
1378 /*!
1379 * @def XXH32_ENDJMP
1380 * @brief Whether to use a jump for `XXH32_finalize`.
1381 *
1382 * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
1383 * This is generally preferable for performance,
1384 * but depending on exact architecture, a jmp may be preferable.
1385 *
1386 * This setting is only possibly making a difference for very small inputs.
1387 */
1388 # define XXH32_ENDJMP 0
1389
1390 /*!
1391 * @internal
1392 * @brief Redefines old internal names.
1393 *
1394 * For compatibility with code that uses xxHash's internals before the names
1395 * were changed to improve namespacing. There is no other reason to use this.
1396 */
1397 # define XXH_OLD_NAMES
1398 # undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
1399 #endif /* XXH_DOXYGEN */
1400 /*!
1401 * @}
1402 */
1403
1404 #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
1405 /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
1406 # if !defined(__clang__) && \
1407 ( \
1408 (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
1409 ( \
1410 defined(__GNUC__) && ( \
1411 (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
1412 ( \
1413 defined(__mips__) && \
1414 (__mips <= 5 || __mips_isa_rev < 6) && \
1415 (!defined(__mips16) || defined(__mips_mips16e2)) \
1416 ) \
1417 ) \
1418 ) \
1419 )
1420 # define XXH_FORCE_MEMORY_ACCESS 1
1421 # endif
1422 #endif
1423
1424 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
1425 # if defined(__i386) || defined(__x86_64__) || defined(__aarch64__) \
1426 || defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM64) /* visual */
1427 # define XXH_FORCE_ALIGN_CHECK 0
1428 # else
1429 # define XXH_FORCE_ALIGN_CHECK 1
1430 # endif
1431 #endif
1432
1433 #ifndef XXH_NO_INLINE_HINTS
1434 # if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
1435 || defined(__NO_INLINE__) /* -O0, -fno-inline */
1436 # define XXH_NO_INLINE_HINTS 1
1437 # else
1438 # define XXH_NO_INLINE_HINTS 0
1439 # endif
1440 #endif
1441
1442 #ifndef XXH32_ENDJMP
1443 /* generally preferable for performance */
1444 # define XXH32_ENDJMP 0
1445 #endif
1446
1447 /*!
1448 * @defgroup impl Implementation
1449 * @{
1450 */
1451
1452
1453 /* *************************************
1454 * Includes & Memory related functions
1455 ***************************************/
1456 /*
1457 * Modify the local functions below should you wish to use
1458 * different memory routines for malloc() and free()
1459 */
1460 #include <stdlib.h>
1461
1462 /*!
1463 * @internal
1464 * @brief Modify this function to use a different routine than malloc().
1465 */
XXH_malloc(size_t s)1466 static void* XXH_malloc(size_t s) { return malloc(s); }
1467
1468 /*!
1469 * @internal
1470 * @brief Modify this function to use a different routine than free().
1471 */
XXH_free(void * p)1472 static void XXH_free(void* p) { free(p); }
1473
1474 #include <string.h>
1475
1476 /*!
1477 * @internal
1478 * @brief Modify this function to use a different routine than memcpy().
1479 */
XXH_memcpy(void * dest,const void * src,size_t size)1480 static void* XXH_memcpy(void* dest, const void* src, size_t size)
1481 {
1482 return memcpy(dest,src,size);
1483 }
1484
1485 #include <limits.h> /* ULLONG_MAX */
1486
1487
1488 /* *************************************
1489 * Compiler Specific Options
1490 ***************************************/
1491 #ifdef _MSC_VER /* Visual Studio warning fix */
1492 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
1493 #endif
1494
1495 #if XXH_NO_INLINE_HINTS /* disable inlining hints */
1496 # if defined(__GNUC__) || defined(__clang__)
1497 # define XXH_FORCE_INLINE static __attribute__((unused))
1498 # else
1499 # define XXH_FORCE_INLINE static
1500 # endif
1501 # define XXH_NO_INLINE static
1502 /* enable inlining hints */
1503 #elif defined(__GNUC__) || defined(__clang__)
1504 # define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
1505 # define XXH_NO_INLINE static __attribute__((noinline))
1506 #elif defined(_MSC_VER) /* Visual Studio */
1507 # define XXH_FORCE_INLINE static __forceinline
1508 # define XXH_NO_INLINE static __declspec(noinline)
1509 #elif defined (__cplusplus) \
1510 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* C99 */
1511 # define XXH_FORCE_INLINE static inline
1512 # define XXH_NO_INLINE static
1513 #else
1514 # define XXH_FORCE_INLINE static
1515 # define XXH_NO_INLINE static
1516 #endif
1517
1518
1519
1520 /* *************************************
1521 * Debug
1522 ***************************************/
1523 /*!
1524 * @ingroup tuning
1525 * @def XXH_DEBUGLEVEL
1526 * @brief Sets the debugging level.
1527 *
1528 * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
1529 * compiler's command line options. The value must be a number.
1530 */
1531 #ifndef XXH_DEBUGLEVEL
1532 # ifdef DEBUGLEVEL /* backwards compat */
1533 # define XXH_DEBUGLEVEL DEBUGLEVEL
1534 # else
1535 # define XXH_DEBUGLEVEL 0
1536 # endif
1537 #endif
1538
1539 #if (XXH_DEBUGLEVEL>=1)
1540 # include <assert.h> /* note: can still be disabled with NDEBUG */
1541 # define XXH_ASSERT(c) assert(c)
1542 #else
1543 # define XXH_ASSERT(c) ((void)0)
1544 #endif
1545
1546 /* note: use after variable declarations */
1547 #ifndef XXH_STATIC_ASSERT
1548 # if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* C11 */
1549 # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { _Static_assert((c),m); } while(0)
1550 # elif defined(__cplusplus) && (__cplusplus >= 201103L) /* C++11 */
1551 # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
1552 # else
1553 # define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
1554 # endif
1555 # define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
1556 #endif
1557
1558 /*!
1559 * @internal
1560 * @def XXH_COMPILER_GUARD(var)
1561 * @brief Used to prevent unwanted optimizations for @p var.
1562 *
1563 * It uses an empty GCC inline assembly statement with a register constraint
1564 * which forces @p var into a general purpose register (eg eax, ebx, ecx
1565 * on x86) and marks it as modified.
1566 *
1567 * This is used in a few places to avoid unwanted autovectorization (e.g.
1568 * XXH32_round()). All vectorization we want is explicit via intrinsics,
1569 * and _usually_ isn't wanted elsewhere.
1570 *
1571 * We also use it to prevent unwanted constant folding for AArch64 in
1572 * XXH3_initCustomSecret_scalar().
1573 */
1574 #if defined(__GNUC__) || defined(__clang__)
1575 # define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
1576 #else
1577 # define XXH_COMPILER_GUARD(var) ((void)0)
1578 #endif
1579
1580 /* *************************************
1581 * Basic Types
1582 ***************************************/
1583 #if !defined (__VMS) \
1584 && (defined (__cplusplus) \
1585 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
1586 # include <stdint.h>
1587 typedef uint8_t xxh_u8;
1588 #else
1589 typedef unsigned char xxh_u8;
1590 #endif
1591 typedef XXH32_hash_t xxh_u32;
1592
1593 #ifdef XXH_OLD_NAMES
1594 # define BYTE xxh_u8
1595 # define U8 xxh_u8
1596 # define U32 xxh_u32
1597 #endif
1598
1599 /* *** Memory access *** */
1600
1601 /*!
1602 * @internal
1603 * @fn xxh_u32 XXH_read32(const void* ptr)
1604 * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
1605 *
1606 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1607 *
1608 * @param ptr The pointer to read from.
1609 * @return The 32-bit native endian integer from the bytes at @p ptr.
1610 */
1611
1612 /*!
1613 * @internal
1614 * @fn xxh_u32 XXH_readLE32(const void* ptr)
1615 * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
1616 *
1617 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1618 *
1619 * @param ptr The pointer to read from.
1620 * @return The 32-bit little endian integer from the bytes at @p ptr.
1621 */
1622
1623 /*!
1624 * @internal
1625 * @fn xxh_u32 XXH_readBE32(const void* ptr)
1626 * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
1627 *
1628 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1629 *
1630 * @param ptr The pointer to read from.
1631 * @return The 32-bit big endian integer from the bytes at @p ptr.
1632 */
1633
1634 /*!
1635 * @internal
1636 * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1637 * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
1638 *
1639 * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
1640 * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
1641 * always @ref XXH_alignment::XXH_unaligned.
1642 *
1643 * @param ptr The pointer to read from.
1644 * @param align Whether @p ptr is aligned.
1645 * @pre
1646 * If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
1647 * aligned.
1648 * @return The 32-bit little endian integer from the bytes at @p ptr.
1649 */
1650
1651 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1652 /*
1653 * Manual byteshift. Best for old compilers which don't inline memcpy.
1654 * We actually directly use XXH_readLE32 and XXH_readBE32.
1655 */
1656 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
1657
1658 /*
1659 * Force direct memory access. Only works on CPU which support unaligned memory
1660 * access in hardware.
1661 */
XXH_read32(const void * memPtr)1662 static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
1663
1664 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
1665
1666 /*
1667 * __pack instructions are safer but compiler specific, hence potentially
1668 * problematic for some compilers.
1669 *
1670 * Currently only defined for GCC and ICC.
1671 */
1672 #ifdef XXH_OLD_NAMES
1673 typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
1674 #endif
XXH_read32(const void * ptr)1675 static xxh_u32 XXH_read32(const void* ptr)
1676 {
1677 typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
1678 return ((const xxh_unalign*)ptr)->u32;
1679 }
1680
1681 #else
1682
1683 /*
1684 * Portable and safe solution. Generally efficient.
1685 * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
1686 */
XXH_read32(const void * memPtr)1687 static xxh_u32 XXH_read32(const void* memPtr)
1688 {
1689 xxh_u32 val;
1690 XXH_memcpy(&val, memPtr, sizeof(val));
1691 return val;
1692 }
1693
1694 #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
1695
1696
1697 /* *** Endianness *** */
1698
1699 /*!
1700 * @ingroup tuning
1701 * @def XXH_CPU_LITTLE_ENDIAN
1702 * @brief Whether the target is little endian.
1703 *
1704 * Defined to 1 if the target is little endian, or 0 if it is big endian.
1705 * It can be defined externally, for example on the compiler command line.
1706 *
1707 * If it is not defined,
1708 * a runtime check (which is usually constant folded) is used instead.
1709 *
1710 * @note
1711 * This is not necessarily defined to an integer constant.
1712 *
1713 * @see XXH_isLittleEndian() for the runtime check.
1714 */
1715 #ifndef XXH_CPU_LITTLE_ENDIAN
1716 /*
1717 * Try to detect endianness automatically, to avoid the nonstandard behavior
1718 * in `XXH_isLittleEndian()`
1719 */
1720 # if defined(_WIN32) /* Windows is always little endian */ \
1721 || defined(__LITTLE_ENDIAN__) \
1722 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
1723 # define XXH_CPU_LITTLE_ENDIAN 1
1724 # elif defined(__BIG_ENDIAN__) \
1725 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
1726 # define XXH_CPU_LITTLE_ENDIAN 0
1727 # else
1728 /*!
1729 * @internal
1730 * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
1731 *
1732 * Most compilers will constant fold this.
1733 */
XXH_isLittleEndian(void)1734 static int XXH_isLittleEndian(void)
1735 {
1736 /*
1737 * Portable and well-defined behavior.
1738 * Don't use static: it is detrimental to performance.
1739 */
1740 const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
1741 return one.c[0];
1742 }
1743 # define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
1744 # endif
1745 #endif
1746
1747
1748
1749
1750 /* ****************************************
1751 * Compiler-specific Functions and Macros
1752 ******************************************/
1753 #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
1754
1755 #ifdef __has_builtin
1756 # define XXH_HAS_BUILTIN(x) __has_builtin(x)
1757 #else
1758 # define XXH_HAS_BUILTIN(x) 0
1759 #endif
1760
1761 /*!
1762 * @internal
1763 * @def XXH_rotl32(x,r)
1764 * @brief 32-bit rotate left.
1765 *
1766 * @param x The 32-bit integer to be rotated.
1767 * @param r The number of bits to rotate.
1768 * @pre
1769 * @p r > 0 && @p r < 32
1770 * @note
1771 * @p x and @p r may be evaluated multiple times.
1772 * @return The rotated result.
1773 */
1774 #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
1775 && XXH_HAS_BUILTIN(__builtin_rotateleft64)
1776 # define XXH_rotl32 __builtin_rotateleft32
1777 # define XXH_rotl64 __builtin_rotateleft64
1778 /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
1779 #elif defined(_MSC_VER)
1780 # define XXH_rotl32(x,r) _rotl(x,r)
1781 # define XXH_rotl64(x,r) _rotl64(x,r)
1782 #else
1783 # define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
1784 # define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
1785 #endif
1786
1787 /*!
1788 * @internal
1789 * @fn xxh_u32 XXH_swap32(xxh_u32 x)
1790 * @brief A 32-bit byteswap.
1791 *
1792 * @param x The 32-bit integer to byteswap.
1793 * @return @p x, byteswapped.
1794 */
1795 #if defined(_MSC_VER) /* Visual Studio */
1796 # define XXH_swap32 _byteswap_ulong
1797 #elif XXH_GCC_VERSION >= 403
1798 # define XXH_swap32 __builtin_bswap32
1799 #else
XXH_swap32(xxh_u32 x)1800 static xxh_u32 XXH_swap32 (xxh_u32 x)
1801 {
1802 return ((x << 24) & 0xff000000 ) |
1803 ((x << 8) & 0x00ff0000 ) |
1804 ((x >> 8) & 0x0000ff00 ) |
1805 ((x >> 24) & 0x000000ff );
1806 }
1807 #endif
1808
1809
1810 /* ***************************
1811 * Memory reads
1812 *****************************/
1813
1814 /*!
1815 * @internal
1816 * @brief Enum to indicate whether a pointer is aligned.
1817 */
1818 typedef enum {
1819 XXH_aligned, /*!< Aligned */
1820 XXH_unaligned /*!< Possibly unaligned */
1821 } XXH_alignment;
1822
1823 /*
1824 * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
1825 *
1826 * This is ideal for older compilers which don't inline memcpy.
1827 */
1828 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
1829
XXH_readLE32(const void * memPtr)1830 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
1831 {
1832 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1833 return bytePtr[0]
1834 | ((xxh_u32)bytePtr[1] << 8)
1835 | ((xxh_u32)bytePtr[2] << 16)
1836 | ((xxh_u32)bytePtr[3] << 24);
1837 }
1838
XXH_readBE32(const void * memPtr)1839 XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
1840 {
1841 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
1842 return bytePtr[3]
1843 | ((xxh_u32)bytePtr[2] << 8)
1844 | ((xxh_u32)bytePtr[1] << 16)
1845 | ((xxh_u32)bytePtr[0] << 24);
1846 }
1847
1848 #else
XXH_readLE32(const void * ptr)1849 XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
1850 {
1851 return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
1852 }
1853
XXH_readBE32(const void * ptr)1854 static xxh_u32 XXH_readBE32(const void* ptr)
1855 {
1856 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
1857 }
1858 #endif
1859
1860 XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void * ptr,XXH_alignment align)1861 XXH_readLE32_align(const void* ptr, XXH_alignment align)
1862 {
1863 if (align==XXH_unaligned) {
1864 return XXH_readLE32(ptr);
1865 } else {
1866 return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
1867 }
1868 }
1869
1870
1871 /* *************************************
1872 * Misc
1873 ***************************************/
1874 /*! @ingroup public */
XXH_versionNumber(void)1875 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
1876
1877
1878 /* *******************************************************************
1879 * 32-bit hash functions
1880 *********************************************************************/
1881 /*!
1882 * @}
1883 * @defgroup xxh32_impl XXH32 implementation
1884 * @ingroup impl
1885 * @{
1886 */
1887 /* #define instead of static const, to be used as initializers */
1888 #define XXH_PRIME32_1 0x9E3779B1U /*!< 0b10011110001101110111100110110001 */
1889 #define XXH_PRIME32_2 0x85EBCA77U /*!< 0b10000101111010111100101001110111 */
1890 #define XXH_PRIME32_3 0xC2B2AE3DU /*!< 0b11000010101100101010111000111101 */
1891 #define XXH_PRIME32_4 0x27D4EB2FU /*!< 0b00100111110101001110101100101111 */
1892 #define XXH_PRIME32_5 0x165667B1U /*!< 0b00010110010101100110011110110001 */
1893
1894 #ifdef XXH_OLD_NAMES
1895 # define PRIME32_1 XXH_PRIME32_1
1896 # define PRIME32_2 XXH_PRIME32_2
1897 # define PRIME32_3 XXH_PRIME32_3
1898 # define PRIME32_4 XXH_PRIME32_4
1899 # define PRIME32_5 XXH_PRIME32_5
1900 #endif
1901
1902 /*!
1903 * @internal
1904 * @brief Normal stripe processing routine.
1905 *
1906 * This shuffles the bits so that any bit from @p input impacts several bits in
1907 * @p acc.
1908 *
1909 * @param acc The accumulator lane.
1910 * @param input The stripe of input to mix.
1911 * @return The mixed accumulator lane.
1912 */
XXH32_round(xxh_u32 acc,xxh_u32 input)1913 static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
1914 {
1915 acc += input * XXH_PRIME32_2;
1916 acc = XXH_rotl32(acc, 13);
1917 acc *= XXH_PRIME32_1;
1918 #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
1919 /*
1920 * UGLY HACK:
1921 * A compiler fence is the only thing that prevents GCC and Clang from
1922 * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
1923 * reason) without globally disabling SSE4.1.
1924 *
1925 * The reason we want to avoid vectorization is because despite working on
1926 * 4 integers at a time, there are multiple factors slowing XXH32 down on
1927 * SSE4:
1928 * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
1929 * newer chips!) making it slightly slower to multiply four integers at
1930 * once compared to four integers independently. Even when pmulld was
1931 * fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
1932 * just to multiply unless doing a long operation.
1933 *
1934 * - Four instructions are required to rotate,
1935 * movqda tmp, v // not required with VEX encoding
1936 * pslld tmp, 13 // tmp <<= 13
1937 * psrld v, 19 // x >>= 19
1938 * por v, tmp // x |= tmp
1939 * compared to one for scalar:
1940 * roll v, 13 // reliably fast across the board
1941 * shldl v, v, 13 // Sandy Bridge and later prefer this for some reason
1942 *
1943 * - Instruction level parallelism is actually more beneficial here because
1944 * the SIMD actually serializes this operation: While v1 is rotating, v2
1945 * can load data, while v3 can multiply. SSE forces them to operate
1946 * together.
1947 *
1948 * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
1949 * and it is pointless writing a NEON implementation that is basically the
1950 * same speed as scalar for XXH32.
1951 */
1952 XXH_COMPILER_GUARD(acc);
1953 #endif
1954 return acc;
1955 }
1956
1957 /*!
1958 * @internal
1959 * @brief Mixes all bits to finalize the hash.
1960 *
1961 * The final mix ensures that all input bits have a chance to impact any bit in
1962 * the output digest, resulting in an unbiased distribution.
1963 *
1964 * @param h32 The hash to avalanche.
1965 * @return The avalanched hash.
1966 */
XXH32_avalanche(xxh_u32 h32)1967 static xxh_u32 XXH32_avalanche(xxh_u32 h32)
1968 {
1969 h32 ^= h32 >> 15;
1970 h32 *= XXH_PRIME32_2;
1971 h32 ^= h32 >> 13;
1972 h32 *= XXH_PRIME32_3;
1973 h32 ^= h32 >> 16;
1974 return(h32);
1975 }
1976
1977 #define XXH_get32bits(p) XXH_readLE32_align(p, align)
1978
1979 /*!
1980 * @internal
1981 * @brief Processes the last 0-15 bytes of @p ptr.
1982 *
1983 * There may be up to 15 bytes remaining to consume from the input.
1984 * This final stage will digest them to ensure that all input bytes are present
1985 * in the final mix.
1986 *
1987 * @param h32 The hash to finalize.
1988 * @param ptr The pointer to the remaining input.
1989 * @param len The remaining length, modulo 16.
1990 * @param align Whether @p ptr is aligned.
1991 * @return The finalized hash.
1992 */
1993 static xxh_u32
XXH32_finalize(xxh_u32 h32,const xxh_u8 * ptr,size_t len,XXH_alignment align)1994 XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
1995 {
1996 #define XXH_PROCESS1 do { \
1997 h32 += (*ptr++) * XXH_PRIME32_5; \
1998 h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1; \
1999 } while (0)
2000
2001 #define XXH_PROCESS4 do { \
2002 h32 += XXH_get32bits(ptr) * XXH_PRIME32_3; \
2003 ptr += 4; \
2004 h32 = XXH_rotl32(h32, 17) * XXH_PRIME32_4; \
2005 } while (0)
2006
2007 if (ptr==NULL) XXH_ASSERT(len == 0);
2008
2009 /* Compact rerolled version; generally faster */
2010 if (!XXH32_ENDJMP) {
2011 len &= 15;
2012 while (len >= 4) {
2013 XXH_PROCESS4;
2014 len -= 4;
2015 }
2016 while (len > 0) {
2017 XXH_PROCESS1;
2018 --len;
2019 }
2020 return XXH32_avalanche(h32);
2021 } else {
2022 switch(len&15) /* or switch(bEnd - p) */ {
2023 case 12: XXH_PROCESS4;
2024 XXH_FALLTHROUGH;
2025 case 8: XXH_PROCESS4;
2026 XXH_FALLTHROUGH;
2027 case 4: XXH_PROCESS4;
2028 return XXH32_avalanche(h32);
2029
2030 case 13: XXH_PROCESS4;
2031 XXH_FALLTHROUGH;
2032 case 9: XXH_PROCESS4;
2033 XXH_FALLTHROUGH;
2034 case 5: XXH_PROCESS4;
2035 XXH_PROCESS1;
2036 return XXH32_avalanche(h32);
2037
2038 case 14: XXH_PROCESS4;
2039 XXH_FALLTHROUGH;
2040 case 10: XXH_PROCESS4;
2041 XXH_FALLTHROUGH;
2042 case 6: XXH_PROCESS4;
2043 XXH_PROCESS1;
2044 XXH_PROCESS1;
2045 return XXH32_avalanche(h32);
2046
2047 case 15: XXH_PROCESS4;
2048 XXH_FALLTHROUGH;
2049 case 11: XXH_PROCESS4;
2050 XXH_FALLTHROUGH;
2051 case 7: XXH_PROCESS4;
2052 XXH_FALLTHROUGH;
2053 case 3: XXH_PROCESS1;
2054 XXH_FALLTHROUGH;
2055 case 2: XXH_PROCESS1;
2056 XXH_FALLTHROUGH;
2057 case 1: XXH_PROCESS1;
2058 XXH_FALLTHROUGH;
2059 case 0: return XXH32_avalanche(h32);
2060 }
2061 XXH_ASSERT(0);
2062 return h32; /* reaching this point is deemed impossible */
2063 }
2064 }
2065
2066 #ifdef XXH_OLD_NAMES
2067 # define PROCESS1 XXH_PROCESS1
2068 # define PROCESS4 XXH_PROCESS4
2069 #else
2070 # undef XXH_PROCESS1
2071 # undef XXH_PROCESS4
2072 #endif
2073
2074 /*!
2075 * @internal
2076 * @brief The implementation for @ref XXH32().
2077 *
2078 * @param input , len , seed Directly passed from @ref XXH32().
2079 * @param align Whether @p input is aligned.
2080 * @return The calculated hash.
2081 */
2082 XXH_FORCE_INLINE xxh_u32
XXH32_endian_align(const xxh_u8 * input,size_t len,xxh_u32 seed,XXH_alignment align)2083 XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
2084 {
2085 xxh_u32 h32;
2086
2087 if (input==NULL) XXH_ASSERT(len == 0);
2088
2089 if (len>=16) {
2090 const xxh_u8* const bEnd = input + len;
2091 const xxh_u8* const limit = bEnd - 15;
2092 xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2093 xxh_u32 v2 = seed + XXH_PRIME32_2;
2094 xxh_u32 v3 = seed + 0;
2095 xxh_u32 v4 = seed - XXH_PRIME32_1;
2096
2097 do {
2098 v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
2099 v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
2100 v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
2101 v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
2102 } while (input < limit);
2103
2104 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7)
2105 + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
2106 } else {
2107 h32 = seed + XXH_PRIME32_5;
2108 }
2109
2110 h32 += (xxh_u32)len;
2111
2112 return XXH32_finalize(h32, input, len&15, align);
2113 }
2114
2115 /*! @ingroup xxh32_family */
XXH32(const void * input,size_t len,XXH32_hash_t seed)2116 XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
2117 {
2118 #if 0
2119 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2120 XXH32_state_t state;
2121 XXH32_reset(&state, seed);
2122 XXH32_update(&state, (const xxh_u8*)input, len);
2123 return XXH32_digest(&state);
2124 #else
2125 if (XXH_FORCE_ALIGN_CHECK) {
2126 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
2127 return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2128 } }
2129
2130 return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2131 #endif
2132 }
2133
2134
2135
2136 /******* Hash streaming *******/
2137 /*!
2138 * @ingroup xxh32_family
2139 */
XXH32_createState(void)2140 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
2141 {
2142 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
2143 }
2144 /*! @ingroup xxh32_family */
XXH32_freeState(XXH32_state_t * statePtr)2145 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
2146 {
2147 XXH_free(statePtr);
2148 return XXH_OK;
2149 }
2150
2151 /*! @ingroup xxh32_family */
XXH32_copyState(XXH32_state_t * dstState,const XXH32_state_t * srcState)2152 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
2153 {
2154 XXH_memcpy(dstState, srcState, sizeof(*dstState));
2155 }
2156
2157 /*! @ingroup xxh32_family */
XXH32_reset(XXH32_state_t * statePtr,XXH32_hash_t seed)2158 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
2159 {
2160 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
2161 memset(&state, 0, sizeof(state));
2162 state.v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
2163 state.v[1] = seed + XXH_PRIME32_2;
2164 state.v[2] = seed + 0;
2165 state.v[3] = seed - XXH_PRIME32_1;
2166 /* do not write into reserved, planned to be removed in a future version */
2167 XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
2168 return XXH_OK;
2169 }
2170
2171
2172 /*! @ingroup xxh32_family */
2173 XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t * state,const void * input,size_t len)2174 XXH32_update(XXH32_state_t* state, const void* input, size_t len)
2175 {
2176 if (input==NULL) {
2177 XXH_ASSERT(len == 0);
2178 return XXH_OK;
2179 }
2180
2181 { const xxh_u8* p = (const xxh_u8*)input;
2182 const xxh_u8* const bEnd = p + len;
2183
2184 state->total_len_32 += (XXH32_hash_t)len;
2185 state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
2186
2187 if (state->memsize + len < 16) { /* fill in tmp buffer */
2188 XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
2189 state->memsize += (XXH32_hash_t)len;
2190 return XXH_OK;
2191 }
2192
2193 if (state->memsize) { /* some data left from previous update */
2194 XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
2195 { const xxh_u32* p32 = state->mem32;
2196 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
2197 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
2198 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
2199 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
2200 }
2201 p += 16-state->memsize;
2202 state->memsize = 0;
2203 }
2204
2205 if (p <= bEnd-16) {
2206 const xxh_u8* const limit = bEnd - 16;
2207
2208 do {
2209 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
2210 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
2211 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
2212 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
2213 } while (p<=limit);
2214
2215 }
2216
2217 if (p < bEnd) {
2218 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
2219 state->memsize = (unsigned)(bEnd-p);
2220 }
2221 }
2222
2223 return XXH_OK;
2224 }
2225
2226
2227 /*! @ingroup xxh32_family */
XXH32_digest(const XXH32_state_t * state)2228 XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
2229 {
2230 xxh_u32 h32;
2231
2232 if (state->large_len) {
2233 h32 = XXH_rotl32(state->v[0], 1)
2234 + XXH_rotl32(state->v[1], 7)
2235 + XXH_rotl32(state->v[2], 12)
2236 + XXH_rotl32(state->v[3], 18);
2237 } else {
2238 h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
2239 }
2240
2241 h32 += state->total_len_32;
2242
2243 return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
2244 }
2245
2246
2247 /******* Canonical representation *******/
2248
2249 /*!
2250 * @ingroup xxh32_family
2251 * The default return values from XXH functions are unsigned 32 and 64 bit
2252 * integers.
2253 *
2254 * The canonical representation uses big endian convention, the same convention
2255 * as human-readable numbers (large digits first).
2256 *
2257 * This way, hash values can be written into a file or buffer, remaining
2258 * comparable across different systems.
2259 *
2260 * The following functions allow transformation of hash values to and from their
2261 * canonical format.
2262 */
XXH32_canonicalFromHash(XXH32_canonical_t * dst,XXH32_hash_t hash)2263 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
2264 {
2265 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
2266 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
2267 XXH_memcpy(dst, &hash, sizeof(*dst));
2268 }
2269 /*! @ingroup xxh32_family */
XXH32_hashFromCanonical(const XXH32_canonical_t * src)2270 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
2271 {
2272 return XXH_readBE32(src);
2273 }
2274
2275
2276 #ifndef XXH_NO_LONG_LONG
2277
2278 /* *******************************************************************
2279 * 64-bit hash functions
2280 *********************************************************************/
2281 /*!
2282 * @}
2283 * @ingroup impl
2284 * @{
2285 */
2286 /******* Memory access *******/
2287
2288 typedef XXH64_hash_t xxh_u64;
2289
2290 #ifdef XXH_OLD_NAMES
2291 # define U64 xxh_u64
2292 #endif
2293
2294 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2295 /*
2296 * Manual byteshift. Best for old compilers which don't inline memcpy.
2297 * We actually directly use XXH_readLE64 and XXH_readBE64.
2298 */
2299 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
2300
2301 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
XXH_read64(const void * memPtr)2302 static xxh_u64 XXH_read64(const void* memPtr)
2303 {
2304 return *(const xxh_u64*) memPtr;
2305 }
2306
2307 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
2308
2309 /*
2310 * __pack instructions are safer, but compiler specific, hence potentially
2311 * problematic for some compilers.
2312 *
2313 * Currently only defined for GCC and ICC.
2314 */
2315 #ifdef XXH_OLD_NAMES
2316 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
2317 #endif
XXH_read64(const void * ptr)2318 static xxh_u64 XXH_read64(const void* ptr)
2319 {
2320 typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
2321 return ((const xxh_unalign64*)ptr)->u64;
2322 }
2323
2324 #else
2325
2326 /*
2327 * Portable and safe solution. Generally efficient.
2328 * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
2329 */
XXH_read64(const void * memPtr)2330 static xxh_u64 XXH_read64(const void* memPtr)
2331 {
2332 xxh_u64 val;
2333 XXH_memcpy(&val, memPtr, sizeof(val));
2334 return val;
2335 }
2336
2337 #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
2338
2339 #if defined(_MSC_VER) /* Visual Studio */
2340 # define XXH_swap64 _byteswap_uint64
2341 #elif XXH_GCC_VERSION >= 403
2342 # define XXH_swap64 __builtin_bswap64
2343 #else
XXH_swap64(xxh_u64 x)2344 static xxh_u64 XXH_swap64(xxh_u64 x)
2345 {
2346 return ((x << 56) & 0xff00000000000000ULL) |
2347 ((x << 40) & 0x00ff000000000000ULL) |
2348 ((x << 24) & 0x0000ff0000000000ULL) |
2349 ((x << 8) & 0x000000ff00000000ULL) |
2350 ((x >> 8) & 0x00000000ff000000ULL) |
2351 ((x >> 24) & 0x0000000000ff0000ULL) |
2352 ((x >> 40) & 0x000000000000ff00ULL) |
2353 ((x >> 56) & 0x00000000000000ffULL);
2354 }
2355 #endif
2356
2357
2358 /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
2359 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
2360
XXH_readLE64(const void * memPtr)2361 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
2362 {
2363 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2364 return bytePtr[0]
2365 | ((xxh_u64)bytePtr[1] << 8)
2366 | ((xxh_u64)bytePtr[2] << 16)
2367 | ((xxh_u64)bytePtr[3] << 24)
2368 | ((xxh_u64)bytePtr[4] << 32)
2369 | ((xxh_u64)bytePtr[5] << 40)
2370 | ((xxh_u64)bytePtr[6] << 48)
2371 | ((xxh_u64)bytePtr[7] << 56);
2372 }
2373
XXH_readBE64(const void * memPtr)2374 XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
2375 {
2376 const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
2377 return bytePtr[7]
2378 | ((xxh_u64)bytePtr[6] << 8)
2379 | ((xxh_u64)bytePtr[5] << 16)
2380 | ((xxh_u64)bytePtr[4] << 24)
2381 | ((xxh_u64)bytePtr[3] << 32)
2382 | ((xxh_u64)bytePtr[2] << 40)
2383 | ((xxh_u64)bytePtr[1] << 48)
2384 | ((xxh_u64)bytePtr[0] << 56);
2385 }
2386
2387 #else
XXH_readLE64(const void * ptr)2388 XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
2389 {
2390 return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
2391 }
2392
XXH_readBE64(const void * ptr)2393 static xxh_u64 XXH_readBE64(const void* ptr)
2394 {
2395 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
2396 }
2397 #endif
2398
2399 XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void * ptr,XXH_alignment align)2400 XXH_readLE64_align(const void* ptr, XXH_alignment align)
2401 {
2402 if (align==XXH_unaligned)
2403 return XXH_readLE64(ptr);
2404 else
2405 return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
2406 }
2407
2408
2409 /******* xxh64 *******/
2410 /*!
2411 * @}
2412 * @defgroup xxh64_impl XXH64 implementation
2413 * @ingroup impl
2414 * @{
2415 */
2416 /* #define rather that static const, to be used as initializers */
2417 #define XXH_PRIME64_1 0x9E3779B185EBCA87ULL /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
2418 #define XXH_PRIME64_2 0xC2B2AE3D27D4EB4FULL /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
2419 #define XXH_PRIME64_3 0x165667B19E3779F9ULL /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
2420 #define XXH_PRIME64_4 0x85EBCA77C2B2AE63ULL /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
2421 #define XXH_PRIME64_5 0x27D4EB2F165667C5ULL /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
2422
2423 #ifdef XXH_OLD_NAMES
2424 # define PRIME64_1 XXH_PRIME64_1
2425 # define PRIME64_2 XXH_PRIME64_2
2426 # define PRIME64_3 XXH_PRIME64_3
2427 # define PRIME64_4 XXH_PRIME64_4
2428 # define PRIME64_5 XXH_PRIME64_5
2429 #endif
2430
XXH64_round(xxh_u64 acc,xxh_u64 input)2431 static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
2432 {
2433 acc += input * XXH_PRIME64_2;
2434 acc = XXH_rotl64(acc, 31);
2435 acc *= XXH_PRIME64_1;
2436 return acc;
2437 }
2438
XXH64_mergeRound(xxh_u64 acc,xxh_u64 val)2439 static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
2440 {
2441 val = XXH64_round(0, val);
2442 acc ^= val;
2443 acc = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
2444 return acc;
2445 }
2446
XXH64_avalanche(xxh_u64 h64)2447 static xxh_u64 XXH64_avalanche(xxh_u64 h64)
2448 {
2449 h64 ^= h64 >> 33;
2450 h64 *= XXH_PRIME64_2;
2451 h64 ^= h64 >> 29;
2452 h64 *= XXH_PRIME64_3;
2453 h64 ^= h64 >> 32;
2454 return h64;
2455 }
2456
2457
2458 #define XXH_get64bits(p) XXH_readLE64_align(p, align)
2459
2460 static xxh_u64
XXH64_finalize(xxh_u64 h64,const xxh_u8 * ptr,size_t len,XXH_alignment align)2461 XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
2462 {
2463 if (ptr==NULL) XXH_ASSERT(len == 0);
2464 len &= 31;
2465 while (len >= 8) {
2466 xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
2467 ptr += 8;
2468 h64 ^= k1;
2469 h64 = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
2470 len -= 8;
2471 }
2472 if (len >= 4) {
2473 h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
2474 ptr += 4;
2475 h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
2476 len -= 4;
2477 }
2478 while (len > 0) {
2479 h64 ^= (*ptr++) * XXH_PRIME64_5;
2480 h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
2481 --len;
2482 }
2483 return XXH64_avalanche(h64);
2484 }
2485
2486 #ifdef XXH_OLD_NAMES
2487 # define PROCESS1_64 XXH_PROCESS1_64
2488 # define PROCESS4_64 XXH_PROCESS4_64
2489 # define PROCESS8_64 XXH_PROCESS8_64
2490 #else
2491 # undef XXH_PROCESS1_64
2492 # undef XXH_PROCESS4_64
2493 # undef XXH_PROCESS8_64
2494 #endif
2495
2496 XXH_FORCE_INLINE xxh_u64
XXH64_endian_align(const xxh_u8 * input,size_t len,xxh_u64 seed,XXH_alignment align)2497 XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
2498 {
2499 xxh_u64 h64;
2500 if (input==NULL) XXH_ASSERT(len == 0);
2501
2502 if (len>=32) {
2503 const xxh_u8* const bEnd = input + len;
2504 const xxh_u8* const limit = bEnd - 31;
2505 xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2506 xxh_u64 v2 = seed + XXH_PRIME64_2;
2507 xxh_u64 v3 = seed + 0;
2508 xxh_u64 v4 = seed - XXH_PRIME64_1;
2509
2510 do {
2511 v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
2512 v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
2513 v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
2514 v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
2515 } while (input<limit);
2516
2517 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
2518 h64 = XXH64_mergeRound(h64, v1);
2519 h64 = XXH64_mergeRound(h64, v2);
2520 h64 = XXH64_mergeRound(h64, v3);
2521 h64 = XXH64_mergeRound(h64, v4);
2522
2523 } else {
2524 h64 = seed + XXH_PRIME64_5;
2525 }
2526
2527 h64 += (xxh_u64) len;
2528
2529 return XXH64_finalize(h64, input, len, align);
2530 }
2531
2532
2533 /*! @ingroup xxh64_family */
XXH64(const void * input,size_t len,XXH64_hash_t seed)2534 XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
2535 {
2536 #if 0
2537 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
2538 XXH64_state_t state;
2539 XXH64_reset(&state, seed);
2540 XXH64_update(&state, (const xxh_u8*)input, len);
2541 return XXH64_digest(&state);
2542 #else
2543 if (XXH_FORCE_ALIGN_CHECK) {
2544 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
2545 return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
2546 } }
2547
2548 return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
2549
2550 #endif
2551 }
2552
2553 /******* Hash Streaming *******/
2554
2555 /*! @ingroup xxh64_family*/
XXH64_createState(void)2556 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
2557 {
2558 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
2559 }
2560 /*! @ingroup xxh64_family */
XXH64_freeState(XXH64_state_t * statePtr)2561 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
2562 {
2563 XXH_free(statePtr);
2564 return XXH_OK;
2565 }
2566
2567 /*! @ingroup xxh64_family */
XXH64_copyState(XXH64_state_t * dstState,const XXH64_state_t * srcState)2568 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
2569 {
2570 XXH_memcpy(dstState, srcState, sizeof(*dstState));
2571 }
2572
2573 /*! @ingroup xxh64_family */
XXH64_reset(XXH64_state_t * statePtr,XXH64_hash_t seed)2574 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
2575 {
2576 XXH64_state_t state; /* use a local state to memcpy() in order to avoid strict-aliasing warnings */
2577 memset(&state, 0, sizeof(state));
2578 state.v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
2579 state.v[1] = seed + XXH_PRIME64_2;
2580 state.v[2] = seed + 0;
2581 state.v[3] = seed - XXH_PRIME64_1;
2582 /* do not write into reserved64, might be removed in a future version */
2583 XXH_memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
2584 return XXH_OK;
2585 }
2586
2587 /*! @ingroup xxh64_family */
2588 XXH_PUBLIC_API XXH_errorcode
XXH64_update(XXH64_state_t * state,const void * input,size_t len)2589 XXH64_update (XXH64_state_t* state, const void* input, size_t len)
2590 {
2591 if (input==NULL) {
2592 XXH_ASSERT(len == 0);
2593 return XXH_OK;
2594 }
2595
2596 { const xxh_u8* p = (const xxh_u8*)input;
2597 const xxh_u8* const bEnd = p + len;
2598
2599 state->total_len += len;
2600
2601 if (state->memsize + len < 32) { /* fill in tmp buffer */
2602 XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
2603 state->memsize += (xxh_u32)len;
2604 return XXH_OK;
2605 }
2606
2607 if (state->memsize) { /* tmp buffer is full */
2608 XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
2609 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
2610 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
2611 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
2612 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
2613 p += 32 - state->memsize;
2614 state->memsize = 0;
2615 }
2616
2617 if (p+32 <= bEnd) {
2618 const xxh_u8* const limit = bEnd - 32;
2619
2620 do {
2621 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
2622 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
2623 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
2624 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
2625 } while (p<=limit);
2626
2627 }
2628
2629 if (p < bEnd) {
2630 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
2631 state->memsize = (unsigned)(bEnd-p);
2632 }
2633 }
2634
2635 return XXH_OK;
2636 }
2637
2638
2639 /*! @ingroup xxh64_family */
XXH64_digest(const XXH64_state_t * state)2640 XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
2641 {
2642 xxh_u64 h64;
2643
2644 if (state->total_len >= 32) {
2645 h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
2646 h64 = XXH64_mergeRound(h64, state->v[0]);
2647 h64 = XXH64_mergeRound(h64, state->v[1]);
2648 h64 = XXH64_mergeRound(h64, state->v[2]);
2649 h64 = XXH64_mergeRound(h64, state->v[3]);
2650 } else {
2651 h64 = state->v[2] /*seed*/ + XXH_PRIME64_5;
2652 }
2653
2654 h64 += (xxh_u64) state->total_len;
2655
2656 return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
2657 }
2658
2659
2660 /******* Canonical representation *******/
2661
2662 /*! @ingroup xxh64_family */
XXH64_canonicalFromHash(XXH64_canonical_t * dst,XXH64_hash_t hash)2663 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
2664 {
2665 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
2666 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
2667 XXH_memcpy(dst, &hash, sizeof(*dst));
2668 }
2669
2670 /*! @ingroup xxh64_family */
XXH64_hashFromCanonical(const XXH64_canonical_t * src)2671 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
2672 {
2673 return XXH_readBE64(src);
2674 }
2675
2676 #ifndef XXH_NO_XXH3
2677
2678 /* *********************************************************************
2679 * XXH3
2680 * New generation hash designed for speed on small keys and vectorization
2681 ************************************************************************ */
2682 /*!
2683 * @}
2684 * @defgroup xxh3_impl XXH3 implementation
2685 * @ingroup impl
2686 * @{
2687 */
2688
2689 /* === Compiler specifics === */
2690
2691 #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
2692 # define XXH_RESTRICT /* disable */
2693 #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */
2694 # define XXH_RESTRICT restrict
2695 #else
2696 /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
2697 # define XXH_RESTRICT /* disable */
2698 #endif
2699
2700 #if (defined(__GNUC__) && (__GNUC__ >= 3)) \
2701 || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
2702 || defined(__clang__)
2703 # define XXH_likely(x) __builtin_expect(x, 1)
2704 # define XXH_unlikely(x) __builtin_expect(x, 0)
2705 #else
2706 # define XXH_likely(x) (x)
2707 # define XXH_unlikely(x) (x)
2708 #endif
2709
2710 #if defined(__GNUC__)
2711 # if defined(__AVX2__)
2712 # include <immintrin.h>
2713 # elif defined(__SSE2__)
2714 # include <emmintrin.h>
2715 # elif defined(__ARM_NEON__) || defined(__ARM_NEON)
2716 # define inline __inline__ /* circumvent a clang bug */
2717 # include <arm_neon.h>
2718 # undef inline
2719 # endif
2720 #elif defined(_MSC_VER)
2721 # include <intrin.h>
2722 #endif
2723
2724 /*
2725 * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
2726 * remaining a true 64-bit/128-bit hash function.
2727 *
2728 * This is done by prioritizing a subset of 64-bit operations that can be
2729 * emulated without too many steps on the average 32-bit machine.
2730 *
2731 * For example, these two lines seem similar, and run equally fast on 64-bit:
2732 *
2733 * xxh_u64 x;
2734 * x ^= (x >> 47); // good
2735 * x ^= (x >> 13); // bad
2736 *
2737 * However, to a 32-bit machine, there is a major difference.
2738 *
2739 * x ^= (x >> 47) looks like this:
2740 *
2741 * x.lo ^= (x.hi >> (47 - 32));
2742 *
2743 * while x ^= (x >> 13) looks like this:
2744 *
2745 * // note: funnel shifts are not usually cheap.
2746 * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
2747 * x.hi ^= (x.hi >> 13);
2748 *
2749 * The first one is significantly faster than the second, simply because the
2750 * shift is larger than 32. This means:
2751 * - All the bits we need are in the upper 32 bits, so we can ignore the lower
2752 * 32 bits in the shift.
2753 * - The shift result will always fit in the lower 32 bits, and therefore,
2754 * we can ignore the upper 32 bits in the xor.
2755 *
2756 * Thanks to this optimization, XXH3 only requires these features to be efficient:
2757 *
2758 * - Usable unaligned access
2759 * - A 32-bit or 64-bit ALU
2760 * - If 32-bit, a decent ADC instruction
2761 * - A 32 or 64-bit multiply with a 64-bit result
2762 * - For the 128-bit variant, a decent byteswap helps short inputs.
2763 *
2764 * The first two are already required by XXH32, and almost all 32-bit and 64-bit
2765 * platforms which can run XXH32 can run XXH3 efficiently.
2766 *
2767 * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
2768 * notable exception.
2769 *
2770 * First of all, Thumb-1 lacks support for the UMULL instruction which
2771 * performs the important long multiply. This means numerous __aeabi_lmul
2772 * calls.
2773 *
2774 * Second of all, the 8 functional registers are just not enough.
2775 * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
2776 * Lo registers, and this shuffling results in thousands more MOVs than A32.
2777 *
2778 * A32 and T32 don't have this limitation. They can access all 14 registers,
2779 * do a 32->64 multiply with UMULL, and the flexible operand allowing free
2780 * shifts is helpful, too.
2781 *
2782 * Therefore, we do a quick sanity check.
2783 *
2784 * If compiling Thumb-1 for a target which supports ARM instructions, we will
2785 * emit a warning, as it is not a "sane" platform to compile for.
2786 *
2787 * Usually, if this happens, it is because of an accident and you probably need
2788 * to specify -march, as you likely meant to compile for a newer architecture.
2789 *
2790 * Credit: large sections of the vectorial and asm source code paths
2791 * have been contributed by @easyaspi314
2792 */
2793 #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
2794 # warning "XXH3 is highly inefficient without ARM or Thumb-2."
2795 #endif
2796
2797 /* ==========================================
2798 * Vectorization detection
2799 * ========================================== */
2800
2801 #ifdef XXH_DOXYGEN
2802 /*!
2803 * @ingroup tuning
2804 * @brief Overrides the vectorization implementation chosen for XXH3.
2805 *
2806 * Can be defined to 0 to disable SIMD or any of the values mentioned in
2807 * @ref XXH_VECTOR_TYPE.
2808 *
2809 * If this is not defined, it uses predefined macros to determine the best
2810 * implementation.
2811 */
2812 # define XXH_VECTOR XXH_SCALAR
2813 /*!
2814 * @ingroup tuning
2815 * @brief Possible values for @ref XXH_VECTOR.
2816 *
2817 * Note that these are actually implemented as macros.
2818 *
2819 * If this is not defined, it is detected automatically.
2820 * @ref XXH_X86DISPATCH overrides this.
2821 */
2822 enum XXH_VECTOR_TYPE /* fake enum */ {
2823 XXH_SCALAR = 0, /*!< Portable scalar version */
2824 XXH_SSE2 = 1, /*!<
2825 * SSE2 for Pentium 4, Opteron, all x86_64.
2826 *
2827 * @note SSE2 is also guaranteed on Windows 10, macOS, and
2828 * Android x86.
2829 */
2830 XXH_AVX2 = 2, /*!< AVX2 for Haswell and Bulldozer */
2831 XXH_AVX512 = 3, /*!< AVX512 for Skylake and Icelake */
2832 XXH_NEON = 4, /*!< NEON for most ARMv7-A and all AArch64 */
2833 XXH_VSX = 5, /*!< VSX and ZVector for POWER8/z13 (64-bit) */
2834 };
2835 /*!
2836 * @ingroup tuning
2837 * @brief Selects the minimum alignment for XXH3's accumulators.
2838 *
2839 * When using SIMD, this should match the alignment reqired for said vector
2840 * type, so, for example, 32 for AVX2.
2841 *
2842 * Default: Auto detected.
2843 */
2844 # define XXH_ACC_ALIGN 8
2845 #endif
2846
2847 /* Actual definition */
2848 #ifndef XXH_DOXYGEN
2849 # define XXH_SCALAR 0
2850 # define XXH_SSE2 1
2851 # define XXH_AVX2 2
2852 # define XXH_AVX512 3
2853 # define XXH_NEON 4
2854 # define XXH_VSX 5
2855 #endif
2856
2857 #ifndef XXH_VECTOR /* can be defined on command line */
2858 # if defined(__AVX512F__)
2859 # define XXH_VECTOR XXH_AVX512
2860 # elif defined(__AVX2__)
2861 # define XXH_VECTOR XXH_AVX2
2862 # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
2863 # define XXH_VECTOR XXH_SSE2
2864 # elif ( \
2865 defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
2866 || defined(_M_ARM64) || defined(_M_ARM_ARMV7VE) /* msvc */ \
2867 ) && ( \
2868 defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
2869 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
2870 )
2871 # define XXH_VECTOR XXH_NEON
2872 # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
2873 || (defined(__s390x__) && defined(__VEC__)) \
2874 && defined(__GNUC__) /* TODO: IBM XL */
2875 # define XXH_VECTOR XXH_VSX
2876 # else
2877 # define XXH_VECTOR XXH_SCALAR
2878 # endif
2879 #endif
2880
2881 /*
2882 * Controls the alignment of the accumulator,
2883 * for compatibility with aligned vector loads, which are usually faster.
2884 */
2885 #ifndef XXH_ACC_ALIGN
2886 # if defined(XXH_X86DISPATCH)
2887 # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */
2888 # elif XXH_VECTOR == XXH_SCALAR /* scalar */
2889 # define XXH_ACC_ALIGN 8
2890 # elif XXH_VECTOR == XXH_SSE2 /* sse2 */
2891 # define XXH_ACC_ALIGN 16
2892 # elif XXH_VECTOR == XXH_AVX2 /* avx2 */
2893 # define XXH_ACC_ALIGN 32
2894 # elif XXH_VECTOR == XXH_NEON /* neon */
2895 # define XXH_ACC_ALIGN 16
2896 # elif XXH_VECTOR == XXH_VSX /* vsx */
2897 # define XXH_ACC_ALIGN 16
2898 # elif XXH_VECTOR == XXH_AVX512 /* avx512 */
2899 # define XXH_ACC_ALIGN 64
2900 # endif
2901 #endif
2902
2903 #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
2904 || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
2905 # define XXH_SEC_ALIGN XXH_ACC_ALIGN
2906 #else
2907 # define XXH_SEC_ALIGN 8
2908 #endif
2909
2910 /*
2911 * UGLY HACK:
2912 * GCC usually generates the best code with -O3 for xxHash.
2913 *
2914 * However, when targeting AVX2, it is overzealous in its unrolling resulting
2915 * in code roughly 3/4 the speed of Clang.
2916 *
2917 * There are other issues, such as GCC splitting _mm256_loadu_si256 into
2918 * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
2919 * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
2920 *
2921 * That is why when compiling the AVX2 version, it is recommended to use either
2922 * -O2 -mavx2 -march=haswell
2923 * or
2924 * -O2 -mavx2 -mno-avx256-split-unaligned-load
2925 * for decent performance, or to use Clang instead.
2926 *
2927 * Fortunately, we can control the first one with a pragma that forces GCC into
2928 * -O2, but the other one we can't control without "failed to inline always
2929 * inline function due to target mismatch" warnings.
2930 */
2931 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
2932 && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
2933 && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
2934 # pragma GCC push_options
2935 # pragma GCC optimize("-O2")
2936 #endif
2937
2938
2939 #if XXH_VECTOR == XXH_NEON
2940 /*
2941 * NEON's setup for vmlal_u32 is a little more complicated than it is on
2942 * SSE2, AVX2, and VSX.
2943 *
2944 * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
2945 *
2946 * To do the same operation, the 128-bit 'Q' register needs to be split into
2947 * two 64-bit 'D' registers, performing this operation::
2948 *
2949 * [ a | b ]
2950 * | '---------. .--------' |
2951 * | x |
2952 * | .---------' '--------. |
2953 * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ]
2954 *
2955 * Due to significant changes in aarch64, the fastest method for aarch64 is
2956 * completely different than the fastest method for ARMv7-A.
2957 *
2958 * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
2959 * D11 will modify the high half of Q5. This is similar to how modifying AH
2960 * will only affect bits 8-15 of AX on x86.
2961 *
2962 * VZIP takes two registers, and puts even lanes in one register and odd lanes
2963 * in the other.
2964 *
2965 * On ARMv7-A, this strangely modifies both parameters in place instead of
2966 * taking the usual 3-operand form.
2967 *
2968 * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
2969 * lower and upper halves of the Q register to end up with the high and low
2970 * halves where we want - all in one instruction.
2971 *
2972 * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
2973 *
2974 * Unfortunately we need inline assembly for this: Instructions modifying two
2975 * registers at once is not possible in GCC or Clang's IR, and they have to
2976 * create a copy.
2977 *
2978 * aarch64 requires a different approach.
2979 *
2980 * In order to make it easier to write a decent compiler for aarch64, many
2981 * quirks were removed, such as conditional execution.
2982 *
2983 * NEON was also affected by this.
2984 *
2985 * aarch64 cannot access the high bits of a Q-form register, and writes to a
2986 * D-form register zero the high bits, similar to how writes to W-form scalar
2987 * registers (or DWORD registers on x86_64) work.
2988 *
2989 * The formerly free vget_high intrinsics now require a vext (with a few
2990 * exceptions)
2991 *
2992 * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
2993 * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
2994 * operand.
2995 *
2996 * The equivalent of the VZIP.32 on the lower and upper halves would be this
2997 * mess:
2998 *
2999 * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
3000 * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] }
3001 * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] }
3002 *
3003 * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
3004 *
3005 * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32);
3006 * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
3007 *
3008 * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
3009 */
3010
3011 /*!
3012 * Function-like macro:
3013 * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
3014 * {
3015 * outLo = (uint32x2_t)(in & 0xFFFFFFFF);
3016 * outHi = (uint32x2_t)(in >> 32);
3017 * in = UNDEFINED;
3018 * }
3019 */
3020 # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
3021 && defined(__GNUC__) \
3022 && !defined(__aarch64__) && !defined(__arm64__) && !defined(_M_ARM64)
3023 # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3024 do { \
3025 /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
3026 /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \
3027 /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
3028 __asm__("vzip.32 %e0, %f0" : "+w" (in)); \
3029 (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \
3030 (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \
3031 } while (0)
3032 # else
3033 # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \
3034 do { \
3035 (outLo) = vmovn_u64 (in); \
3036 (outHi) = vshrn_n_u64 ((in), 32); \
3037 } while (0)
3038 # endif
3039 #endif /* XXH_VECTOR == XXH_NEON */
3040
3041 /*
3042 * VSX and Z Vector helpers.
3043 *
3044 * This is very messy, and any pull requests to clean this up are welcome.
3045 *
3046 * There are a lot of problems with supporting VSX and s390x, due to
3047 * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
3048 */
3049 #if XXH_VECTOR == XXH_VSX
3050 # if defined(__s390x__)
3051 # include <s390intrin.h>
3052 # else
3053 /* gcc's altivec.h can have the unwanted consequence to unconditionally
3054 * #define bool, vector, and pixel keywords,
3055 * with bad consequences for programs already using these keywords for other purposes.
3056 * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
3057 * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
3058 * but it seems that, in some cases, it isn't.
3059 * Force the build macro to be defined, so that keywords are not altered.
3060 */
3061 # if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
3062 # define __APPLE_ALTIVEC__
3063 # endif
3064 # include <altivec.h>
3065 # endif
3066
3067 typedef __vector unsigned long long xxh_u64x2;
3068 typedef __vector unsigned char xxh_u8x16;
3069 typedef __vector unsigned xxh_u32x4;
3070
3071 # ifndef XXH_VSX_BE
3072 # if defined(__BIG_ENDIAN__) \
3073 || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
3074 # define XXH_VSX_BE 1
3075 # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
3076 # warning "-maltivec=be is not recommended. Please use native endianness."
3077 # define XXH_VSX_BE 1
3078 # else
3079 # define XXH_VSX_BE 0
3080 # endif
3081 # endif /* !defined(XXH_VSX_BE) */
3082
3083 # if XXH_VSX_BE
3084 # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
3085 # define XXH_vec_revb vec_revb
3086 # else
3087 /*!
3088 * A polyfill for POWER9's vec_revb().
3089 */
XXH_vec_revb(xxh_u64x2 val)3090 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
3091 {
3092 xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
3093 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
3094 return vec_perm(val, val, vByteSwap);
3095 }
3096 # endif
3097 # endif /* XXH_VSX_BE */
3098
3099 /*!
3100 * Performs an unaligned vector load and byte swaps it on big endian.
3101 */
XXH_vec_loadu(const void * ptr)3102 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
3103 {
3104 xxh_u64x2 ret;
3105 XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
3106 # if XXH_VSX_BE
3107 ret = XXH_vec_revb(ret);
3108 # endif
3109 return ret;
3110 }
3111
3112 /*
3113 * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
3114 *
3115 * These intrinsics weren't added until GCC 8, despite existing for a while,
3116 * and they are endian dependent. Also, their meaning swap depending on version.
3117 * */
3118 # if defined(__s390x__)
3119 /* s390x is always big endian, no issue on this platform */
3120 # define XXH_vec_mulo vec_mulo
3121 # define XXH_vec_mule vec_mule
3122 # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
3123 /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
3124 # define XXH_vec_mulo __builtin_altivec_vmulouw
3125 # define XXH_vec_mule __builtin_altivec_vmuleuw
3126 # else
3127 /* gcc needs inline assembly */
3128 /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_vec_mulo(xxh_u32x4 a,xxh_u32x4 b)3129 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
3130 {
3131 xxh_u64x2 result;
3132 __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3133 return result;
3134 }
XXH_vec_mule(xxh_u32x4 a,xxh_u32x4 b)3135 XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
3136 {
3137 xxh_u64x2 result;
3138 __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
3139 return result;
3140 }
3141 # endif /* XXH_vec_mulo, XXH_vec_mule */
3142 #endif /* XXH_VECTOR == XXH_VSX */
3143
3144
3145 /* prefetch
3146 * can be disabled, by declaring XXH_NO_PREFETCH build macro */
3147 #if defined(XXH_NO_PREFETCH)
3148 # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3149 #else
3150 # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) /* _mm_prefetch() not defined outside of x86/x64 */
3151 # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
3152 # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
3153 # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
3154 # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
3155 # else
3156 # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */
3157 # endif
3158 #endif /* XXH_NO_PREFETCH */
3159
3160
3161 /* ==========================================
3162 * XXH3 default settings
3163 * ========================================== */
3164
3165 #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
3166
3167 #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
3168 # error "default keyset is not large enough"
3169 #endif
3170
3171 /*! Pseudorandom secret taken directly from FARSH. */
3172 XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
3173 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
3174 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
3175 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
3176 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
3177 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
3178 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
3179 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
3180 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
3181 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
3182 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
3183 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
3184 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
3185 };
3186
3187
3188 #ifdef XXH_OLD_NAMES
3189 # define kSecret XXH3_kSecret
3190 #endif
3191
3192 #ifdef XXH_DOXYGEN
3193 /*!
3194 * @brief Calculates a 32-bit to 64-bit long multiply.
3195 *
3196 * Implemented as a macro.
3197 *
3198 * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
3199 * need to (but it shouldn't need to anyways, it is about 7 instructions to do
3200 * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
3201 * use that instead of the normal method.
3202 *
3203 * If you are compiling for platforms like Thumb-1 and don't have a better option,
3204 * you may also want to write your own long multiply routine here.
3205 *
3206 * @param x, y Numbers to be multiplied
3207 * @return 64-bit product of the low 32 bits of @p x and @p y.
3208 */
3209 XXH_FORCE_INLINE xxh_u64
XXH_mult32to64(xxh_u64 x,xxh_u64 y)3210 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
3211 {
3212 return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
3213 }
3214 #elif defined(_MSC_VER) && defined(_M_IX86)
3215 # include <intrin.h>
3216 # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
3217 #else
3218 /*
3219 * Downcast + upcast is usually better than masking on older compilers like
3220 * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
3221 *
3222 * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
3223 * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
3224 */
3225 # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
3226 #endif
3227
3228 /*!
3229 * @brief Calculates a 64->128-bit long multiply.
3230 *
3231 * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
3232 * version.
3233 *
3234 * @param lhs , rhs The 64-bit integers to be multiplied
3235 * @return The 128-bit result represented in an @ref XXH128_hash_t.
3236 */
3237 static XXH128_hash_t
XXH_mult64to128(xxh_u64 lhs,xxh_u64 rhs)3238 XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
3239 {
3240 /*
3241 * GCC/Clang __uint128_t method.
3242 *
3243 * On most 64-bit targets, GCC and Clang define a __uint128_t type.
3244 * This is usually the best way as it usually uses a native long 64-bit
3245 * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
3246 *
3247 * Usually.
3248 *
3249 * Despite being a 32-bit platform, Clang (and emscripten) define this type
3250 * despite not having the arithmetic for it. This results in a laggy
3251 * compiler builtin call which calculates a full 128-bit multiply.
3252 * In that case it is best to use the portable one.
3253 * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
3254 */
3255 #if defined(__GNUC__) && !defined(__wasm__) \
3256 && defined(__SIZEOF_INT128__) \
3257 || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
3258
3259 __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
3260 XXH128_hash_t r128;
3261 r128.low64 = (xxh_u64)(product);
3262 r128.high64 = (xxh_u64)(product >> 64);
3263 return r128;
3264
3265 /*
3266 * MSVC for x64's _umul128 method.
3267 *
3268 * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
3269 *
3270 * This compiles to single operand MUL on x64.
3271 */
3272 #elif defined(_M_X64) || defined(_M_IA64)
3273
3274 #ifndef _MSC_VER
3275 # pragma intrinsic(_umul128)
3276 #endif
3277 xxh_u64 product_high;
3278 xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
3279 XXH128_hash_t r128;
3280 r128.low64 = product_low;
3281 r128.high64 = product_high;
3282 return r128;
3283
3284 /*
3285 * MSVC for ARM64's __umulh method.
3286 *
3287 * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
3288 */
3289 #elif defined(_M_ARM64)
3290
3291 #ifndef _MSC_VER
3292 # pragma intrinsic(__umulh)
3293 #endif
3294 XXH128_hash_t r128;
3295 r128.low64 = lhs * rhs;
3296 r128.high64 = __umulh(lhs, rhs);
3297 return r128;
3298
3299 #else
3300 /*
3301 * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
3302 *
3303 * This is a fast and simple grade school multiply, which is shown below
3304 * with base 10 arithmetic instead of base 0x100000000.
3305 *
3306 * 9 3 // D2 lhs = 93
3307 * x 7 5 // D2 rhs = 75
3308 * ----------
3309 * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
3310 * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
3311 * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
3312 * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
3313 * ---------
3314 * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
3315 * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
3316 * ---------
3317 * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
3318 *
3319 * The reasons for adding the products like this are:
3320 * 1. It avoids manual carry tracking. Just like how
3321 * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
3322 * This avoids a lot of complexity.
3323 *
3324 * 2. It hints for, and on Clang, compiles to, the powerful UMAAL
3325 * instruction available in ARM's Digital Signal Processing extension
3326 * in 32-bit ARMv6 and later, which is shown below:
3327 *
3328 * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
3329 * {
3330 * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
3331 * *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
3332 * *RdHi = (xxh_u32)(product >> 32);
3333 * }
3334 *
3335 * This instruction was designed for efficient long multiplication, and
3336 * allows this to be calculated in only 4 instructions at speeds
3337 * comparable to some 64-bit ALUs.
3338 *
3339 * 3. It isn't terrible on other platforms. Usually this will be a couple
3340 * of 32-bit ADD/ADCs.
3341 */
3342
3343 /* First calculate all of the cross products. */
3344 xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
3345 xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
3346 xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
3347 xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
3348
3349 /* Now add the products together. These will never overflow. */
3350 xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
3351 xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
3352 xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
3353
3354 XXH128_hash_t r128;
3355 r128.low64 = lower;
3356 r128.high64 = upper;
3357 return r128;
3358 #endif
3359 }
3360
3361 /*!
3362 * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
3363 *
3364 * The reason for the separate function is to prevent passing too many structs
3365 * around by value. This will hopefully inline the multiply, but we don't force it.
3366 *
3367 * @param lhs , rhs The 64-bit integers to multiply
3368 * @return The low 64 bits of the product XOR'd by the high 64 bits.
3369 * @see XXH_mult64to128()
3370 */
3371 static xxh_u64
XXH3_mul128_fold64(xxh_u64 lhs,xxh_u64 rhs)3372 XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
3373 {
3374 XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
3375 return product.low64 ^ product.high64;
3376 }
3377
3378 /*! Seems to produce slightly better code on GCC for some reason. */
XXH_xorshift64(xxh_u64 v64,int shift)3379 XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
3380 {
3381 XXH_ASSERT(0 <= shift && shift < 64);
3382 return v64 ^ (v64 >> shift);
3383 }
3384
3385 /*
3386 * This is a fast avalanche stage,
3387 * suitable when input bits are already partially mixed
3388 */
XXH3_avalanche(xxh_u64 h64)3389 static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
3390 {
3391 h64 = XXH_xorshift64(h64, 37);
3392 h64 *= 0x165667919E3779F9ULL;
3393 h64 = XXH_xorshift64(h64, 32);
3394 return h64;
3395 }
3396
3397 /*
3398 * This is a stronger avalanche,
3399 * inspired by Pelle Evensen's rrmxmx
3400 * preferable when input has not been previously mixed
3401 */
XXH3_rrmxmx(xxh_u64 h64,xxh_u64 len)3402 static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
3403 {
3404 /* this mix is inspired by Pelle Evensen's rrmxmx */
3405 h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
3406 h64 *= 0x9FB21C651E98DF25ULL;
3407 h64 ^= (h64 >> 35) + len ;
3408 h64 *= 0x9FB21C651E98DF25ULL;
3409 return XXH_xorshift64(h64, 28);
3410 }
3411
3412
3413 /* ==========================================
3414 * Short keys
3415 * ==========================================
3416 * One of the shortcomings of XXH32 and XXH64 was that their performance was
3417 * sub-optimal on short lengths. It used an iterative algorithm which strongly
3418 * favored lengths that were a multiple of 4 or 8.
3419 *
3420 * Instead of iterating over individual inputs, we use a set of single shot
3421 * functions which piece together a range of lengths and operate in constant time.
3422 *
3423 * Additionally, the number of multiplies has been significantly reduced. This
3424 * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
3425 *
3426 * Depending on the platform, this may or may not be faster than XXH32, but it
3427 * is almost guaranteed to be faster than XXH64.
3428 */
3429
3430 /*
3431 * At very short lengths, there isn't enough input to fully hide secrets, or use
3432 * the entire secret.
3433 *
3434 * There is also only a limited amount of mixing we can do before significantly
3435 * impacting performance.
3436 *
3437 * Therefore, we use different sections of the secret and always mix two secret
3438 * samples with an XOR. This should have no effect on performance on the
3439 * seedless or withSeed variants because everything _should_ be constant folded
3440 * by modern compilers.
3441 *
3442 * The XOR mixing hides individual parts of the secret and increases entropy.
3443 *
3444 * This adds an extra layer of strength for custom secrets.
3445 */
3446 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_1to3_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3447 XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3448 {
3449 XXH_ASSERT(input != NULL);
3450 XXH_ASSERT(1 <= len && len <= 3);
3451 XXH_ASSERT(secret != NULL);
3452 /*
3453 * len = 1: combined = { input[0], 0x01, input[0], input[0] }
3454 * len = 2: combined = { input[1], 0x02, input[0], input[1] }
3455 * len = 3: combined = { input[2], 0x03, input[0], input[1] }
3456 */
3457 { xxh_u8 const c1 = input[0];
3458 xxh_u8 const c2 = input[len >> 1];
3459 xxh_u8 const c3 = input[len - 1];
3460 xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24)
3461 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
3462 xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
3463 xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
3464 return XXH64_avalanche(keyed);
3465 }
3466 }
3467
3468 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_4to8_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3469 XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3470 {
3471 XXH_ASSERT(input != NULL);
3472 XXH_ASSERT(secret != NULL);
3473 XXH_ASSERT(4 <= len && len <= 8);
3474 seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
3475 { xxh_u32 const input1 = XXH_readLE32(input);
3476 xxh_u32 const input2 = XXH_readLE32(input + len - 4);
3477 xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
3478 xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
3479 xxh_u64 const keyed = input64 ^ bitflip;
3480 return XXH3_rrmxmx(keyed, len);
3481 }
3482 }
3483
3484 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_9to16_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3485 XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3486 {
3487 XXH_ASSERT(input != NULL);
3488 XXH_ASSERT(secret != NULL);
3489 XXH_ASSERT(9 <= len && len <= 16);
3490 { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
3491 xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
3492 xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1;
3493 xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
3494 xxh_u64 const acc = len
3495 + XXH_swap64(input_lo) + input_hi
3496 + XXH3_mul128_fold64(input_lo, input_hi);
3497 return XXH3_avalanche(acc);
3498 }
3499 }
3500
3501 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_0to16_64b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)3502 XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
3503 {
3504 XXH_ASSERT(len <= 16);
3505 { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed);
3506 if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
3507 if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
3508 return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
3509 }
3510 }
3511
3512 /*
3513 * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
3514 * multiplication by zero, affecting hashes of lengths 17 to 240.
3515 *
3516 * However, they are very unlikely.
3517 *
3518 * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
3519 * unseeded non-cryptographic hashes, it does not attempt to defend itself
3520 * against specially crafted inputs, only random inputs.
3521 *
3522 * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
3523 * cancelling out the secret is taken an arbitrary number of times (addressed
3524 * in XXH3_accumulate_512), this collision is very unlikely with random inputs
3525 * and/or proper seeding:
3526 *
3527 * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
3528 * function that is only called up to 16 times per hash with up to 240 bytes of
3529 * input.
3530 *
3531 * This is not too bad for a non-cryptographic hash function, especially with
3532 * only 64 bit outputs.
3533 *
3534 * The 128-bit variant (which trades some speed for strength) is NOT affected
3535 * by this, although it is always a good idea to use a proper seed if you care
3536 * about strength.
3537 */
XXH3_mix16B(const xxh_u8 * XXH_RESTRICT input,const xxh_u8 * XXH_RESTRICT secret,xxh_u64 seed64)3538 XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
3539 const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
3540 {
3541 #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
3542 && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \
3543 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */
3544 /*
3545 * UGLY HACK:
3546 * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
3547 * slower code.
3548 *
3549 * By forcing seed64 into a register, we disrupt the cost model and
3550 * cause it to scalarize. See `XXH32_round()`
3551 *
3552 * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
3553 * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
3554 * GCC 9.2, despite both emitting scalar code.
3555 *
3556 * GCC generates much better scalar code than Clang for the rest of XXH3,
3557 * which is why finding a more optimal codepath is an interest.
3558 */
3559 XXH_COMPILER_GUARD(seed64);
3560 #endif
3561 { xxh_u64 const input_lo = XXH_readLE64(input);
3562 xxh_u64 const input_hi = XXH_readLE64(input+8);
3563 return XXH3_mul128_fold64(
3564 input_lo ^ (XXH_readLE64(secret) + seed64),
3565 input_hi ^ (XXH_readLE64(secret+8) - seed64)
3566 );
3567 }
3568 }
3569
3570 /* For mid range keys, XXH3 uses a Mum-hash variant. */
3571 XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_17to128_64b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)3572 XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3573 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3574 XXH64_hash_t seed)
3575 {
3576 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3577 XXH_ASSERT(16 < len && len <= 128);
3578
3579 { xxh_u64 acc = len * XXH_PRIME64_1;
3580 if (len > 32) {
3581 if (len > 64) {
3582 if (len > 96) {
3583 acc += XXH3_mix16B(input+48, secret+96, seed);
3584 acc += XXH3_mix16B(input+len-64, secret+112, seed);
3585 }
3586 acc += XXH3_mix16B(input+32, secret+64, seed);
3587 acc += XXH3_mix16B(input+len-48, secret+80, seed);
3588 }
3589 acc += XXH3_mix16B(input+16, secret+32, seed);
3590 acc += XXH3_mix16B(input+len-32, secret+48, seed);
3591 }
3592 acc += XXH3_mix16B(input+0, secret+0, seed);
3593 acc += XXH3_mix16B(input+len-16, secret+16, seed);
3594
3595 return XXH3_avalanche(acc);
3596 }
3597 }
3598
3599 #define XXH3_MIDSIZE_MAX 240
3600
3601 XXH_NO_INLINE XXH64_hash_t
XXH3_len_129to240_64b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)3602 XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
3603 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
3604 XXH64_hash_t seed)
3605 {
3606 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
3607 XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
3608
3609 #define XXH3_MIDSIZE_STARTOFFSET 3
3610 #define XXH3_MIDSIZE_LASTOFFSET 17
3611
3612 { xxh_u64 acc = len * XXH_PRIME64_1;
3613 int const nbRounds = (int)len / 16;
3614 int i;
3615 for (i=0; i<8; i++) {
3616 acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
3617 }
3618 acc = XXH3_avalanche(acc);
3619 XXH_ASSERT(nbRounds >= 8);
3620 #if defined(__clang__) /* Clang */ \
3621 && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
3622 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
3623 /*
3624 * UGLY HACK:
3625 * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
3626 * In everywhere else, it uses scalar code.
3627 *
3628 * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
3629 * would still be slower than UMAAL (see XXH_mult64to128).
3630 *
3631 * Unfortunately, Clang doesn't handle the long multiplies properly and
3632 * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
3633 * scalarized into an ugly mess of VMOV.32 instructions.
3634 *
3635 * This mess is difficult to avoid without turning autovectorization
3636 * off completely, but they are usually relatively minor and/or not
3637 * worth it to fix.
3638 *
3639 * This loop is the easiest to fix, as unlike XXH32, this pragma
3640 * _actually works_ because it is a loop vectorization instead of an
3641 * SLP vectorization.
3642 */
3643 #pragma clang loop vectorize(disable)
3644 #endif
3645 for (i=8 ; i < nbRounds; i++) {
3646 acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
3647 }
3648 /* last bytes */
3649 acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
3650 return XXH3_avalanche(acc);
3651 }
3652 }
3653
3654
3655 /* ======= Long Keys ======= */
3656
3657 #define XXH_STRIPE_LEN 64
3658 #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
3659 #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
3660
3661 #ifdef XXH_OLD_NAMES
3662 # define STRIPE_LEN XXH_STRIPE_LEN
3663 # define ACC_NB XXH_ACC_NB
3664 #endif
3665
XXH_writeLE64(void * dst,xxh_u64 v64)3666 XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
3667 {
3668 if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
3669 XXH_memcpy(dst, &v64, sizeof(v64));
3670 }
3671
3672 /* Several intrinsic functions below are supposed to accept __int64 as argument,
3673 * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
3674 * However, several environments do not define __int64 type,
3675 * requiring a workaround.
3676 */
3677 #if !defined (__VMS) \
3678 && (defined (__cplusplus) \
3679 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
3680 typedef int64_t xxh_i64;
3681 #else
3682 /* the following type must have a width of 64-bit */
3683 typedef long long xxh_i64;
3684 #endif
3685
3686 /*
3687 * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
3688 *
3689 * It is a hardened version of UMAC, based off of FARSH's implementation.
3690 *
3691 * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
3692 * implementations, and it is ridiculously fast.
3693 *
3694 * We harden it by mixing the original input to the accumulators as well as the product.
3695 *
3696 * This means that in the (relatively likely) case of a multiply by zero, the
3697 * original input is preserved.
3698 *
3699 * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
3700 * cross-pollination, as otherwise the upper and lower halves would be
3701 * essentially independent.
3702 *
3703 * This doesn't matter on 64-bit hashes since they all get merged together in
3704 * the end, so we skip the extra step.
3705 *
3706 * Both XXH3_64bits and XXH3_128bits use this subroutine.
3707 */
3708
3709 #if (XXH_VECTOR == XXH_AVX512) \
3710 || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
3711
3712 #ifndef XXH_TARGET_AVX512
3713 # define XXH_TARGET_AVX512 /* disable attribute target */
3714 #endif
3715
3716 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_accumulate_512_avx512(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3717 XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
3718 const void* XXH_RESTRICT input,
3719 const void* XXH_RESTRICT secret)
3720 {
3721 __m512i* const xacc = (__m512i *) acc;
3722 XXH_ASSERT((((size_t)acc) & 63) == 0);
3723 XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3724
3725 {
3726 /* data_vec = input[0]; */
3727 __m512i const data_vec = _mm512_loadu_si512 (input);
3728 /* key_vec = secret[0]; */
3729 __m512i const key_vec = _mm512_loadu_si512 (secret);
3730 /* data_key = data_vec ^ key_vec; */
3731 __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3732 /* data_key_lo = data_key >> 32; */
3733 __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3734 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3735 __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo);
3736 /* xacc[0] += swap(data_vec); */
3737 __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
3738 __m512i const sum = _mm512_add_epi64(*xacc, data_swap);
3739 /* xacc[0] += product; */
3740 *xacc = _mm512_add_epi64(product, sum);
3741 }
3742 }
3743
3744 /*
3745 * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
3746 *
3747 * Multiplication isn't perfect, as explained by Google in HighwayHash:
3748 *
3749 * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
3750 * // varying degrees. In descending order of goodness, bytes
3751 * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
3752 * // As expected, the upper and lower bytes are much worse.
3753 *
3754 * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
3755 *
3756 * Since our algorithm uses a pseudorandom secret to add some variance into the
3757 * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
3758 *
3759 * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
3760 * extraction.
3761 *
3762 * Both XXH3_64bits and XXH3_128bits use this subroutine.
3763 */
3764
3765 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_scrambleAcc_avx512(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3766 XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3767 {
3768 XXH_ASSERT((((size_t)acc) & 63) == 0);
3769 XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
3770 { __m512i* const xacc = (__m512i*) acc;
3771 const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
3772
3773 /* xacc[0] ^= (xacc[0] >> 47) */
3774 __m512i const acc_vec = *xacc;
3775 __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47);
3776 __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted);
3777 /* xacc[0] ^= secret; */
3778 __m512i const key_vec = _mm512_loadu_si512 (secret);
3779 __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec);
3780
3781 /* xacc[0] *= XXH_PRIME32_1; */
3782 __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
3783 __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32);
3784 __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32);
3785 *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
3786 }
3787 }
3788
3789 XXH_FORCE_INLINE XXH_TARGET_AVX512 void
XXH3_initCustomSecret_avx512(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3790 XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3791 {
3792 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
3793 XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
3794 XXH_ASSERT(((size_t)customSecret & 63) == 0);
3795 (void)(&XXH_writeLE64);
3796 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
3797 __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
3798
3799 const __m512i* const src = (const __m512i*) ((const void*) XXH3_kSecret);
3800 __m512i* const dest = ( __m512i*) customSecret;
3801 int i;
3802 XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
3803 XXH_ASSERT(((size_t)dest & 63) == 0);
3804 for (i=0; i < nbRounds; ++i) {
3805 /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
3806 * this will warn "discards 'const' qualifier". */
3807 union {
3808 const __m512i* cp;
3809 void* p;
3810 } remote_const_void;
3811 remote_const_void.cp = src + i;
3812 dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
3813 } }
3814 }
3815
3816 #endif
3817
3818 #if (XXH_VECTOR == XXH_AVX2) \
3819 || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
3820
3821 #ifndef XXH_TARGET_AVX2
3822 # define XXH_TARGET_AVX2 /* disable attribute target */
3823 #endif
3824
3825 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_accumulate_512_avx2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3826 XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
3827 const void* XXH_RESTRICT input,
3828 const void* XXH_RESTRICT secret)
3829 {
3830 XXH_ASSERT((((size_t)acc) & 31) == 0);
3831 { __m256i* const xacc = (__m256i *) acc;
3832 /* Unaligned. This is mainly for pointer arithmetic, and because
3833 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3834 const __m256i* const xinput = (const __m256i *) input;
3835 /* Unaligned. This is mainly for pointer arithmetic, and because
3836 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3837 const __m256i* const xsecret = (const __m256i *) secret;
3838
3839 size_t i;
3840 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3841 /* data_vec = xinput[i]; */
3842 __m256i const data_vec = _mm256_loadu_si256 (xinput+i);
3843 /* key_vec = xsecret[i]; */
3844 __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3845 /* data_key = data_vec ^ key_vec; */
3846 __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3847 /* data_key_lo = data_key >> 32; */
3848 __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3849 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3850 __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo);
3851 /* xacc[i] += swap(data_vec); */
3852 __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
3853 __m256i const sum = _mm256_add_epi64(xacc[i], data_swap);
3854 /* xacc[i] += product; */
3855 xacc[i] = _mm256_add_epi64(product, sum);
3856 } }
3857 }
3858
3859 XXH_FORCE_INLINE XXH_TARGET_AVX2 void
XXH3_scrambleAcc_avx2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3860 XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3861 {
3862 XXH_ASSERT((((size_t)acc) & 31) == 0);
3863 { __m256i* const xacc = (__m256i*) acc;
3864 /* Unaligned. This is mainly for pointer arithmetic, and because
3865 * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
3866 const __m256i* const xsecret = (const __m256i *) secret;
3867 const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
3868
3869 size_t i;
3870 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
3871 /* xacc[i] ^= (xacc[i] >> 47) */
3872 __m256i const acc_vec = xacc[i];
3873 __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47);
3874 __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted);
3875 /* xacc[i] ^= xsecret; */
3876 __m256i const key_vec = _mm256_loadu_si256 (xsecret+i);
3877 __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec);
3878
3879 /* xacc[i] *= XXH_PRIME32_1; */
3880 __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3881 __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32);
3882 __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32);
3883 xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
3884 }
3885 }
3886 }
3887
XXH3_initCustomSecret_avx2(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3888 XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3889 {
3890 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
3891 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
3892 XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
3893 (void)(&XXH_writeLE64);
3894 XXH_PREFETCH(customSecret);
3895 { __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
3896
3897 const __m256i* const src = (const __m256i*) ((const void*) XXH3_kSecret);
3898 __m256i* dest = ( __m256i*) customSecret;
3899
3900 # if defined(__GNUC__) || defined(__clang__)
3901 /*
3902 * On GCC & Clang, marking 'dest' as modified will cause the compiler:
3903 * - do not extract the secret from sse registers in the internal loop
3904 * - use less common registers, and avoid pushing these reg into stack
3905 */
3906 XXH_COMPILER_GUARD(dest);
3907 # endif
3908 XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
3909 XXH_ASSERT(((size_t)dest & 31) == 0);
3910
3911 /* GCC -O2 need unroll loop manually */
3912 dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
3913 dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
3914 dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
3915 dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
3916 dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
3917 dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
3918 }
3919 }
3920
3921 #endif
3922
3923 /* x86dispatch always generates SSE2 */
3924 #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
3925
3926 #ifndef XXH_TARGET_SSE2
3927 # define XXH_TARGET_SSE2 /* disable attribute target */
3928 #endif
3929
3930 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_accumulate_512_sse2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)3931 XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
3932 const void* XXH_RESTRICT input,
3933 const void* XXH_RESTRICT secret)
3934 {
3935 /* SSE2 is just a half-scale version of the AVX2 version. */
3936 XXH_ASSERT((((size_t)acc) & 15) == 0);
3937 { __m128i* const xacc = (__m128i *) acc;
3938 /* Unaligned. This is mainly for pointer arithmetic, and because
3939 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3940 const __m128i* const xinput = (const __m128i *) input;
3941 /* Unaligned. This is mainly for pointer arithmetic, and because
3942 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3943 const __m128i* const xsecret = (const __m128i *) secret;
3944
3945 size_t i;
3946 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3947 /* data_vec = xinput[i]; */
3948 __m128i const data_vec = _mm_loadu_si128 (xinput+i);
3949 /* key_vec = xsecret[i]; */
3950 __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3951 /* data_key = data_vec ^ key_vec; */
3952 __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3953 /* data_key_lo = data_key >> 32; */
3954 __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3955 /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
3956 __m128i const product = _mm_mul_epu32 (data_key, data_key_lo);
3957 /* xacc[i] += swap(data_vec); */
3958 __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
3959 __m128i const sum = _mm_add_epi64(xacc[i], data_swap);
3960 /* xacc[i] += product; */
3961 xacc[i] = _mm_add_epi64(product, sum);
3962 } }
3963 }
3964
3965 XXH_FORCE_INLINE XXH_TARGET_SSE2 void
XXH3_scrambleAcc_sse2(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)3966 XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
3967 {
3968 XXH_ASSERT((((size_t)acc) & 15) == 0);
3969 { __m128i* const xacc = (__m128i*) acc;
3970 /* Unaligned. This is mainly for pointer arithmetic, and because
3971 * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
3972 const __m128i* const xsecret = (const __m128i *) secret;
3973 const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
3974
3975 size_t i;
3976 for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
3977 /* xacc[i] ^= (xacc[i] >> 47) */
3978 __m128i const acc_vec = xacc[i];
3979 __m128i const shifted = _mm_srli_epi64 (acc_vec, 47);
3980 __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted);
3981 /* xacc[i] ^= xsecret[i]; */
3982 __m128i const key_vec = _mm_loadu_si128 (xsecret+i);
3983 __m128i const data_key = _mm_xor_si128 (data_vec, key_vec);
3984
3985 /* xacc[i] *= XXH_PRIME32_1; */
3986 __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
3987 __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32);
3988 __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32);
3989 xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
3990 }
3991 }
3992 }
3993
XXH3_initCustomSecret_sse2(void * XXH_RESTRICT customSecret,xxh_u64 seed64)3994 XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
3995 {
3996 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
3997 (void)(&XXH_writeLE64);
3998 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
3999
4000 # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
4001 /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
4002 XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
4003 __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
4004 # else
4005 __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
4006 # endif
4007 int i;
4008
4009 const void* const src16 = XXH3_kSecret;
4010 __m128i* dst16 = (__m128i*) customSecret;
4011 # if defined(__GNUC__) || defined(__clang__)
4012 /*
4013 * On GCC & Clang, marking 'dest' as modified will cause the compiler:
4014 * - do not extract the secret from sse registers in the internal loop
4015 * - use less common registers, and avoid pushing these reg into stack
4016 */
4017 XXH_COMPILER_GUARD(dst16);
4018 # endif
4019 XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
4020 XXH_ASSERT(((size_t)dst16 & 15) == 0);
4021
4022 for (i=0; i < nbRounds; ++i) {
4023 dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
4024 } }
4025 }
4026
4027 #endif
4028
4029 #if (XXH_VECTOR == XXH_NEON)
4030
4031 XXH_FORCE_INLINE void
XXH3_accumulate_512_neon(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)4032 XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
4033 const void* XXH_RESTRICT input,
4034 const void* XXH_RESTRICT secret)
4035 {
4036 XXH_ASSERT((((size_t)acc) & 15) == 0);
4037 {
4038 uint64x2_t* const xacc = (uint64x2_t *) acc;
4039 /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
4040 uint8_t const* const xinput = (const uint8_t *) input;
4041 uint8_t const* const xsecret = (const uint8_t *) secret;
4042
4043 size_t i;
4044 for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) {
4045 /* data_vec = xinput[i]; */
4046 uint8x16_t data_vec = vld1q_u8(xinput + (i * 16));
4047 /* key_vec = xsecret[i]; */
4048 uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16));
4049 uint64x2_t data_key;
4050 uint32x2_t data_key_lo, data_key_hi;
4051 /* xacc[i] += swap(data_vec); */
4052 uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec);
4053 uint64x2_t const swapped = vextq_u64(data64, data64, 1);
4054 xacc[i] = vaddq_u64 (xacc[i], swapped);
4055 /* data_key = data_vec ^ key_vec; */
4056 data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
4057 /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
4058 * data_key_hi = (uint32x2_t) (data_key >> 32);
4059 * data_key = UNDEFINED; */
4060 XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4061 /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
4062 xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
4063
4064 }
4065 }
4066 }
4067
4068 XXH_FORCE_INLINE void
XXH3_scrambleAcc_neon(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)4069 XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4070 {
4071 XXH_ASSERT((((size_t)acc) & 15) == 0);
4072
4073 { uint64x2_t* xacc = (uint64x2_t*) acc;
4074 uint8_t const* xsecret = (uint8_t const*) secret;
4075 uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1);
4076
4077 size_t i;
4078 for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) {
4079 /* xacc[i] ^= (xacc[i] >> 47); */
4080 uint64x2_t acc_vec = xacc[i];
4081 uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47);
4082 uint64x2_t data_vec = veorq_u64 (acc_vec, shifted);
4083
4084 /* xacc[i] ^= xsecret[i]; */
4085 uint8x16_t key_vec = vld1q_u8 (xsecret + (i * 16));
4086 uint64x2_t data_key = veorq_u64 (data_vec, vreinterpretq_u64_u8(key_vec));
4087
4088 /* xacc[i] *= XXH_PRIME32_1 */
4089 uint32x2_t data_key_lo, data_key_hi;
4090 /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
4091 * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
4092 * xacc[i] = UNDEFINED; */
4093 XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
4094 { /*
4095 * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
4096 *
4097 * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
4098 * incorrectly "optimize" this:
4099 * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b));
4100 * shifted = vshll_n_u32(tmp, 32);
4101 * to this:
4102 * tmp = "vmulq_u64"(a, b); // no such thing!
4103 * shifted = vshlq_n_u64(tmp, 32);
4104 *
4105 * However, unlike SSE, Clang lacks a 64-bit multiply routine
4106 * for NEON, and it scalarizes two 64-bit multiplies instead.
4107 *
4108 * vmull_u32 has the same timing as vmul_u32, and it avoids
4109 * this bug completely.
4110 * See https://bugs.llvm.org/show_bug.cgi?id=39967
4111 */
4112 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
4113 /* xacc[i] = prod_hi << 32; */
4114 xacc[i] = vshlq_n_u64(prod_hi, 32);
4115 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
4116 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
4117 }
4118 } }
4119 }
4120
4121 #endif
4122
4123 #if (XXH_VECTOR == XXH_VSX)
4124
4125 XXH_FORCE_INLINE void
XXH3_accumulate_512_vsx(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)4126 XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc,
4127 const void* XXH_RESTRICT input,
4128 const void* XXH_RESTRICT secret)
4129 {
4130 /* presumed aligned */
4131 unsigned int* const xacc = (unsigned int*) acc;
4132 xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */
4133 xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */
4134 xxh_u64x2 const v32 = { 32, 32 };
4135 size_t i;
4136 for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4137 /* data_vec = xinput[i]; */
4138 xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
4139 /* key_vec = xsecret[i]; */
4140 xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4141 xxh_u64x2 const data_key = data_vec ^ key_vec;
4142 /* shuffled = (data_key << 32) | (data_key >> 32); */
4143 xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
4144 /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
4145 xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
4146 /* acc_vec = xacc[i]; */
4147 xxh_u64x2 acc_vec = (xxh_u64x2)vec_xl(0, xacc + 4 * i);
4148 acc_vec += product;
4149
4150 /* swap high and low halves */
4151 #ifdef __s390x__
4152 acc_vec += vec_permi(data_vec, data_vec, 2);
4153 #else
4154 acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
4155 #endif
4156 /* xacc[i] = acc_vec; */
4157 vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i);
4158 }
4159 }
4160
4161 XXH_FORCE_INLINE void
XXH3_scrambleAcc_vsx(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)4162 XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4163 {
4164 XXH_ASSERT((((size_t)acc) & 15) == 0);
4165
4166 { xxh_u64x2* const xacc = (xxh_u64x2*) acc;
4167 const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
4168 /* constants */
4169 xxh_u64x2 const v32 = { 32, 32 };
4170 xxh_u64x2 const v47 = { 47, 47 };
4171 xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
4172 size_t i;
4173 for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
4174 /* xacc[i] ^= (xacc[i] >> 47); */
4175 xxh_u64x2 const acc_vec = xacc[i];
4176 xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
4177
4178 /* xacc[i] ^= xsecret[i]; */
4179 xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i);
4180 xxh_u64x2 const data_key = data_vec ^ key_vec;
4181
4182 /* xacc[i] *= XXH_PRIME32_1 */
4183 /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */
4184 xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime);
4185 /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */
4186 xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime);
4187 xacc[i] = prod_odd + (prod_even << v32);
4188 } }
4189 }
4190
4191 #endif
4192
4193 /* scalar variants - universal */
4194
4195 XXH_FORCE_INLINE void
XXH3_accumulate_512_scalar(void * XXH_RESTRICT acc,const void * XXH_RESTRICT input,const void * XXH_RESTRICT secret)4196 XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
4197 const void* XXH_RESTRICT input,
4198 const void* XXH_RESTRICT secret)
4199 {
4200 xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4201 const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */
4202 const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4203 size_t i;
4204 XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
4205 for (i=0; i < XXH_ACC_NB; i++) {
4206 xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
4207 xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
4208 xacc[i ^ 1] += data_val; /* swap adjacent lanes */
4209 xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
4210 }
4211 }
4212
4213 XXH_FORCE_INLINE void
XXH3_scrambleAcc_scalar(void * XXH_RESTRICT acc,const void * XXH_RESTRICT secret)4214 XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
4215 {
4216 xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
4217 const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */
4218 size_t i;
4219 XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
4220 for (i=0; i < XXH_ACC_NB; i++) {
4221 xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
4222 xxh_u64 acc64 = xacc[i];
4223 acc64 = XXH_xorshift64(acc64, 47);
4224 acc64 ^= key64;
4225 acc64 *= XXH_PRIME32_1;
4226 xacc[i] = acc64;
4227 }
4228 }
4229
4230 XXH_FORCE_INLINE void
XXH3_initCustomSecret_scalar(void * XXH_RESTRICT customSecret,xxh_u64 seed64)4231 XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
4232 {
4233 /*
4234 * We need a separate pointer for the hack below,
4235 * which requires a non-const pointer.
4236 * Any decent compiler will optimize this out otherwise.
4237 */
4238 const xxh_u8* kSecretPtr = XXH3_kSecret;
4239 XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
4240
4241 #if defined(__clang__) && defined(__aarch64__)
4242 /*
4243 * UGLY HACK:
4244 * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
4245 * placed sequentially, in order, at the top of the unrolled loop.
4246 *
4247 * While MOVK is great for generating constants (2 cycles for a 64-bit
4248 * constant compared to 4 cycles for LDR), long MOVK chains stall the
4249 * integer pipelines:
4250 * I L S
4251 * MOVK
4252 * MOVK
4253 * MOVK
4254 * MOVK
4255 * ADD
4256 * SUB STR
4257 * STR
4258 * By forcing loads from memory (as the asm line causes Clang to assume
4259 * that XXH3_kSecretPtr has been changed), the pipelines are used more
4260 * efficiently:
4261 * I L S
4262 * LDR
4263 * ADD LDR
4264 * SUB STR
4265 * STR
4266 * XXH3_64bits_withSeed, len == 256, Snapdragon 835
4267 * without hack: 2654.4 MB/s
4268 * with hack: 3202.9 MB/s
4269 */
4270 XXH_COMPILER_GUARD(kSecretPtr);
4271 #endif
4272 /*
4273 * Note: in debug mode, this overrides the asm optimization
4274 * and Clang will emit MOVK chains again.
4275 */
4276 XXH_ASSERT(kSecretPtr == XXH3_kSecret);
4277
4278 { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
4279 int i;
4280 for (i=0; i < nbRounds; i++) {
4281 /*
4282 * The asm hack causes Clang to assume that kSecretPtr aliases with
4283 * customSecret, and on aarch64, this prevented LDP from merging two
4284 * loads together for free. Putting the loads together before the stores
4285 * properly generates LDP.
4286 */
4287 xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64;
4288 xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
4289 XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo);
4290 XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
4291 } }
4292 }
4293
4294
4295 typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
4296 typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
4297 typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
4298
4299
4300 #if (XXH_VECTOR == XXH_AVX512)
4301
4302 #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
4303 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512
4304 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
4305
4306 #elif (XXH_VECTOR == XXH_AVX2)
4307
4308 #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
4309 #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2
4310 #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
4311
4312 #elif (XXH_VECTOR == XXH_SSE2)
4313
4314 #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
4315 #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2
4316 #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
4317
4318 #elif (XXH_VECTOR == XXH_NEON)
4319
4320 #define XXH3_accumulate_512 XXH3_accumulate_512_neon
4321 #define XXH3_scrambleAcc XXH3_scrambleAcc_neon
4322 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4323
4324 #elif (XXH_VECTOR == XXH_VSX)
4325
4326 #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
4327 #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx
4328 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4329
4330 #else /* scalar */
4331
4332 #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
4333 #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
4334 #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
4335
4336 #endif
4337
4338
4339
4340 #ifndef XXH_PREFETCH_DIST
4341 # ifdef __clang__
4342 # define XXH_PREFETCH_DIST 320
4343 # else
4344 # if (XXH_VECTOR == XXH_AVX512)
4345 # define XXH_PREFETCH_DIST 512
4346 # else
4347 # define XXH_PREFETCH_DIST 384
4348 # endif
4349 # endif /* __clang__ */
4350 #endif /* XXH_PREFETCH_DIST */
4351
4352 /*
4353 * XXH3_accumulate()
4354 * Loops over XXH3_accumulate_512().
4355 * Assumption: nbStripes will not overflow the secret size
4356 */
4357 XXH_FORCE_INLINE void
XXH3_accumulate(xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT input,const xxh_u8 * XXH_RESTRICT secret,size_t nbStripes,XXH3_f_accumulate_512 f_acc512)4358 XXH3_accumulate( xxh_u64* XXH_RESTRICT acc,
4359 const xxh_u8* XXH_RESTRICT input,
4360 const xxh_u8* XXH_RESTRICT secret,
4361 size_t nbStripes,
4362 XXH3_f_accumulate_512 f_acc512)
4363 {
4364 size_t n;
4365 for (n = 0; n < nbStripes; n++ ) {
4366 const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
4367 XXH_PREFETCH(in + XXH_PREFETCH_DIST);
4368 f_acc512(acc,
4369 in,
4370 secret + n*XXH_SECRET_CONSUME_RATE);
4371 }
4372 }
4373
4374 XXH_FORCE_INLINE void
XXH3_hashLong_internal_loop(xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4375 XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
4376 const xxh_u8* XXH_RESTRICT input, size_t len,
4377 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
4378 XXH3_f_accumulate_512 f_acc512,
4379 XXH3_f_scrambleAcc f_scramble)
4380 {
4381 size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
4382 size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
4383 size_t const nb_blocks = (len - 1) / block_len;
4384
4385 size_t n;
4386
4387 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4388
4389 for (n = 0; n < nb_blocks; n++) {
4390 XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
4391 f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
4392 }
4393
4394 /* last partial block */
4395 XXH_ASSERT(len > XXH_STRIPE_LEN);
4396 { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
4397 XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
4398 XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
4399
4400 /* last stripe */
4401 { const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
4402 #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */
4403 f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
4404 } }
4405 }
4406
4407 XXH_FORCE_INLINE xxh_u64
XXH3_mix2Accs(const xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT secret)4408 XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
4409 {
4410 return XXH3_mul128_fold64(
4411 acc[0] ^ XXH_readLE64(secret),
4412 acc[1] ^ XXH_readLE64(secret+8) );
4413 }
4414
4415 static XXH64_hash_t
XXH3_mergeAccs(const xxh_u64 * XXH_RESTRICT acc,const xxh_u8 * XXH_RESTRICT secret,xxh_u64 start)4416 XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
4417 {
4418 xxh_u64 result64 = start;
4419 size_t i = 0;
4420
4421 for (i = 0; i < 4; i++) {
4422 result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
4423 #if defined(__clang__) /* Clang */ \
4424 && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \
4425 && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
4426 && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */
4427 /*
4428 * UGLY HACK:
4429 * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
4430 * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
4431 * XXH3_64bits, len == 256, Snapdragon 835:
4432 * without hack: 2063.7 MB/s
4433 * with hack: 2560.7 MB/s
4434 */
4435 XXH_COMPILER_GUARD(result64);
4436 #endif
4437 }
4438
4439 return XXH3_avalanche(result64);
4440 }
4441
4442 #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
4443 XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
4444
4445 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_internal(const void * XXH_RESTRICT input,size_t len,const void * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4446 XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
4447 const void* XXH_RESTRICT secret, size_t secretSize,
4448 XXH3_f_accumulate_512 f_acc512,
4449 XXH3_f_scrambleAcc f_scramble)
4450 {
4451 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
4452
4453 XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
4454
4455 /* converge into final hash */
4456 XXH_STATIC_ASSERT(sizeof(acc) == 64);
4457 /* do not align on 8, so that the secret is different from the accumulator */
4458 #define XXH_SECRET_MERGEACCS_START 11
4459 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
4460 return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
4461 }
4462
4463 /*
4464 * It's important for performance to transmit secret's size (when it's static)
4465 * so that the compiler can properly optimize the vectorized loop.
4466 * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
4467 */
4468 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSecret(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const xxh_u8 * XXH_RESTRICT secret,size_t secretLen)4469 XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
4470 XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4471 {
4472 (void)seed64;
4473 return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
4474 }
4475
4476 /*
4477 * It's preferable for performance that XXH3_hashLong is not inlined,
4478 * as it results in a smaller function for small data, easier to the instruction cache.
4479 * Note that inside this no_inline function, we do inline the internal loop,
4480 * and provide a statically defined secret size to allow optimization of vector loop.
4481 */
4482 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_default(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const xxh_u8 * XXH_RESTRICT secret,size_t secretLen)4483 XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
4484 XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
4485 {
4486 (void)seed64; (void)secret; (void)secretLen;
4487 return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
4488 }
4489
4490 /*
4491 * XXH3_hashLong_64b_withSeed():
4492 * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
4493 * and then use this key for long mode hashing.
4494 *
4495 * This operation is decently fast but nonetheless costs a little bit of time.
4496 * Try to avoid it whenever possible (typically when seed==0).
4497 *
4498 * It's important for performance that XXH3_hashLong is not inlined. Not sure
4499 * why (uop cache maybe?), but the difference is large and easily measurable.
4500 */
4501 XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed_internal(const void * input,size_t len,XXH64_hash_t seed,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble,XXH3_f_initCustomSecret f_initSec)4502 XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
4503 XXH64_hash_t seed,
4504 XXH3_f_accumulate_512 f_acc512,
4505 XXH3_f_scrambleAcc f_scramble,
4506 XXH3_f_initCustomSecret f_initSec)
4507 {
4508 if (seed == 0)
4509 return XXH3_hashLong_64b_internal(input, len,
4510 XXH3_kSecret, sizeof(XXH3_kSecret),
4511 f_acc512, f_scramble);
4512 { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
4513 f_initSec(secret, seed);
4514 return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
4515 f_acc512, f_scramble);
4516 }
4517 }
4518
4519 /*
4520 * It's important for performance that XXH3_hashLong is not inlined.
4521 */
4522 XXH_NO_INLINE XXH64_hash_t
XXH3_hashLong_64b_withSeed(const void * input,size_t len,XXH64_hash_t seed,const xxh_u8 * secret,size_t secretLen)4523 XXH3_hashLong_64b_withSeed(const void* input, size_t len,
4524 XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
4525 {
4526 (void)secret; (void)secretLen;
4527 return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
4528 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
4529 }
4530
4531
4532 typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
4533 XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
4534
4535 XXH_FORCE_INLINE XXH64_hash_t
XXH3_64bits_internal(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen,XXH3_hashLong64_f f_hashLong)4536 XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
4537 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
4538 XXH3_hashLong64_f f_hashLong)
4539 {
4540 XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
4541 /*
4542 * If an action is to be taken if `secretLen` condition is not respected,
4543 * it should be done here.
4544 * For now, it's a contract pre-condition.
4545 * Adding a check and a branch here would cost performance at every hash.
4546 * Also, note that function signature doesn't offer room to return an error.
4547 */
4548 if (len <= 16)
4549 return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
4550 if (len <= 128)
4551 return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4552 if (len <= XXH3_MIDSIZE_MAX)
4553 return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
4554 return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
4555 }
4556
4557
4558 /* === Public entry point === */
4559
4560 /*! @ingroup xxh3_family */
XXH3_64bits(const void * input,size_t len)4561 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
4562 {
4563 return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
4564 }
4565
4566 /*! @ingroup xxh3_family */
4567 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(const void * input,size_t len,const void * secret,size_t secretSize)4568 XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
4569 {
4570 return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
4571 }
4572
4573 /*! @ingroup xxh3_family */
4574 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(const void * input,size_t len,XXH64_hash_t seed)4575 XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
4576 {
4577 return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
4578 }
4579
4580 XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecretandSeed(const void * input,size_t len,const void * secret,size_t secretSize,XXH64_hash_t seed)4581 XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
4582 {
4583 if (len <= XXH3_MIDSIZE_MAX)
4584 return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
4585 return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
4586 }
4587
4588
4589 /* === XXH3 streaming === */
4590
4591 /*
4592 * Malloc's a pointer that is always aligned to align.
4593 *
4594 * This must be freed with `XXH_alignedFree()`.
4595 *
4596 * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
4597 * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
4598 * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
4599 *
4600 * This underalignment previously caused a rather obvious crash which went
4601 * completely unnoticed due to XXH3_createState() not actually being tested.
4602 * Credit to RedSpah for noticing this bug.
4603 *
4604 * The alignment is done manually: Functions like posix_memalign or _mm_malloc
4605 * are avoided: To maintain portability, we would have to write a fallback
4606 * like this anyways, and besides, testing for the existence of library
4607 * functions without relying on external build tools is impossible.
4608 *
4609 * The method is simple: Overallocate, manually align, and store the offset
4610 * to the original behind the returned pointer.
4611 *
4612 * Align must be a power of 2 and 8 <= align <= 128.
4613 */
XXH_alignedMalloc(size_t s,size_t align)4614 static void* XXH_alignedMalloc(size_t s, size_t align)
4615 {
4616 XXH_ASSERT(align <= 128 && align >= 8); /* range check */
4617 XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */
4618 XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */
4619 { /* Overallocate to make room for manual realignment and an offset byte */
4620 xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
4621 if (base != NULL) {
4622 /*
4623 * Get the offset needed to align this pointer.
4624 *
4625 * Even if the returned pointer is aligned, there will always be
4626 * at least one byte to store the offset to the original pointer.
4627 */
4628 size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
4629 /* Add the offset for the now-aligned pointer */
4630 xxh_u8* ptr = base + offset;
4631
4632 XXH_ASSERT((size_t)ptr % align == 0);
4633
4634 /* Store the offset immediately before the returned pointer. */
4635 ptr[-1] = (xxh_u8)offset;
4636 return ptr;
4637 }
4638 return NULL;
4639 }
4640 }
4641 /*
4642 * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
4643 * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
4644 */
XXH_alignedFree(void * p)4645 static void XXH_alignedFree(void* p)
4646 {
4647 if (p != NULL) {
4648 xxh_u8* ptr = (xxh_u8*)p;
4649 /* Get the offset byte we added in XXH_malloc. */
4650 xxh_u8 offset = ptr[-1];
4651 /* Free the original malloc'd pointer */
4652 xxh_u8* base = ptr - offset;
4653 XXH_free(base);
4654 }
4655 }
4656 /*! @ingroup xxh3_family */
XXH3_createState(void)4657 XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
4658 {
4659 XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
4660 if (state==NULL) return NULL;
4661 XXH3_INITSTATE(state);
4662 return state;
4663 }
4664
4665 /*! @ingroup xxh3_family */
XXH3_freeState(XXH3_state_t * statePtr)4666 XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
4667 {
4668 XXH_alignedFree(statePtr);
4669 return XXH_OK;
4670 }
4671
4672 /*! @ingroup xxh3_family */
4673 XXH_PUBLIC_API void
XXH3_copyState(XXH3_state_t * dst_state,const XXH3_state_t * src_state)4674 XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
4675 {
4676 XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
4677 }
4678
4679 static void
XXH3_reset_internal(XXH3_state_t * statePtr,XXH64_hash_t seed,const void * secret,size_t secretSize)4680 XXH3_reset_internal(XXH3_state_t* statePtr,
4681 XXH64_hash_t seed,
4682 const void* secret, size_t secretSize)
4683 {
4684 size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
4685 size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
4686 XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
4687 XXH_ASSERT(statePtr != NULL);
4688 /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
4689 memset((char*)statePtr + initStart, 0, initLength);
4690 statePtr->acc[0] = XXH_PRIME32_3;
4691 statePtr->acc[1] = XXH_PRIME64_1;
4692 statePtr->acc[2] = XXH_PRIME64_2;
4693 statePtr->acc[3] = XXH_PRIME64_3;
4694 statePtr->acc[4] = XXH_PRIME64_4;
4695 statePtr->acc[5] = XXH_PRIME32_2;
4696 statePtr->acc[6] = XXH_PRIME64_5;
4697 statePtr->acc[7] = XXH_PRIME32_1;
4698 statePtr->seed = seed;
4699 statePtr->useSeed = (seed != 0);
4700 statePtr->extSecret = (const unsigned char*)secret;
4701 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
4702 statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
4703 statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
4704 }
4705
4706 /*! @ingroup xxh3_family */
4707 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH3_state_t * statePtr)4708 XXH3_64bits_reset(XXH3_state_t* statePtr)
4709 {
4710 if (statePtr == NULL) return XXH_ERROR;
4711 XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
4712 return XXH_OK;
4713 }
4714
4715 /*! @ingroup xxh3_family */
4716 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH3_state_t * statePtr,const void * secret,size_t secretSize)4717 XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
4718 {
4719 if (statePtr == NULL) return XXH_ERROR;
4720 XXH3_reset_internal(statePtr, 0, secret, secretSize);
4721 if (secret == NULL) return XXH_ERROR;
4722 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4723 return XXH_OK;
4724 }
4725
4726 /*! @ingroup xxh3_family */
4727 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH3_state_t * statePtr,XXH64_hash_t seed)4728 XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
4729 {
4730 if (statePtr == NULL) return XXH_ERROR;
4731 if (seed==0) return XXH3_64bits_reset(statePtr);
4732 if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
4733 XXH3_initCustomSecret(statePtr->customSecret, seed);
4734 XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
4735 return XXH_OK;
4736 }
4737
4738 /*! @ingroup xxh3_family */
4739 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecretandSeed(XXH3_state_t * statePtr,const void * secret,size_t secretSize,XXH64_hash_t seed64)4740 XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
4741 {
4742 if (statePtr == NULL) return XXH_ERROR;
4743 if (secret == NULL) return XXH_ERROR;
4744 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
4745 XXH3_reset_internal(statePtr, seed64, secret, secretSize);
4746 statePtr->useSeed = 1; /* always, even if seed64==0 */
4747 return XXH_OK;
4748 }
4749
4750 /* Note : when XXH3_consumeStripes() is invoked,
4751 * there must be a guarantee that at least one more byte must be consumed from input
4752 * so that the function can blindly consume all stripes using the "normal" secret segment */
4753 XXH_FORCE_INLINE void
XXH3_consumeStripes(xxh_u64 * XXH_RESTRICT acc,size_t * XXH_RESTRICT nbStripesSoFarPtr,size_t nbStripesPerBlock,const xxh_u8 * XXH_RESTRICT input,size_t nbStripes,const xxh_u8 * XXH_RESTRICT secret,size_t secretLimit,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4754 XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
4755 size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
4756 const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
4757 const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
4758 XXH3_f_accumulate_512 f_acc512,
4759 XXH3_f_scrambleAcc f_scramble)
4760 {
4761 XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */
4762 XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
4763 if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
4764 /* need a scrambling operation */
4765 size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
4766 size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
4767 XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
4768 f_scramble(acc, secret + secretLimit);
4769 XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
4770 *nbStripesSoFarPtr = nbStripesAfterBlock;
4771 } else {
4772 XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
4773 *nbStripesSoFarPtr += nbStripes;
4774 }
4775 }
4776
4777 #ifndef XXH3_STREAM_USE_STACK
4778 # ifndef __clang__ /* clang doesn't need additional stack space */
4779 # define XXH3_STREAM_USE_STACK 1
4780 # endif
4781 #endif
4782 /*
4783 * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
4784 */
4785 XXH_FORCE_INLINE XXH_errorcode
XXH3_update(XXH3_state_t * XXH_RESTRICT const state,const xxh_u8 * XXH_RESTRICT input,size_t len,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)4786 XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
4787 const xxh_u8* XXH_RESTRICT input, size_t len,
4788 XXH3_f_accumulate_512 f_acc512,
4789 XXH3_f_scrambleAcc f_scramble)
4790 {
4791 if (input==NULL) {
4792 XXH_ASSERT(len == 0);
4793 return XXH_OK;
4794 }
4795
4796 XXH_ASSERT(state != NULL);
4797 { const xxh_u8* const bEnd = input + len;
4798 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4799 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
4800 /* For some reason, gcc and MSVC seem to suffer greatly
4801 * when operating accumulators directly into state.
4802 * Operating into stack space seems to enable proper optimization.
4803 * clang, on the other hand, doesn't seem to need this trick */
4804 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
4805 #else
4806 xxh_u64* XXH_RESTRICT const acc = state->acc;
4807 #endif
4808 state->totalLen += len;
4809 XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
4810
4811 /* small input : just fill in tmp buffer */
4812 if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
4813 XXH_memcpy(state->buffer + state->bufferedSize, input, len);
4814 state->bufferedSize += (XXH32_hash_t)len;
4815 return XXH_OK;
4816 }
4817
4818 /* total input is now > XXH3_INTERNALBUFFER_SIZE */
4819 #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
4820 XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */
4821
4822 /*
4823 * Internal buffer is partially filled (always, except at beginning)
4824 * Complete it, then consume it.
4825 */
4826 if (state->bufferedSize) {
4827 size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
4828 XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
4829 input += loadSize;
4830 XXH3_consumeStripes(acc,
4831 &state->nbStripesSoFar, state->nbStripesPerBlock,
4832 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
4833 secret, state->secretLimit,
4834 f_acc512, f_scramble);
4835 state->bufferedSize = 0;
4836 }
4837 XXH_ASSERT(input < bEnd);
4838
4839 /* large input to consume : ingest per full block */
4840 if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
4841 size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
4842 XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
4843 /* join to current block's end */
4844 { size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
4845 XXH_ASSERT(nbStripes <= nbStripes);
4846 XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
4847 f_scramble(acc, secret + state->secretLimit);
4848 state->nbStripesSoFar = 0;
4849 input += nbStripesToEnd * XXH_STRIPE_LEN;
4850 nbStripes -= nbStripesToEnd;
4851 }
4852 /* consume per entire blocks */
4853 while(nbStripes >= state->nbStripesPerBlock) {
4854 XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
4855 f_scramble(acc, secret + state->secretLimit);
4856 input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
4857 nbStripes -= state->nbStripesPerBlock;
4858 }
4859 /* consume last partial block */
4860 XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
4861 input += nbStripes * XXH_STRIPE_LEN;
4862 XXH_ASSERT(input < bEnd); /* at least some bytes left */
4863 state->nbStripesSoFar = nbStripes;
4864 /* buffer predecessor of last partial stripe */
4865 XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4866 XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
4867 } else {
4868 /* content to consume <= block size */
4869 /* Consume input by a multiple of internal buffer size */
4870 if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
4871 const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
4872 do {
4873 XXH3_consumeStripes(acc,
4874 &state->nbStripesSoFar, state->nbStripesPerBlock,
4875 input, XXH3_INTERNALBUFFER_STRIPES,
4876 secret, state->secretLimit,
4877 f_acc512, f_scramble);
4878 input += XXH3_INTERNALBUFFER_SIZE;
4879 } while (input<limit);
4880 /* buffer predecessor of last partial stripe */
4881 XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
4882 }
4883 }
4884
4885 /* Some remaining input (always) : buffer it */
4886 XXH_ASSERT(input < bEnd);
4887 XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
4888 XXH_ASSERT(state->bufferedSize == 0);
4889 XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
4890 state->bufferedSize = (XXH32_hash_t)(bEnd-input);
4891 #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
4892 /* save stack accumulators into state */
4893 memcpy(state->acc, acc, sizeof(acc));
4894 #endif
4895 }
4896
4897 return XXH_OK;
4898 }
4899
4900 /*! @ingroup xxh3_family */
4901 XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH3_state_t * state,const void * input,size_t len)4902 XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
4903 {
4904 return XXH3_update(state, (const xxh_u8*)input, len,
4905 XXH3_accumulate_512, XXH3_scrambleAcc);
4906 }
4907
4908
4909 XXH_FORCE_INLINE void
XXH3_digest_long(XXH64_hash_t * acc,const XXH3_state_t * state,const unsigned char * secret)4910 XXH3_digest_long (XXH64_hash_t* acc,
4911 const XXH3_state_t* state,
4912 const unsigned char* secret)
4913 {
4914 /*
4915 * Digest on a local copy. This way, the state remains unaltered, and it can
4916 * continue ingesting more input afterwards.
4917 */
4918 XXH_memcpy(acc, state->acc, sizeof(state->acc));
4919 if (state->bufferedSize >= XXH_STRIPE_LEN) {
4920 size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
4921 size_t nbStripesSoFar = state->nbStripesSoFar;
4922 XXH3_consumeStripes(acc,
4923 &nbStripesSoFar, state->nbStripesPerBlock,
4924 state->buffer, nbStripes,
4925 secret, state->secretLimit,
4926 XXH3_accumulate_512, XXH3_scrambleAcc);
4927 /* last stripe */
4928 XXH3_accumulate_512(acc,
4929 state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
4930 secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4931 } else { /* bufferedSize < XXH_STRIPE_LEN */
4932 xxh_u8 lastStripe[XXH_STRIPE_LEN];
4933 size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
4934 XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */
4935 XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
4936 XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
4937 XXH3_accumulate_512(acc,
4938 lastStripe,
4939 secret + state->secretLimit - XXH_SECRET_LASTACC_START);
4940 }
4941 }
4942
4943 /*! @ingroup xxh3_family */
XXH3_64bits_digest(const XXH3_state_t * state)4944 XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
4945 {
4946 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
4947 if (state->totalLen > XXH3_MIDSIZE_MAX) {
4948 XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
4949 XXH3_digest_long(acc, state, secret);
4950 return XXH3_mergeAccs(acc,
4951 secret + XXH_SECRET_MERGEACCS_START,
4952 (xxh_u64)state->totalLen * XXH_PRIME64_1);
4953 }
4954 /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
4955 if (state->useSeed)
4956 return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
4957 return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
4958 secret, state->secretLimit + XXH_STRIPE_LEN);
4959 }
4960
4961
4962
4963 /* ==========================================
4964 * XXH3 128 bits (a.k.a XXH128)
4965 * ==========================================
4966 * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
4967 * even without counting the significantly larger output size.
4968 *
4969 * For example, extra steps are taken to avoid the seed-dependent collisions
4970 * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
4971 *
4972 * This strength naturally comes at the cost of some speed, especially on short
4973 * lengths. Note that longer hashes are about as fast as the 64-bit version
4974 * due to it using only a slight modification of the 64-bit loop.
4975 *
4976 * XXH128 is also more oriented towards 64-bit machines. It is still extremely
4977 * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
4978 */
4979
4980 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_1to3_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)4981 XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
4982 {
4983 /* A doubled version of 1to3_64b with different constants. */
4984 XXH_ASSERT(input != NULL);
4985 XXH_ASSERT(1 <= len && len <= 3);
4986 XXH_ASSERT(secret != NULL);
4987 /*
4988 * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
4989 * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
4990 * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
4991 */
4992 { xxh_u8 const c1 = input[0];
4993 xxh_u8 const c2 = input[len >> 1];
4994 xxh_u8 const c3 = input[len - 1];
4995 xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
4996 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
4997 xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
4998 xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
4999 xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
5000 xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
5001 xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
5002 XXH128_hash_t h128;
5003 h128.low64 = XXH64_avalanche(keyed_lo);
5004 h128.high64 = XXH64_avalanche(keyed_hi);
5005 return h128;
5006 }
5007 }
5008
5009 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_4to8_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)5010 XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5011 {
5012 XXH_ASSERT(input != NULL);
5013 XXH_ASSERT(secret != NULL);
5014 XXH_ASSERT(4 <= len && len <= 8);
5015 seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
5016 { xxh_u32 const input_lo = XXH_readLE32(input);
5017 xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
5018 xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
5019 xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
5020 xxh_u64 const keyed = input_64 ^ bitflip;
5021
5022 /* Shift len to the left to ensure it is even, this avoids even multiplies. */
5023 XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
5024
5025 m128.high64 += (m128.low64 << 1);
5026 m128.low64 ^= (m128.high64 >> 3);
5027
5028 m128.low64 = XXH_xorshift64(m128.low64, 35);
5029 m128.low64 *= 0x9FB21C651E98DF25ULL;
5030 m128.low64 = XXH_xorshift64(m128.low64, 28);
5031 m128.high64 = XXH3_avalanche(m128.high64);
5032 return m128;
5033 }
5034 }
5035
5036 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_9to16_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)5037 XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5038 {
5039 XXH_ASSERT(input != NULL);
5040 XXH_ASSERT(secret != NULL);
5041 XXH_ASSERT(9 <= len && len <= 16);
5042 { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
5043 xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
5044 xxh_u64 const input_lo = XXH_readLE64(input);
5045 xxh_u64 input_hi = XXH_readLE64(input + len - 8);
5046 XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
5047 /*
5048 * Put len in the middle of m128 to ensure that the length gets mixed to
5049 * both the low and high bits in the 128x64 multiply below.
5050 */
5051 m128.low64 += (xxh_u64)(len - 1) << 54;
5052 input_hi ^= bitfliph;
5053 /*
5054 * Add the high 32 bits of input_hi to the high 32 bits of m128, then
5055 * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
5056 * the high 64 bits of m128.
5057 *
5058 * The best approach to this operation is different on 32-bit and 64-bit.
5059 */
5060 if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
5061 /*
5062 * 32-bit optimized version, which is more readable.
5063 *
5064 * On 32-bit, it removes an ADC and delays a dependency between the two
5065 * halves of m128.high64, but it generates an extra mask on 64-bit.
5066 */
5067 m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
5068 } else {
5069 /*
5070 * 64-bit optimized (albeit more confusing) version.
5071 *
5072 * Uses some properties of addition and multiplication to remove the mask:
5073 *
5074 * Let:
5075 * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
5076 * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
5077 * c = XXH_PRIME32_2
5078 *
5079 * a + (b * c)
5080 * Inverse Property: x + y - x == y
5081 * a + (b * (1 + c - 1))
5082 * Distributive Property: x * (y + z) == (x * y) + (x * z)
5083 * a + (b * 1) + (b * (c - 1))
5084 * Identity Property: x * 1 == x
5085 * a + b + (b * (c - 1))
5086 *
5087 * Substitute a, b, and c:
5088 * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5089 *
5090 * Since input_hi.hi + input_hi.lo == input_hi, we get this:
5091 * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
5092 */
5093 m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
5094 }
5095 /* m128 ^= XXH_swap64(m128 >> 64); */
5096 m128.low64 ^= XXH_swap64(m128.high64);
5097
5098 { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
5099 XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
5100 h128.high64 += m128.high64 * XXH_PRIME64_2;
5101
5102 h128.low64 = XXH3_avalanche(h128.low64);
5103 h128.high64 = XXH3_avalanche(h128.high64);
5104 return h128;
5105 } }
5106 }
5107
5108 /*
5109 * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
5110 */
5111 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_0to16_128b(const xxh_u8 * input,size_t len,const xxh_u8 * secret,XXH64_hash_t seed)5112 XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
5113 {
5114 XXH_ASSERT(len <= 16);
5115 { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
5116 if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
5117 if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
5118 { XXH128_hash_t h128;
5119 xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
5120 xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
5121 h128.low64 = XXH64_avalanche(seed ^ bitflipl);
5122 h128.high64 = XXH64_avalanche( seed ^ bitfliph);
5123 return h128;
5124 } }
5125 }
5126
5127 /*
5128 * A bit slower than XXH3_mix16B, but handles multiply by zero better.
5129 */
5130 XXH_FORCE_INLINE XXH128_hash_t
XXH128_mix32B(XXH128_hash_t acc,const xxh_u8 * input_1,const xxh_u8 * input_2,const xxh_u8 * secret,XXH64_hash_t seed)5131 XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
5132 const xxh_u8* secret, XXH64_hash_t seed)
5133 {
5134 acc.low64 += XXH3_mix16B (input_1, secret+0, seed);
5135 acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
5136 acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
5137 acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
5138 return acc;
5139 }
5140
5141
5142 XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_17to128_128b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)5143 XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5144 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5145 XXH64_hash_t seed)
5146 {
5147 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5148 XXH_ASSERT(16 < len && len <= 128);
5149
5150 { XXH128_hash_t acc;
5151 acc.low64 = len * XXH_PRIME64_1;
5152 acc.high64 = 0;
5153 if (len > 32) {
5154 if (len > 64) {
5155 if (len > 96) {
5156 acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
5157 }
5158 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
5159 }
5160 acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
5161 }
5162 acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
5163 { XXH128_hash_t h128;
5164 h128.low64 = acc.low64 + acc.high64;
5165 h128.high64 = (acc.low64 * XXH_PRIME64_1)
5166 + (acc.high64 * XXH_PRIME64_4)
5167 + ((len - seed) * XXH_PRIME64_2);
5168 h128.low64 = XXH3_avalanche(h128.low64);
5169 h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5170 return h128;
5171 }
5172 }
5173 }
5174
5175 XXH_NO_INLINE XXH128_hash_t
XXH3_len_129to240_128b(const xxh_u8 * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH64_hash_t seed)5176 XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
5177 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5178 XXH64_hash_t seed)
5179 {
5180 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
5181 XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
5182
5183 { XXH128_hash_t acc;
5184 int const nbRounds = (int)len / 32;
5185 int i;
5186 acc.low64 = len * XXH_PRIME64_1;
5187 acc.high64 = 0;
5188 for (i=0; i<4; i++) {
5189 acc = XXH128_mix32B(acc,
5190 input + (32 * i),
5191 input + (32 * i) + 16,
5192 secret + (32 * i),
5193 seed);
5194 }
5195 acc.low64 = XXH3_avalanche(acc.low64);
5196 acc.high64 = XXH3_avalanche(acc.high64);
5197 XXH_ASSERT(nbRounds >= 4);
5198 for (i=4 ; i < nbRounds; i++) {
5199 acc = XXH128_mix32B(acc,
5200 input + (32 * i),
5201 input + (32 * i) + 16,
5202 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
5203 seed);
5204 }
5205 /* last bytes */
5206 acc = XXH128_mix32B(acc,
5207 input + len - 16,
5208 input + len - 32,
5209 secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
5210 0ULL - seed);
5211
5212 { XXH128_hash_t h128;
5213 h128.low64 = acc.low64 + acc.high64;
5214 h128.high64 = (acc.low64 * XXH_PRIME64_1)
5215 + (acc.high64 * XXH_PRIME64_4)
5216 + ((len - seed) * XXH_PRIME64_2);
5217 h128.low64 = XXH3_avalanche(h128.low64);
5218 h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
5219 return h128;
5220 }
5221 }
5222 }
5223
5224 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_internal(const void * XXH_RESTRICT input,size_t len,const xxh_u8 * XXH_RESTRICT secret,size_t secretSize,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble)5225 XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
5226 const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
5227 XXH3_f_accumulate_512 f_acc512,
5228 XXH3_f_scrambleAcc f_scramble)
5229 {
5230 XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
5231
5232 XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
5233
5234 /* converge into final hash */
5235 XXH_STATIC_ASSERT(sizeof(acc) == 64);
5236 XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5237 { XXH128_hash_t h128;
5238 h128.low64 = XXH3_mergeAccs(acc,
5239 secret + XXH_SECRET_MERGEACCS_START,
5240 (xxh_u64)len * XXH_PRIME64_1);
5241 h128.high64 = XXH3_mergeAccs(acc,
5242 secret + secretSize
5243 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5244 ~((xxh_u64)len * XXH_PRIME64_2));
5245 return h128;
5246 }
5247 }
5248
5249 /*
5250 * It's important for performance that XXH3_hashLong is not inlined.
5251 */
5252 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_default(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)5253 XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
5254 XXH64_hash_t seed64,
5255 const void* XXH_RESTRICT secret, size_t secretLen)
5256 {
5257 (void)seed64; (void)secret; (void)secretLen;
5258 return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
5259 XXH3_accumulate_512, XXH3_scrambleAcc);
5260 }
5261
5262 /*
5263 * It's important for performance to pass @secretLen (when it's static)
5264 * to the compiler, so that it can properly optimize the vectorized loop.
5265 */
5266 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSecret(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)5267 XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
5268 XXH64_hash_t seed64,
5269 const void* XXH_RESTRICT secret, size_t secretLen)
5270 {
5271 (void)seed64;
5272 return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
5273 XXH3_accumulate_512, XXH3_scrambleAcc);
5274 }
5275
5276 XXH_FORCE_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed_internal(const void * XXH_RESTRICT input,size_t len,XXH64_hash_t seed64,XXH3_f_accumulate_512 f_acc512,XXH3_f_scrambleAcc f_scramble,XXH3_f_initCustomSecret f_initSec)5277 XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
5278 XXH64_hash_t seed64,
5279 XXH3_f_accumulate_512 f_acc512,
5280 XXH3_f_scrambleAcc f_scramble,
5281 XXH3_f_initCustomSecret f_initSec)
5282 {
5283 if (seed64 == 0)
5284 return XXH3_hashLong_128b_internal(input, len,
5285 XXH3_kSecret, sizeof(XXH3_kSecret),
5286 f_acc512, f_scramble);
5287 { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5288 f_initSec(secret, seed64);
5289 return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
5290 f_acc512, f_scramble);
5291 }
5292 }
5293
5294 /*
5295 * It's important for performance that XXH3_hashLong is not inlined.
5296 */
5297 XXH_NO_INLINE XXH128_hash_t
XXH3_hashLong_128b_withSeed(const void * input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen)5298 XXH3_hashLong_128b_withSeed(const void* input, size_t len,
5299 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
5300 {
5301 (void)secret; (void)secretLen;
5302 return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
5303 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
5304 }
5305
5306 typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
5307 XXH64_hash_t, const void* XXH_RESTRICT, size_t);
5308
5309 XXH_FORCE_INLINE XXH128_hash_t
XXH3_128bits_internal(const void * input,size_t len,XXH64_hash_t seed64,const void * XXH_RESTRICT secret,size_t secretLen,XXH3_hashLong128_f f_hl128)5310 XXH3_128bits_internal(const void* input, size_t len,
5311 XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
5312 XXH3_hashLong128_f f_hl128)
5313 {
5314 XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
5315 /*
5316 * If an action is to be taken if `secret` conditions are not respected,
5317 * it should be done here.
5318 * For now, it's a contract pre-condition.
5319 * Adding a check and a branch here would cost performance at every hash.
5320 */
5321 if (len <= 16)
5322 return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
5323 if (len <= 128)
5324 return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5325 if (len <= XXH3_MIDSIZE_MAX)
5326 return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
5327 return f_hl128(input, len, seed64, secret, secretLen);
5328 }
5329
5330
5331 /* === Public XXH128 API === */
5332
5333 /*! @ingroup xxh3_family */
XXH3_128bits(const void * input,size_t len)5334 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
5335 {
5336 return XXH3_128bits_internal(input, len, 0,
5337 XXH3_kSecret, sizeof(XXH3_kSecret),
5338 XXH3_hashLong_128b_default);
5339 }
5340
5341 /*! @ingroup xxh3_family */
5342 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecret(const void * input,size_t len,const void * secret,size_t secretSize)5343 XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
5344 {
5345 return XXH3_128bits_internal(input, len, 0,
5346 (const xxh_u8*)secret, secretSize,
5347 XXH3_hashLong_128b_withSecret);
5348 }
5349
5350 /*! @ingroup xxh3_family */
5351 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(const void * input,size_t len,XXH64_hash_t seed)5352 XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
5353 {
5354 return XXH3_128bits_internal(input, len, seed,
5355 XXH3_kSecret, sizeof(XXH3_kSecret),
5356 XXH3_hashLong_128b_withSeed);
5357 }
5358
5359 /*! @ingroup xxh3_family */
5360 XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSecretandSeed(const void * input,size_t len,const void * secret,size_t secretSize,XXH64_hash_t seed)5361 XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
5362 {
5363 if (len <= XXH3_MIDSIZE_MAX)
5364 return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
5365 return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
5366 }
5367
5368 /*! @ingroup xxh3_family */
5369 XXH_PUBLIC_API XXH128_hash_t
XXH128(const void * input,size_t len,XXH64_hash_t seed)5370 XXH128(const void* input, size_t len, XXH64_hash_t seed)
5371 {
5372 return XXH3_128bits_withSeed(input, len, seed);
5373 }
5374
5375
5376 /* === XXH3 128-bit streaming === */
5377
5378 /*
5379 * All initialization and update functions are identical to 64-bit streaming variant.
5380 * The only difference is the finalization routine.
5381 */
5382
5383 /*! @ingroup xxh3_family */
5384 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset(XXH3_state_t * statePtr)5385 XXH3_128bits_reset(XXH3_state_t* statePtr)
5386 {
5387 return XXH3_64bits_reset(statePtr);
5388 }
5389
5390 /*! @ingroup xxh3_family */
5391 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecret(XXH3_state_t * statePtr,const void * secret,size_t secretSize)5392 XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
5393 {
5394 return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
5395 }
5396
5397 /*! @ingroup xxh3_family */
5398 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSeed(XXH3_state_t * statePtr,XXH64_hash_t seed)5399 XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
5400 {
5401 return XXH3_64bits_reset_withSeed(statePtr, seed);
5402 }
5403
5404 /*! @ingroup xxh3_family */
5405 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_reset_withSecretandSeed(XXH3_state_t * statePtr,const void * secret,size_t secretSize,XXH64_hash_t seed)5406 XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
5407 {
5408 return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
5409 }
5410
5411 /*! @ingroup xxh3_family */
5412 XXH_PUBLIC_API XXH_errorcode
XXH3_128bits_update(XXH3_state_t * state,const void * input,size_t len)5413 XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
5414 {
5415 return XXH3_update(state, (const xxh_u8*)input, len,
5416 XXH3_accumulate_512, XXH3_scrambleAcc);
5417 }
5418
5419 /*! @ingroup xxh3_family */
XXH3_128bits_digest(const XXH3_state_t * state)5420 XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
5421 {
5422 const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
5423 if (state->totalLen > XXH3_MIDSIZE_MAX) {
5424 XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
5425 XXH3_digest_long(acc, state, secret);
5426 XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
5427 { XXH128_hash_t h128;
5428 h128.low64 = XXH3_mergeAccs(acc,
5429 secret + XXH_SECRET_MERGEACCS_START,
5430 (xxh_u64)state->totalLen * XXH_PRIME64_1);
5431 h128.high64 = XXH3_mergeAccs(acc,
5432 secret + state->secretLimit + XXH_STRIPE_LEN
5433 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
5434 ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
5435 return h128;
5436 }
5437 }
5438 /* len <= XXH3_MIDSIZE_MAX : short code */
5439 if (state->seed)
5440 return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
5441 return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
5442 secret, state->secretLimit + XXH_STRIPE_LEN);
5443 }
5444
5445 /* 128-bit utility functions */
5446
5447 #include <string.h> /* memcmp, memcpy */
5448
5449 /* return : 1 is equal, 0 if different */
5450 /*! @ingroup xxh3_family */
XXH128_isEqual(XXH128_hash_t h1,XXH128_hash_t h2)5451 XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
5452 {
5453 /* note : XXH128_hash_t is compact, it has no padding byte */
5454 return !(memcmp(&h1, &h2, sizeof(h1)));
5455 }
5456
5457 /* This prototype is compatible with stdlib's qsort().
5458 * return : >0 if *h128_1 > *h128_2
5459 * <0 if *h128_1 < *h128_2
5460 * =0 if *h128_1 == *h128_2 */
5461 /*! @ingroup xxh3_family */
XXH128_cmp(const void * h128_1,const void * h128_2)5462 XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
5463 {
5464 XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
5465 XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
5466 int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
5467 /* note : bets that, in most cases, hash values are different */
5468 if (hcmp) return hcmp;
5469 return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
5470 }
5471
5472
5473 /*====== Canonical representation ======*/
5474 /*! @ingroup xxh3_family */
5475 XXH_PUBLIC_API void
XXH128_canonicalFromHash(XXH128_canonical_t * dst,XXH128_hash_t hash)5476 XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
5477 {
5478 XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
5479 if (XXH_CPU_LITTLE_ENDIAN) {
5480 hash.high64 = XXH_swap64(hash.high64);
5481 hash.low64 = XXH_swap64(hash.low64);
5482 }
5483 XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
5484 XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
5485 }
5486
5487 /*! @ingroup xxh3_family */
5488 XXH_PUBLIC_API XXH128_hash_t
XXH128_hashFromCanonical(const XXH128_canonical_t * src)5489 XXH128_hashFromCanonical(const XXH128_canonical_t* src)
5490 {
5491 XXH128_hash_t h;
5492 h.high64 = XXH_readBE64(src);
5493 h.low64 = XXH_readBE64(src->digest + 8);
5494 return h;
5495 }
5496
5497
5498
5499 /* ==========================================
5500 * Secret generators
5501 * ==========================================
5502 */
5503 #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
5504
XXH3_combine16(void * dst,XXH128_hash_t h128)5505 static void XXH3_combine16(void* dst, XXH128_hash_t h128)
5506 {
5507 XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
5508 XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
5509 }
5510
5511 /*! @ingroup xxh3_family */
5512 XXH_PUBLIC_API XXH_errorcode
XXH3_generateSecret(void * secretBuffer,size_t secretSize,const void * customSeed,size_t customSeedSize)5513 XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
5514 {
5515 XXH_ASSERT(secretBuffer != NULL);
5516 if (secretBuffer == NULL) return XXH_ERROR;
5517 XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
5518 if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
5519 if (customSeedSize == 0) {
5520 customSeed = XXH3_kSecret;
5521 customSeedSize = XXH_SECRET_DEFAULT_SIZE;
5522 }
5523 XXH_ASSERT(customSeed != NULL);
5524 if (customSeed == NULL) return XXH_ERROR;
5525
5526 /* Fill secretBuffer with a copy of customSeed - repeat as needed */
5527 { size_t pos = 0;
5528 while (pos < secretSize) {
5529 size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
5530 memcpy((char*)secretBuffer + pos, customSeed, toCopy);
5531 pos += toCopy;
5532 } }
5533
5534 { size_t const nbSeg16 = secretSize / 16;
5535 size_t n;
5536 XXH128_canonical_t scrambler;
5537 XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
5538 for (n=0; n<nbSeg16; n++) {
5539 XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
5540 XXH3_combine16((char*)secretBuffer + n*16, h128);
5541 }
5542 /* last segment */
5543 XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
5544 }
5545 return XXH_OK;
5546 }
5547
5548 /*! @ingroup xxh3_family */
5549 XXH_PUBLIC_API void
XXH3_generateSecret_fromSeed(void * secretBuffer,XXH64_hash_t seed)5550 XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
5551 {
5552 XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
5553 XXH3_initCustomSecret(secret, seed);
5554 XXH_ASSERT(secretBuffer != NULL);
5555 memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
5556 }
5557
5558
5559
5560 /* Pop our optimization override from above */
5561 #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
5562 && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
5563 && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
5564 # pragma GCC pop_options
5565 #endif
5566
5567 #endif /* XXH_NO_LONG_LONG */
5568
5569 #endif /* XXH_NO_XXH3 */
5570
5571 /*!
5572 * @}
5573 */
5574 #endif /* XXH_IMPLEMENTATION */
5575
5576
5577 #if defined (__cplusplus)
5578 }
5579 #endif
5580