xref: /PHP-7.2/ext/pcre/pcrelib/sljit/sljitLir.h (revision 8a287c0e)
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29 
30 /*
31    ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33    ------------------------------------------------------------------------
34 
35    Short description
36     Advantages:
37       - The execution can be continued from any LIR instruction. In other
38         words, it is possible to jump to any label from anywhere, even from
39         a code fragment, which is compiled later, if both compiled code
40         shares the same context. See sljit_emit_enter for more details
41       - Supports self modifying code: target of (conditional) jump and call
42         instructions and some constant values can be dynamically modified
43         during runtime
44         - although it is not suggested to do it frequently
45         - can be used for inline caching: save an important value once
46           in the instruction stream
47         - since this feature limits the optimization possibilities, a
48           special flag must be passed at compile time when these
49           instructions are emitted
50       - A fixed stack space can be allocated for local variables
51       - The compiler is thread-safe
52       - The compiler is highly configurable through preprocessor macros.
53         You can disable unneeded features (multithreading in single
54         threaded applications), and you can use your own system functions
55         (including memory allocators). See sljitConfig.h
56     Disadvantages:
57       - No automatic register allocation, and temporary results are
58         not stored on the stack. (hence the name comes)
59     In practice:
60       - This approach is very effective for interpreters
61         - One of the saved registers typically points to a stack interface
62         - It can jump to any exception handler anytime (even if it belongs
63           to another function)
64         - Hot paths can be modified during runtime reflecting the changes
65           of the fastest execution path of the dynamic language
66         - SLJIT supports complex memory addressing modes
67         - mainly position and context independent code (except some cases)
68 
69     For valgrind users:
70       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72 
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76 
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80 
81 #include "sljitConfigInternal.h"
82 
83 /* --------------------------------------------------------------------- */
84 /*  Error codes                                                          */
85 /* --------------------------------------------------------------------- */
86 
87 /* Indicates no error. */
88 #define SLJIT_SUCCESS			0
89 /* After the call of sljit_generate_code(), the error code of the compiler
90    is set to this value to avoid future sljit calls (in debug mode at least).
91    The complier should be freed after sljit_generate_code(). */
92 #define SLJIT_ERR_COMPILED		1
93 /* Cannot allocate non executable memory. */
94 #define SLJIT_ERR_ALLOC_FAILED		2
95 /* Cannot allocate executable memory.
96    Only for sljit_generate_code() */
97 #define SLJIT_ERR_EX_ALLOC_FAILED	3
98 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 #define SLJIT_ERR_UNSUPPORTED		4
100 /* An ivalid argument is passed to any SLJIT function. */
101 #define SLJIT_ERR_BAD_ARGUMENT		5
102 /* Dynamic code modification is not enabled. */
103 #define SLJIT_ERR_DYN_CODE_MOD		6
104 
105 /* --------------------------------------------------------------------- */
106 /*  Registers                                                            */
107 /* --------------------------------------------------------------------- */
108 
109 /*
110   Scratch (R) registers: registers whose may not preserve their values
111   across function calls.
112 
113   Saved (S) registers: registers whose preserve their values across
114   function calls.
115 
116   The scratch and saved register sets are overlap. The last scratch register
117   is the first saved register, the one before the last is the second saved
118   register, and so on.
119 
120   If an architecture provides two scratch and three saved registers,
121   its scratch and saved register sets are the following:
122 
123      R0   |        |   R0 is always a scratch register
124      R1   |        |   R1 is always a scratch register
125     [R2]  |   S2   |   R2 and S2 represent the same physical register
126     [R3]  |   S1   |   R3 and S1 represent the same physical register
127     [R4]  |   S0   |   R4 and S0 represent the same physical register
128 
129   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
130         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
131 
132   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
133         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
134         are virtual on x86-32. See below.
135 
136   The purpose of this definition is convenience: saved registers can
137   be used as extra scratch registers. For example four registers can
138   be specified as scratch registers and the fifth one as saved register
139   on the CPU above and any user code which requires four scratch
140   registers can run unmodified. The SLJIT compiler automatically saves
141   the content of the two extra scrath register on the stack. Scratch
142   registers can also be preserved by saving their value on the stack
143   but this needs to be done manually.
144 
145   Note: To emphasize that registers assigned to R2-R4 are saved
146         registers, they are enclosed by square brackets.
147 
148   Note: sljit_emit_enter and sljit_set_context defines whether a register
149         is S or R register. E.g: when 3 scratches and 1 saved is mapped
150         by sljit_emit_enter, the allowed register set will be: R0-R2 and
151         S0. Although S2 is mapped to the same position as R2, it does not
152         available in the current configuration. Furthermore the S1 register
153         is not available at all.
154 */
155 
156 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1 and
157    and sljit_emit_op2 operations the result is discarded. If no status
158    flags are set, no instructions are emitted for these operations. Data
159    prefetch is a special exception, see SLJIT_MOV operation. Other SLJIT
160    operations do not support SLJIT_UNUSED as a destination operand. */
161 #define SLJIT_UNUSED		0
162 
163 /* Scratch registers. */
164 #define SLJIT_R0	1
165 #define SLJIT_R1	2
166 #define SLJIT_R2	3
167 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
168    are allocated on the stack). These registers are called virtual
169    and cannot be used for memory addressing (cannot be part of
170    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
171    limitation on other CPUs. See sljit_get_register_index(). */
172 #define SLJIT_R3	4
173 #define SLJIT_R4	5
174 #define SLJIT_R5	6
175 #define SLJIT_R6	7
176 #define SLJIT_R7	8
177 #define SLJIT_R8	9
178 #define SLJIT_R9	10
179 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
180    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
181 #define SLJIT_R(i)	(1 + (i))
182 
183 /* Saved registers. */
184 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
185 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
186 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
187 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
188    are allocated on the stack). These registers are called virtual
189    and cannot be used for memory addressing (cannot be part of
190    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
191    limitation on other CPUs. See sljit_get_register_index(). */
192 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
193 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
194 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
195 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
196 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
197 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
198 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
199 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
200    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
201 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
202 
203 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
204 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
205 
206 /* The SLJIT_SP provides direct access to the linear stack space allocated by
207    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
208    The immediate offset is extended by the relative stack offset automatically.
209    The sljit_get_local_base can be used to obtain the absolute offset. */
210 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
211 
212 /* Return with machine word. */
213 
214 #define SLJIT_RETURN_REG	SLJIT_R0
215 
216 /* x86 prefers specific registers for special purposes. In case of shift
217    by register it supports only SLJIT_R2 for shift argument
218    (which is the src2 argument of sljit_emit_op2). If another register is
219    used, sljit must exchange data between registers which cause a minor
220    slowdown. Other architectures has no such limitation. */
221 
222 #define SLJIT_PREF_SHIFT_REG	SLJIT_R2
223 
224 /* --------------------------------------------------------------------- */
225 /*  Floating point registers                                             */
226 /* --------------------------------------------------------------------- */
227 
228 /* Each floating point register can store a 32 or a 64 bit precision
229    value. The FR and FS register sets are overlap in the same way as R
230    and S register sets. See above. */
231 
232 /* Note: SLJIT_UNUSED as destination is not valid for floating point
233    operations, since they cannot be used for setting flags. */
234 
235 /* Floating point scratch registers. */
236 #define SLJIT_FR0	1
237 #define SLJIT_FR1	2
238 #define SLJIT_FR2	3
239 #define SLJIT_FR3	4
240 #define SLJIT_FR4	5
241 #define SLJIT_FR5	6
242 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
243    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
244 #define SLJIT_FR(i)	(1 + (i))
245 
246 /* Floating point saved registers. */
247 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
248 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
249 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
250 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
251 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
252 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
253 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
254    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
255 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
256 
257 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
258 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
259 
260 /* --------------------------------------------------------------------- */
261 /*  Main structures and functions                                        */
262 /* --------------------------------------------------------------------- */
263 
264 /*
265 	The following structures are private, and can be changed in the
266 	future. Keeping them here allows code inlining.
267 */
268 
269 struct sljit_memory_fragment {
270 	struct sljit_memory_fragment *next;
271 	sljit_uw used_size;
272 	/* Must be aligned to sljit_sw. */
273 	sljit_u8 memory[1];
274 };
275 
276 struct sljit_label {
277 	struct sljit_label *next;
278 	sljit_uw addr;
279 	/* The maximum size difference. */
280 	sljit_uw size;
281 };
282 
283 struct sljit_jump {
284 	struct sljit_jump *next;
285 	sljit_uw addr;
286 	sljit_sw flags;
287 	union {
288 		sljit_uw target;
289 		struct sljit_label* label;
290 	} u;
291 };
292 
293 struct sljit_const {
294 	struct sljit_const *next;
295 	sljit_uw addr;
296 };
297 
298 struct sljit_compiler {
299 	sljit_s32 error;
300 	sljit_s32 options;
301 
302 	struct sljit_label *labels;
303 	struct sljit_jump *jumps;
304 	struct sljit_const *consts;
305 	struct sljit_label *last_label;
306 	struct sljit_jump *last_jump;
307 	struct sljit_const *last_const;
308 
309 	void *allocator_data;
310 	struct sljit_memory_fragment *buf;
311 	struct sljit_memory_fragment *abuf;
312 
313 	/* Used scratch registers. */
314 	sljit_s32 scratches;
315 	/* Used saved registers. */
316 	sljit_s32 saveds;
317 	/* Used float scratch registers. */
318 	sljit_s32 fscratches;
319 	/* Used float saved registers. */
320 	sljit_s32 fsaveds;
321 	/* Local stack size. */
322 	sljit_s32 local_size;
323 	/* Code size. */
324 	sljit_uw size;
325 	/* Relative offset of the executable mapping from the writable mapping. */
326 	sljit_uw executable_offset;
327 	/* Executable size for statistical purposes. */
328 	sljit_uw executable_size;
329 
330 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
331 	sljit_s32 args;
332 	sljit_s32 locals_offset;
333 	sljit_s32 saveds_offset;
334 #endif
335 
336 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
337 	sljit_s32 mode32;
338 #ifdef _WIN64
339 	sljit_s32 locals_offset;
340 #endif
341 #endif
342 
343 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
344 	/* Constant pool handling. */
345 	sljit_uw *cpool;
346 	sljit_u8 *cpool_unique;
347 	sljit_uw cpool_diff;
348 	sljit_uw cpool_fill;
349 	/* Other members. */
350 	/* Contains pointer, "ldr pc, [...]" pairs. */
351 	sljit_uw patches;
352 #endif
353 
354 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
355 	/* Temporary fields. */
356 	sljit_uw shift_imm;
357 #endif
358 
359 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
360 	sljit_s32 cache_arg;
361 	sljit_sw cache_argw;
362 #endif
363 
364 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
365 	sljit_sw imm;
366 	sljit_s32 cache_arg;
367 	sljit_sw cache_argw;
368 #endif
369 
370 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
371 	sljit_s32 delay_slot;
372 	sljit_s32 cache_arg;
373 	sljit_sw cache_argw;
374 #endif
375 
376 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
377 	sljit_s32 delay_slot;
378 	sljit_s32 cache_arg;
379 	sljit_sw cache_argw;
380 #endif
381 
382 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
383 	sljit_s32 cache_arg;
384 	sljit_sw cache_argw;
385 #endif
386 
387 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
388 	FILE* verbose;
389 #endif
390 
391 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
392 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
393 	/* Flags specified by the last arithmetic instruction.
394 	   It contains the type of the variable flag. */
395 	sljit_s32 last_flags;
396 	/* Local size passed to the functions. */
397 	sljit_s32 logical_local_size;
398 #endif
399 
400 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
401 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
402 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
403 	/* Trust arguments when the API function is called. */
404 	sljit_s32 skip_checks;
405 #endif
406 };
407 
408 /* --------------------------------------------------------------------- */
409 /*  Main functions                                                       */
410 /* --------------------------------------------------------------------- */
411 
412 /* Creates an sljit compiler. The allocator_data is required by some
413    custom memory managers. This pointer is passed to SLJIT_MALLOC
414    and SLJIT_FREE macros. Most allocators (including the default
415    one) ignores this value, and it is recommended to pass NULL
416    as a dummy value for allocator_data.
417 
418    Returns NULL if failed. */
419 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
420 
421 /* Frees everything except the compiled machine code. */
422 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
423 
424 /* Returns the current error code. If an error is occurred, future sljit
425    calls which uses the same compiler argument returns early with the same
426    error code. Thus there is no need for checking the error after every
427    call, it is enough to do it before the code is compiled. Removing
428    these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)429 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
430 
431 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
432    if an error was detected before. After the error code is set
433    the compiler behaves as if the allocation failure happened
434    during an sljit function call. This can greatly simplify error
435    checking, since only the compiler status needs to be checked
436    after the compilation. */
437 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
438 
439 /*
440    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
441    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
442    compiler, and freed by sljit_free_compiler. The returned pointer is
443    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
444    the compiling, and no need to worry about freeing them. The size is
445    enough to contain at most 16 pointers. If the size is outside of the range,
446    the function will return with NULL. However, this return value does not
447    indicate that there is no more memory (does not set the current error code
448    of the compiler to out-of-memory status).
449 */
450 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
451 
452 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
453 /* Passing NULL disables verbose. */
454 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
455 #endif
456 
457 /*
458    Create executable code from the sljit instruction stream. This is the final step
459    of the code generation so no more instructions can be added after this call.
460 */
461 
462 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
463 
464 /* Free executable code. */
465 
466 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
467 
468 /*
469    When the protected executable allocator is used the JIT code is mapped
470    twice. The first mapping has read/write and the second mapping has read/exec
471    permissions. This function returns with the relative offset of the executable
472    mapping using the writable mapping as the base after the machine code is
473    successfully generated. The returned value is always 0 for the normal executable
474    allocator, since it uses only one mapping with read/write/exec permissions.
475    Dynamic code modifications requires this value.
476 
477    Before a successful code generation, this function returns with 0.
478 */
sljit_get_executable_offset(struct sljit_compiler * compiler)479 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
480 
481 /*
482    The executable memory consumption of the generated code can be retrieved by
483    this function. The returned value can be used for statistical purposes.
484 
485    Before a successful code generation, this function returns with 0.
486 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)487 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
488 
489 /* Returns with non-zero if the feature or limitation type passed as its
490    argument is present on the current CPU.
491 
492    Some features (e.g. floating point operations) require hardware (CPU)
493    support while others (e.g. move with update) are emulated if not available.
494    However even if a feature is emulated, specialized code paths can be faster
495    than the emulation. Some limitations are emulated as well so their general
496    case is supported but it has extra performance costs. */
497 
498 /* [Not emulated] Floating-point support is available. */
499 #define SLJIT_HAS_FPU			0
500 /* [Limitation] Some registers are virtual registers. */
501 #define SLJIT_HAS_VIRTUAL_REGISTERS	1
502 /* [Emulated] Some forms of move with pre update is supported. */
503 #define SLJIT_HAS_PRE_UPDATE		2
504 /* [Emulated] Count leading zero is supported. */
505 #define SLJIT_HAS_CLZ			3
506 /* [Emulated] Conditional move is supported. */
507 #define SLJIT_HAS_CMOV			4
508 /* [Limitation] [Emulated] Shifting with register is limited to SLJIT_PREF_SHIFT_REG. */
509 #define SLJIT_HAS_PREF_SHIFT_REG	5
510 
511 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
512 /* [Not emulated] SSE2 support is available on x86. */
513 #define SLJIT_HAS_SSE2			100
514 #endif
515 
516 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
517 
518 /* Instruction generation. Returns with any error code. If there is no
519    error, they return with SLJIT_SUCCESS. */
520 
521 /*
522    The executable code is a function call from the viewpoint of the C
523    language. The function calls must obey to the ABI (Application
524    Binary Interface) of the platform, which specify the purpose of
525    all machine registers and stack handling among other things. The
526    sljit_emit_enter function emits the necessary instructions for
527    setting up a new context for the executable code and moves function
528    arguments to the saved registers. Furthermore the options argument
529    can be used to pass configuration options to the compiler. The
530    available options are listed before sljit_emit_enter.
531 
532    The number of sljit_sw arguments passed to the generated function
533    are specified in the "args" parameter. The number of arguments must
534    be less than or equal to 3. The first argument goes to SLJIT_S0,
535    the second goes to SLJIT_S1 and so on. The register set used by
536    the function must be declared as well. The number of scratch and
537    saved registers used by the function must be passed to sljit_emit_enter.
538    Only R registers between R0 and "scratches" argument can be used
539    later. E.g. if "scratches" is set to 2, the register set will be
540    limited to R0 and R1. The S registers and the floating point
541    registers ("fscratches" and "fsaveds") are specified in a similar
542    way. The sljit_emit_enter is also capable of allocating a stack
543    space for local variables. The "local_size" argument contains the
544    size in bytes of this local area and its staring address is stored
545    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
546    SLJIT_SP + local_size (exclusive) can be modified freely until
547    the function returns. The stack space is not initialized.
548 
549    Note: the following conditions must met:
550          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
551          0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
552          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
553          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
554          0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
555          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
556 
557    Note: every call of sljit_emit_enter and sljit_set_context
558          overwrites the previous context.
559 */
560 
561 /* The absolute address returned by sljit_get_local_base with
562 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
563 #define SLJIT_F64_ALIGNMENT 0x00000001
564 
565 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
566 #define SLJIT_MAX_LOCAL_SIZE	65536
567 
568 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
569 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
570 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
571 
572 /* The machine code has a context (which contains the local stack space size,
573    number of used registers, etc.) which initialized by sljit_emit_enter. Several
574    functions (like sljit_emit_return) requres this context to be able to generate
575    the appropriate code. However, some code fragments (like inline cache) may have
576    no normal entry point so their context is unknown for the compiler. Their context
577    can be provided to the compiler by the sljit_set_context function.
578 
579    Note: every call of sljit_emit_enter and sljit_set_context overwrites
580          the previous context. */
581 
582 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
583 	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
584 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
585 
586 /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
587    function does not return with anything or any opcode between SLJIT_MOV and
588    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
589    is SLJIT_UNUSED, otherwise see below the description about source and
590    destination arguments. */
591 
592 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
593 	sljit_s32 src, sljit_sw srcw);
594 
595 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
596    even the stack frame is passed to the callee. The return address is preserved in
597    dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
598    is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
599 
600 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
601    instructions are needed. Excellent for small uility functions, where saving registers
602    and setting up a new stack frame would cost too much performance. However, it is still
603    possible to return to the address of the caller (or anywhere else). */
604 
605 /* Note: may destroy flags. */
606 
607 /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
608    since many architectures do clever branch prediction on call / return instruction pairs. */
609 
610 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
611 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
612 
613 /*
614    Source and destination values for arithmetical instructions
615     imm              - a simple immediate value (cannot be used as a destination)
616     reg              - any of the registers (immediate argument must be 0)
617     [imm]            - absolute immediate memory address
618     [reg+imm]        - indirect memory address
619     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
620                        useful for (byte, half, int, sljit_sw) array access
621                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
622 */
623 
624 /*
625    IMPORATNT NOTE: memory access MUST be naturally aligned except
626                    SLJIT_UNALIGNED macro is defined and its value is 1.
627 
628      length | alignment
629    ---------+-----------
630      byte   | 1 byte (any physical_address is accepted)
631      half   | 2 byte (physical_address & 0x1 == 0)
632      int    | 4 byte (physical_address & 0x3 == 0)
633      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
634             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
635     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
636             | on 64 bit machines)
637 
638    Note:   Different architectures have different addressing limitations.
639            A single instruction is enough for the following addressing
640            modes. Other adrressing modes are emulated by instruction
641            sequences. This information could help to improve those code
642            generators which focuses only a few architectures.
643 
644    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
645            [reg+(reg<<imm)] is supported
646            [imm], -2^32+1 <= imm <= 2^32-1 is supported
647            Write-back is not supported
648    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
649                 bytes, any halfs or floating point values)
650            [reg+(reg<<imm)] is supported
651            Write-back is supported
652    arm-t2: [reg+imm], -255 <= imm <= 4095
653            [reg+(reg<<imm)] is supported
654            Write back is supported only for [reg+imm], where -255 <= imm <= 255
655    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
656                 signed load on 64 bit requires immediates divisible by 4.
657                 [reg+imm] is not supported for signed 8 bit values.
658            [reg+reg] is supported
659            Write-back is supported except for one instruction: 32 bit signed
660                 load with [reg+imm] addressing mode on 64 bit.
661    mips:   [reg+imm], -65536 <= imm <= 65535
662    sparc:  [reg+imm], -4096 <= imm <= 4095
663            [reg+reg] is supported
664 */
665 
666 /* Register output: simply the name of the register.
667    For destination, you can use SLJIT_UNUSED as well. */
668 #define SLJIT_MEM		0x80
669 #define SLJIT_MEM0()		(SLJIT_MEM)
670 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
671 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
672 #define SLJIT_IMM		0x40
673 
674 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
675    32 bit CPUs. When this option is set for an arithmetic operation, only
676    the lower 32 bit of the input registers are used, and the CPU status
677    flags are set according to the 32 bit result. Although the higher 32 bit
678    of the input and the result registers are not defined by SLJIT, it might
679    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
680    requirements all source registers must be the result of those operations
681    where this option was also set. Memory loads read 32 bit values rather
682    than 64 bit ones. In other words 32 bit and 64 bit operations cannot
683    be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
684    register can hold any 32 or 64 bit value, and it is converted to a 32 bit
685    compatible format first. This conversion is free (no instructions are
686    emitted) on most CPUs. A 32 bit value can also be coverted to a 64 bit
687    value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
688 
689    Note: memory addressing always uses 64 bit values on 64 bit systems so
690          the result of a 32 bit operation must not be used with SLJIT_MEMx
691          macros.
692 
693    This option is part of the instruction name, so there is no need to
694    manually set it. E.g:
695 
696      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
697 #define SLJIT_I32_OP		0x100
698 
699 /* Set F32 (single) precision mode for floating-point computation. This
700    option is similar to SLJIT_I32_OP, it just applies to floating point
701    registers. When this option is passed, the CPU performs 32 bit floating
702    point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
703    register arguments must be the result of those operations where this
704    option was also set.
705 
706    This option is part of the instruction name, so there is no need to
707    manually set it. E.g:
708 
709      SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
710  */
711 #define SLJIT_F32_OP		SLJIT_I32_OP
712 
713 /* Many CPUs (x86, ARM, PPC) has status flags which can be set according
714    to the result of an operation. Other CPUs (MIPS) does not have status
715    flags, and results must be stored in registers. To cover both architecture
716    types efficiently only two flags are defined by SLJIT:
717 
718     * Zero (equal) flag: it is set if the result is zero
719     * Variable flag: its value is defined by the last arithmetic operation
720 
721    SLJIT instructions can set any or both of these flags. The value of
722    these flags is undefined if the instruction does not specify their value.
723    The description of each instruction contains the list of allowed flag
724    types.
725 
726    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
727 
728      sljit_op2(..., SLJIT_ADD, ...)
729        Both the zero and variable flags are undefined so they can
730        have any value after the operation is completed.
731 
732      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
733        Sets the zero flag if the result is zero, clears it otherwise.
734        The variable flag is undefined.
735 
736      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
737        Sets the variable flag if an integer overflow occurs, clears
738        it otherwise. The zero flag is undefined.
739 
740      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
741        Sets the zero flag if the result is zero, clears it otherwise.
742        Sets the variable flag if unsigned overflow (carry) occurs,
743        clears it otherwise.
744 
745    If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
746    unchanged.
747 
748    Using these flags can reduce the number of emitted instructions. E.g. a
749    fast loop can be implemented by decreasing a counter register and set the
750    zero flag to jump back if the counter register is not reached zero.
751 
752    Motivation: although CPUs can set a large number of flags, usually their
753    values are ignored or only one of them is used. Emulating a large number
754    of flags on systems without flag register is complicated so SLJIT
755    instructions must specify the flag they want to use and only that flag
756    will be emulated. The last arithmetic instruction can be repeated if
757    multiple flags needs to be checked.
758 */
759 
760 /* Set Zero status flag. */
761 #define SLJIT_SET_Z			0x0200
762 /* Set the variable status flag if condition is true.
763    See comparison types. */
764 #define SLJIT_SET(condition)			((condition) << 10)
765 
766 /* Notes:
767      - you cannot postpone conditional jump instructions except if noted that
768        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
769      - flag combinations: '|' means 'logical or'. */
770 
771 /* Starting index of opcodes for sljit_emit_op0. */
772 #define SLJIT_OP0_BASE			0
773 
774 /* Flags: - (does not modify flags)
775    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
776          It falls back to SLJIT_NOP in those cases. */
777 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
778 /* Flags: - (does not modify flags)
779    Note: may or may not cause an extra cycle wait
780          it can even decrease the runtime in a few cases. */
781 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
782 /* Flags: - (may destroy flags)
783    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
784    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
785 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
786 /* Flags: - (may destroy flags)
787    Signed multiplication of SLJIT_R0 and SLJIT_R1.
788    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
789 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
790 /* Flags: - (may destroy flags)
791    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
792    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
793    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
794 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
795 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
796 /* Flags: - (may destroy flags)
797    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
798    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
799    Note: if SLJIT_R1 is 0, the behaviour is undefined.
800    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
801          the behaviour is undefined. */
802 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
803 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
804 /* Flags: - (may destroy flags)
805    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
806    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
807    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
808 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
809 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
810 /* Flags: - (may destroy flags)
811    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
812    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
813    Note: if SLJIT_R1 is 0, the behaviour is undefined.
814    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
815          the behaviour is undefined. */
816 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
817 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
818 
819 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
820 
821 /* Starting index of opcodes for sljit_emit_op1. */
822 #define SLJIT_OP1_BASE			32
823 
824 /* The MOV instruction transfer data from source to destination.
825 
826    MOV instruction suffixes:
827 
828    U8  - unsigned 8 bit data transfer
829    S8  - signed 8 bit data transfer
830    U16 - unsigned 16 bit data transfer
831    S16 - signed 16 bit data transfer
832    U32 - unsigned int (32 bit) data transfer
833    S32 - signed int (32 bit) data transfer
834    P   - pointer (sljit_p) data transfer
835 
836    U = move with update (pre form). If source or destination defined as
837        SLJIT_MEM1(r1) or SLJIT_MEM2(r1, r2), r1 is increased by the
838        offset part of the address.
839 
840    Register arguments and base registers can only be used once for move
841    with update instructions. The shift value of SLJIT_MEM2 addressing
842    mode must also be 0. Reason: SLJIT_MOVU instructions are expected to
843    be in high-performance loops where complex instruction emulation
844    would be too costly.
845 
846    Examples for invalid move with update instructions:
847 
848    sljit_emit_op1(..., SLJIT_MOVU_U8,
849        SLJIT_R0, 0, SLJIT_MEM1(SLJIT_R0), 8);
850    sljit_emit_op1(..., SLJIT_MOVU_U8,
851        SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_R0, 0);
852    sljit_emit_op1(..., SLJIT_MOVU_U8,
853        SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM1(SLJIT_R0), 8);
854    sljit_emit_op1(..., SLJIT_MOVU_U8,
855        SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0);
856    sljit_emit_op1(..., SLJIT_MOVU_U8,
857        SLJIT_R2, 0, SLJIT_MEM2(SLJIT_R0, SLJIT_R1), 1);
858 
859    The following example is valid, since only the offset register is
860    used multiple times:
861 
862    sljit_emit_op1(..., SLJIT_MOVU_U8,
863        SLJIT_MEM2(SLJIT_R0, SLJIT_R2), 0, SLJIT_MEM2(SLJIT_R1, SLJIT_R2), 0);
864 
865    If the destination of a MOV without update instruction is SLJIT_UNUSED
866    and the source operand is a memory address the compiler emits a prefetch
867    instruction if this instruction is supported by the current CPU.
868    Higher data sizes bring the data closer to the core: a MOV with word
869    size loads the data into a higher level cache than a byte size. Otherwise
870    the type does not affect the prefetch instruction. Furthermore a prefetch
871    instruction never fails, so it can be used to prefetch a data from an
872    address and check whether that address is NULL afterwards.
873 */
874 
875 /* Flags: - (does not modify flags) */
876 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
877 /* Flags: - (does not modify flags) */
878 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
879 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
880 /* Flags: - (does not modify flags) */
881 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
882 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
883 /* Flags: - (does not modify flags) */
884 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
885 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
886 /* Flags: - (does not modify flags) */
887 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
888 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
889 /* Flags: - (does not modify flags)
890    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
891 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
892 /* Flags: - (does not modify flags)
893    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
894 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
895 /* Flags: - (does not modify flags) */
896 #define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
897 /* Flags: - (does not modify flags) */
898 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
899 /* Flags: - (may destroy flags) */
900 #define SLJIT_MOVU			(SLJIT_OP1_BASE + 8)
901 /* Flags: - (may destroy flags) */
902 #define SLJIT_MOVU_U8			(SLJIT_OP1_BASE + 9)
903 #define SLJIT_MOVU32_U8			(SLJIT_MOVU_U8 | SLJIT_I32_OP)
904 /* Flags: - (may destroy flags) */
905 #define SLJIT_MOVU_S8			(SLJIT_OP1_BASE + 10)
906 #define SLJIT_MOVU32_S8			(SLJIT_MOVU_S8 | SLJIT_I32_OP)
907 /* Flags: - (may destroy flags) */
908 #define SLJIT_MOVU_U16			(SLJIT_OP1_BASE + 11)
909 #define SLJIT_MOVU32_U16			(SLJIT_MOVU_U16 | SLJIT_I32_OP)
910 /* Flags: - (may destroy flags) */
911 #define SLJIT_MOVU_S16			(SLJIT_OP1_BASE + 12)
912 #define SLJIT_MOVU32_S16		(SLJIT_MOVU_S16 | SLJIT_I32_OP)
913 /* Flags: - (may destroy flags)
914    Note: no SLJIT_MOVU32_U32 form, since it is the same as SLJIT_MOVU32 */
915 #define SLJIT_MOVU_U32			(SLJIT_OP1_BASE + 13)
916 /* Flags: - (may destroy flags)
917    Note: no SLJIT_MOVU32_S32 form, since it is the same as SLJIT_MOVU32 */
918 #define SLJIT_MOVU_S32			(SLJIT_OP1_BASE + 14)
919 /* Flags: - (may destroy flags) */
920 #define SLJIT_MOVU32			(SLJIT_MOVU_S32 | SLJIT_I32_OP)
921 /* Flags: - (may destroy flags) */
922 #define SLJIT_MOVU_P			(SLJIT_OP1_BASE + 15)
923 /* Flags: Z */
924 #define SLJIT_NOT			(SLJIT_OP1_BASE + 16)
925 #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
926 /* Flags: Z | OVERFLOW */
927 #define SLJIT_NEG			(SLJIT_OP1_BASE + 17)
928 #define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
929 /* Count leading zeroes
930    Flags: - (may destroy flags) */
931 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 18)
932 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
933 
934 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
935 	sljit_s32 dst, sljit_sw dstw,
936 	sljit_s32 src, sljit_sw srcw);
937 
938 /* Starting index of opcodes for sljit_emit_op2. */
939 #define SLJIT_OP2_BASE			96
940 
941 /* Flags: Z | OVERFLOW | CARRY */
942 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
943 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
944 /* Flags: CARRY */
945 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
946 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
947 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
948           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
949           SIG_LESS_EQUAL | CARRY */
950 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
951 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
952 /* Flags: CARRY */
953 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
954 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
955 /* Note: integer mul
956    Flags: MUL_OVERFLOW */
957 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
958 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
959 /* Flags: Z */
960 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
961 #define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
962 /* Flags: Z */
963 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
964 #define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
965 /* Flags: Z */
966 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
967 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
968 /* Flags: Z
969    Let bit_length be the length of the shift operation: 32 or 64.
970    If src2 is immediate, src2w is masked by (bit_length - 1).
971    Otherwise, if the content of src2 is outside the range from 0
972    to bit_length - 1, the result is undefined. */
973 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
974 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
975 /* Flags: Z
976    Let bit_length be the length of the shift operation: 32 or 64.
977    If src2 is immediate, src2w is masked by (bit_length - 1).
978    Otherwise, if the content of src2 is outside the range from 0
979    to bit_length - 1, the result is undefined. */
980 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
981 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
982 /* Flags: Z
983    Let bit_length be the length of the shift operation: 32 or 64.
984    If src2 is immediate, src2w is masked by (bit_length - 1).
985    Otherwise, if the content of src2 is outside the range from 0
986    to bit_length - 1, the result is undefined. */
987 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
988 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
989 
990 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
991 	sljit_s32 dst, sljit_sw dstw,
992 	sljit_s32 src1, sljit_sw src1w,
993 	sljit_s32 src2, sljit_sw src2w);
994 
995 /* Starting index of opcodes for sljit_emit_fop1. */
996 #define SLJIT_FOP1_BASE			128
997 
998 /* Flags: - (does not modify flags) */
999 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
1000 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
1001 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1002    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1003    Rounding mode when the destination is W or I: round towards zero. */
1004 /* Flags: - (does not modify flags) */
1005 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
1006 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1007 /* Flags: - (does not modify flags) */
1008 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
1009 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1010 /* Flags: - (does not modify flags) */
1011 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
1012 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1013 /* Flags: - (does not modify flags) */
1014 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
1015 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1016 /* Flags: - (does not modify flags) */
1017 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
1018 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1019 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1020    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1021 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
1022 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
1023 /* Flags: - (does not modify flags) */
1024 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
1025 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
1026 /* Flags: - (does not modify flags) */
1027 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
1028 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
1029 
1030 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1031 	sljit_s32 dst, sljit_sw dstw,
1032 	sljit_s32 src, sljit_sw srcw);
1033 
1034 /* Starting index of opcodes for sljit_emit_fop2. */
1035 #define SLJIT_FOP2_BASE			160
1036 
1037 /* Flags: - (does not modify flags) */
1038 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
1039 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
1040 /* Flags: - (does not modify flags) */
1041 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
1042 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
1043 /* Flags: - (does not modify flags) */
1044 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
1045 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
1046 /* Flags: - (does not modify flags) */
1047 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
1048 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
1049 
1050 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1051 	sljit_s32 dst, sljit_sw dstw,
1052 	sljit_s32 src1, sljit_sw src1w,
1053 	sljit_s32 src2, sljit_sw src2w);
1054 
1055 /* Label and jump instructions. */
1056 
1057 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1058 
1059 /* Invert (negate) conditional type: xor (^) with 0x1 */
1060 
1061 /* Integer comparison types. */
1062 #define SLJIT_EQUAL			0
1063 #define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
1064 #define SLJIT_ZERO			0
1065 #define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
1066 #define SLJIT_NOT_EQUAL			1
1067 #define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1068 #define SLJIT_NOT_ZERO			1
1069 #define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
1070 
1071 #define SLJIT_LESS			2
1072 #define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
1073 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
1074 #define SLJIT_GREATER_EQUAL		3
1075 #define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1076 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
1077 #define SLJIT_GREATER			4
1078 #define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
1079 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
1080 #define SLJIT_LESS_EQUAL		5
1081 #define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1082 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
1083 #define SLJIT_SIG_LESS			6
1084 #define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
1085 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
1086 #define SLJIT_SIG_GREATER_EQUAL		7
1087 #define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1088 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1089 #define SLJIT_SIG_GREATER		8
1090 #define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
1091 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
1092 #define SLJIT_SIG_LESS_EQUAL		9
1093 #define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1094 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1095 
1096 #define SLJIT_OVERFLOW			10
1097 #define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
1098 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
1099 #define SLJIT_NOT_OVERFLOW		11
1100 #define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1101 
1102 #define SLJIT_MUL_OVERFLOW		12
1103 #define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1104 #define SLJIT_SET_MUL_OVERFLOW		SLJIT_SET(SLJIT_MUL_OVERFLOW)
1105 #define SLJIT_MUL_NOT_OVERFLOW		13
1106 #define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1107 
1108 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1109 #define SLJIT_SET_CARRY			SLJIT_SET(14)
1110 
1111 /* Floating point comparison types. */
1112 #define SLJIT_EQUAL_F64			16
1113 #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1114 #define SLJIT_SET_EQUAL_F		SLJIT_SET(SLJIT_EQUAL_F64)
1115 #define SLJIT_NOT_EQUAL_F64		17
1116 #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1117 #define SLJIT_SET_NOT_EQUAL_F		SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1118 #define SLJIT_LESS_F64			18
1119 #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
1120 #define SLJIT_SET_LESS_F		SLJIT_SET(SLJIT_LESS_F64)
1121 #define SLJIT_GREATER_EQUAL_F64		19
1122 #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1123 #define SLJIT_SET_GREATER_EQUAL_F	SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1124 #define SLJIT_GREATER_F64		20
1125 #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
1126 #define SLJIT_SET_GREATER_F		SLJIT_SET(SLJIT_GREATER_F64)
1127 #define SLJIT_LESS_EQUAL_F64		21
1128 #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1129 #define SLJIT_SET_LESS_EQUAL_F		SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1130 #define SLJIT_UNORDERED_F64		22
1131 #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1132 #define SLJIT_SET_UNORDERED_F		SLJIT_SET(SLJIT_UNORDERED_F64)
1133 #define SLJIT_ORDERED_F64		23
1134 #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1135 #define SLJIT_SET_ORDERED_F		SLJIT_SET(SLJIT_ORDERED_F64)
1136 
1137 /* Unconditional jump types. */
1138 #define SLJIT_JUMP			24
1139 #define SLJIT_FAST_CALL			25
1140 #define SLJIT_CALL0			26
1141 #define SLJIT_CALL1			27
1142 #define SLJIT_CALL2			28
1143 #define SLJIT_CALL3			29
1144 
1145 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1146 
1147 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1148 #define SLJIT_REWRITABLE_JUMP		0x1000
1149 
1150 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1151     type must be between SLJIT_EQUAL and SLJIT_CALL3
1152     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1153 
1154    Flags: does not modify flags for conditional and unconditional
1155           jumps but destroy all flags for calls. */
1156 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1157 
1158 /* Basic arithmetic comparison. In most architectures it is implemented as
1159    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1160    appropriate flags) followed by a sljit_emit_jump. However some
1161    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1162    It is suggested to use this comparison form when appropriate.
1163     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1164     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1165    Flags: may destroy flags. */
1166 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1167 	sljit_s32 src1, sljit_sw src1w,
1168 	sljit_s32 src2, sljit_sw src2w);
1169 
1170 /* Basic floating point comparison. In most architectures it is implemented as
1171    an SLJIT_FCMP operation (setting appropriate flags) followed by a
1172    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1173    special optimizations here. It is suggested to use this comparison form
1174    when appropriate.
1175     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1176     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1177    Flags: destroy flags.
1178    Note: if either operand is NaN, the behaviour is undefined for
1179          types up to SLJIT_S_LESS_EQUAL. */
1180 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1181 	sljit_s32 src1, sljit_sw src1w,
1182 	sljit_s32 src2, sljit_sw src2w);
1183 
1184 /* Set the destination of the jump to this label. */
1185 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1186 /* Set the destination address of the jump to this label. */
1187 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1188 
1189 /* Call function or jump anywhere. Both direct and indirect form
1190     type must be between SLJIT_JUMP and SLJIT_CALL3
1191     Direct form: set src to SLJIT_IMM() and srcw to the address
1192     Indirect form: any other valid addressing mode
1193 
1194    Flags: does not modify flags for unconditional jumps but
1195           destroy all flags for calls. */
1196 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1197 
1198 /* Perform the operation using the conditional flags as the second argument.
1199    Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1200    represented by the type is 1, if the condition represented by the type
1201    is fulfilled, and 0 otherwise.
1202 
1203    If op == SLJIT_MOV, SLJIT_MOV32:
1204      Set dst to the value represented by the type (0 or 1).
1205      Flags: - (does not modify flags)
1206    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1207      Performs the binary operation using dst as the first, and the value
1208      represented by type as the second argument. Result is written into dst.
1209      Flags: Z (may destroy flags) */
1210 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1211 	sljit_s32 dst, sljit_sw dstw,
1212 	sljit_s32 type);
1213 
1214 /* Emit a conditional mov instruction which moves source to destination,
1215    if the condition is satisfied. Unlike other arithmetic operations this
1216    instruction does not support memory accesses.
1217 
1218    type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1219    dst_reg must be a valid register and it can be combined
1220       with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1221    src must be register or immediate (SLJIT_IMM)
1222 
1223    Flags: - (does not modify flags) */
1224 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1225 	sljit_s32 dst_reg,
1226 	sljit_s32 src, sljit_sw srcw);
1227 
1228 /* Copies the base address of SLJIT_SP + offset to dst.
1229    Flags: - (may destroy flags) */
1230 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1231 
1232 /* The constant can be changed runtime (see: sljit_set_const)
1233    Flags: - (does not modify flags) */
1234 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1235 
1236 /* After the code generation the address for label, jump and const instructions
1237    are computed. Since these structures are freed by sljit_free_compiler, the
1238    addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1239 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1240 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1241 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1242 
1243 /* Only the address and executable offset are required to perform dynamic
1244    code modifications. See sljit_get_executable_offset function. */
1245 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1246 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1247 
1248 /* --------------------------------------------------------------------- */
1249 /*  Miscellaneous utility functions                                      */
1250 /* --------------------------------------------------------------------- */
1251 
1252 #define SLJIT_MAJOR_VERSION	0
1253 #define SLJIT_MINOR_VERSION	94
1254 
1255 /* Get the human readable name of the platform. Can be useful on platforms
1256    like ARM, where ARM and Thumb2 functions can be mixed, and
1257    it is useful to know the type of the code generator. */
1258 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1259 
1260 /* Portable helper function to get an offset of a member. */
1261 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1262 
1263 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1264 /* This global lock is useful to compile common functions. */
1265 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1266 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1267 #endif
1268 
1269 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1270 
1271 /* The sljit_stack is a utility extension of sljit, which provides
1272    a top-down stack. The stack starts at base and goes down to
1273    max_limit, so the memory region for this stack is between
1274    max_limit (inclusive) and base (exclusive). However the
1275    application can only use the region between limit (inclusive)
1276    and base (exclusive). The sljit_stack_resize can be used to
1277    extend this region up to max_limit.
1278 
1279    This feature uses the "address space reserve" feature of modern
1280    operating systems, so instead of allocating a huge memory block
1281    applications can allocate a small region and extend it later
1282    without moving the memory area. Hence pointers can be stored
1283    in this area. */
1284 
1285 /* Note: base and max_limit fields are aligned to PAGE_SIZE bytes
1286      (usually 4 Kbyte or more).
1287    Note: stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more.
1288    Note: this structure may not be supported by all operating systems.
1289      Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1290      is not defined. */
1291 
1292 struct sljit_stack {
1293 	/* User data, anything can be stored here.
1294 	   Starting with the same value as base. */
1295 	sljit_u8 *top;
1296 	/* These members are read only. */
1297 	sljit_u8 *base;
1298 	sljit_u8 *limit;
1299 	sljit_u8 *max_limit;
1300 };
1301 
1302 /* Returns NULL if unsuccessful.
1303    Note: max_limit contains the maximum stack size in bytes.
1304    Note: limit contains the starting stack size in bytes.
1305    Note: the top field is initialized to base.
1306    Note: see sljit_create_compiler for the explanation of allocator_data. */
1307 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
1308 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1309 
1310 /* Can be used to increase (allocate) or decrease (free) the memory area.
1311    Returns with a non-zero value if unsuccessful. If new_limit is greater than
1312    max_limit, it will fail. It is very easy to implement a stack data structure,
1313    since the growth ratio can be added to the current limit, and sljit_stack_resize
1314    will do all the necessary checks. The fields of the stack are not changed if
1315    sljit_stack_resize fails. */
1316 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_limit);
1317 
1318 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1319 
1320 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1321 
1322 /* Get the entry address of a given function. */
1323 #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
1324 
1325 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1326 
1327 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1328 
1329 #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
1330 
1331 /* For powerpc64, the function pointers point to a context descriptor. */
1332 struct sljit_function_context {
1333 	sljit_sw addr;
1334 	sljit_sw r2;
1335 	sljit_sw r11;
1336 };
1337 
1338 /* Fill the context arguments using the addr and the function.
1339    If func_ptr is NULL, it will not be set to the address of context
1340    If addr is NULL, the function address also comes from the func pointer. */
1341 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1342 
1343 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1344 
1345 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1346 /* Free unused executable memory. The allocator keeps some free memory
1347    around to reduce the number of OS executable memory allocations.
1348    This improves performance since these calls are costly. However
1349    it is sometimes desired to free all unused memory regions, e.g.
1350    before the application terminates. */
1351 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1352 #endif
1353 
1354 /* --------------------------------------------------------------------- */
1355 /*  CPU specific functions                                               */
1356 /* --------------------------------------------------------------------- */
1357 
1358 /* The following function is a helper function for sljit_emit_op_custom.
1359    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1360    SLJIT_S and SLJIT_SP registers.
1361 
1362    Note: it returns with -1 for virtual registers (only on x86-32). */
1363 
1364 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1365 
1366 /* The following function is a helper function for sljit_emit_op_custom.
1367    It returns with the real machine register index of any SLJIT_FLOAT register.
1368 
1369    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1370 
1371 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1372 
1373 /* Any instruction can be inserted into the instruction stream by
1374    sljit_emit_op_custom. It has a similar purpose as inline assembly.
1375    The size parameter must match to the instruction size of the target
1376    architecture:
1377 
1378          x86: 0 < size <= 15. The instruction argument can be byte aligned.
1379       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1380               if size == 4, the instruction argument must be 4 byte aligned.
1381    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1382 
1383 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1384 	void *instruction, sljit_s32 size);
1385 
1386 /* Define the currently available CPU status flags. It is usually used after an
1387    sljit_emit_op_custom call to define which flags are set. */
1388 
1389 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1390 	sljit_s32 current_flags);
1391 
1392 #endif /* _SLJIT_LIR_H_ */
1393