1 /* TODO: oim and nim in the lower level functions;
2 correct use of stub (sigh). */
3
4 /* 2.0.12: a new adaptation from the same original, this time
5 by Barend Gehrels. My attempt to incorporate alpha channel
6 into the result worked poorly and degraded the quality of
7 palette conversion even when the source contained no
8 alpha channel data. This version does not attempt to produce
9 an output file with transparency in some of the palette
10 indexes, which, in practice, doesn't look so hot anyway. TBB */
11
12 /*
13 * gd_topal, adapted from jquant2.c
14 *
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
18 *
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
25 *
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
29 */
30
31 /*
32 * THOMAS BOUTELL & BAREND GEHRELS, february 2003
33 * adapted the code to work within gd rather than within libjpeg.
34 * If it is not working, it's not Thomas G. Lane's fault.
35 */
36
37
38 #include <string.h>
39 #include "gd.h"
40 #include "gdhelpers.h"
41
42 /* (Re)define some defines known by libjpeg */
43 #define QUANT_2PASS_SUPPORTED
44
45 #define RGB_RED 0
46 #define RGB_GREEN 1
47 #define RGB_BLUE 2
48
49 #define JSAMPLE unsigned char
50 #define MAXJSAMPLE (gdMaxColors-1)
51 #define BITS_IN_JSAMPLE 8
52
53 #define JSAMPROW int*
54 #define JDIMENSION int
55
56 #define METHODDEF(type) static type
57 #define LOCAL(type) static type
58
59
60 /* We assume that right shift corresponds to signed division by 2 with
61 * rounding towards minus infinity. This is correct for typical "arithmetic
62 * shift" instructions that shift in copies of the sign bit. But some
63 * C compilers implement >> with an unsigned shift. For these machines you
64 * must define RIGHT_SHIFT_IS_UNSIGNED.
65 * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
66 * It is only applied with constant shift counts. SHIFT_TEMPS must be
67 * included in the variables of any routine using RIGHT_SHIFT.
68 */
69
70 #ifdef RIGHT_SHIFT_IS_UNSIGNED
71 #define SHIFT_TEMPS INT32 shift_temp;
72 #define RIGHT_SHIFT(x,shft) \
73 ((shift_temp = (x)) < 0 ? \
74 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
75 (shift_temp >> (shft)))
76 #else
77 #define SHIFT_TEMPS
78 #define RIGHT_SHIFT(x,shft) ((x) >> (shft))
79 #endif
80
81
82 #define range_limit(x) { if(x<0) x=0; if (x>255) x=255; }
83
84
85 #ifndef INT16
86 #define INT16 short
87 #endif
88
89 #ifndef UINT16
90 #define UINT16 unsigned short
91 #endif
92
93 #ifndef INT32
94 #define INT32 int
95 #endif
96
97 #ifndef FAR
98 #define FAR
99 #endif
100
101
102
103 #ifndef boolean
104 #define boolean int
105 #endif
106
107 #ifndef TRUE
108 #define TRUE 1
109 #endif
110
111 #ifndef FALSE
112 #define FALSE 0
113 #endif
114
115
116 #define input_buf (oim->tpixels)
117 #define output_buf (nim->pixels)
118
119 #ifdef QUANT_2PASS_SUPPORTED
120
121
122 /*
123 * This module implements the well-known Heckbert paradigm for color
124 * quantization. Most of the ideas used here can be traced back to
125 * Heckbert's seminal paper
126 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
127 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
128 *
129 * In the first pass over the image, we accumulate a histogram showing the
130 * usage count of each possible color. To keep the histogram to a reasonable
131 * size, we reduce the precision of the input; typical practice is to retain
132 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
133 * in the same histogram cell.
134 *
135 * Next, the color-selection step begins with a box representing the whole
136 * color space, and repeatedly splits the "largest" remaining box until we
137 * have as many boxes as desired colors. Then the mean color in each
138 * remaining box becomes one of the possible output colors.
139 *
140 * The second pass over the image maps each input pixel to the closest output
141 * color (optionally after applying a Floyd-Steinberg dithering correction).
142 * This mapping is logically trivial, but making it go fast enough requires
143 * considerable care.
144 *
145 * Heckbert-style quantizers vary a good deal in their policies for choosing
146 * the "largest" box and deciding where to cut it. The particular policies
147 * used here have proved out well in experimental comparisons, but better ones
148 * may yet be found.
149 *
150 * In earlier versions of the IJG code, this module quantized in YCbCr color
151 * space, processing the raw upsampled data without a color conversion step.
152 * This allowed the color conversion math to be done only once per colormap
153 * entry, not once per pixel. However, that optimization precluded other
154 * useful optimizations (such as merging color conversion with upsampling)
155 * and it also interfered with desired capabilities such as quantizing to an
156 * externally-supplied colormap. We have therefore abandoned that approach.
157 * The present code works in the post-conversion color space, typically RGB.
158 *
159 * To improve the visual quality of the results, we actually work in scaled
160 * RGB space, giving G distances more weight than R, and R in turn more than
161 * B. To do everything in integer math, we must use integer scale factors.
162 * The 2/3/1 scale factors used here correspond loosely to the relative
163 * weights of the colors in the NTSC grayscale equation.
164 * If you want to use this code to quantize a non-RGB color space, you'll
165 * probably need to change these scale factors.
166 */
167
168 #define R_SCALE 2 /* scale R distances by this much */
169 #define G_SCALE 3 /* scale G distances by this much */
170 #define B_SCALE 1 /* and B by this much */
171
172 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
173 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
174 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
175 * you'll get compile errors until you extend this logic. In that case
176 * you'll probably want to tweak the histogram sizes too.
177 */
178
179 #if RGB_RED == 0
180 #define C0_SCALE R_SCALE
181 #endif
182 #if RGB_BLUE == 0
183 #define C0_SCALE B_SCALE
184 #endif
185 #if RGB_GREEN == 1
186 #define C1_SCALE G_SCALE
187 #endif
188 #if RGB_RED == 2
189 #define C2_SCALE R_SCALE
190 #endif
191 #if RGB_BLUE == 2
192 #define C2_SCALE B_SCALE
193 #endif
194
195
196 /*
197 * First we have the histogram data structure and routines for creating it.
198 *
199 * The number of bits of precision can be adjusted by changing these symbols.
200 * We recommend keeping 6 bits for G and 5 each for R and B.
201 * If you have plenty of memory and cycles, 6 bits all around gives marginally
202 * better results; if you are short of memory, 5 bits all around will save
203 * some space but degrade the results.
204 * To maintain a fully accurate histogram, we'd need to allocate a "long"
205 * (preferably unsigned long) for each cell. In practice this is overkill;
206 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
207 * and clamping those that do overflow to the maximum value will give close-
208 * enough results. This reduces the recommended histogram size from 256Kb
209 * to 128Kb, which is a useful savings on PC-class machines.
210 * (In the second pass the histogram space is re-used for pixel mapping data;
211 * in that capacity, each cell must be able to store zero to the number of
212 * desired colors. 16 bits/cell is plenty for that too.)
213 * Since the JPEG code is intended to run in small memory model on 80x86
214 * machines, we can't just allocate the histogram in one chunk. Instead
215 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
216 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
217 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
218 * on 80x86 machines, the pointer row is in near memory but the actual
219 * arrays are in far memory (same arrangement as we use for image arrays).
220 */
221
222 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
223
224 /* These will do the right thing for either R,G,B or B,G,R color order,
225 * but you may not like the results for other color orders.
226 */
227 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
228 #define HIST_C1_BITS 6 /* bits of precision in G histogram */
229 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
230
231 /* Number of elements along histogram axes. */
232 #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
233 #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
234 #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
235
236 /* These are the amounts to shift an input value to get a histogram index. */
237 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
238 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
239 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
240
241
242 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
243
244 typedef histcell FAR *histptr; /* for pointers to histogram cells */
245
246 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
247 typedef hist1d FAR *hist2d; /* type for the 2nd-level pointers */
248 typedef hist2d *hist3d; /* type for top-level pointer */
249
250
251 /* Declarations for Floyd-Steinberg dithering.
252 *
253 * Errors are accumulated into the array fserrors[], at a resolution of
254 * 1/16th of a pixel count. The error at a given pixel is propagated
255 * to its not-yet-processed neighbors using the standard F-S fractions,
256 * ... (here) 7/16
257 * 3/16 5/16 1/16
258 * We work left-to-right on even rows, right-to-left on odd rows.
259 *
260 * We can get away with a single array (holding one row's worth of errors)
261 * by using it to store the current row's errors at pixel columns not yet
262 * processed, but the next row's errors at columns already processed. We
263 * need only a few extra variables to hold the errors immediately around the
264 * current column. (If we are lucky, those variables are in registers, but
265 * even if not, they're probably cheaper to access than array elements are.)
266 *
267 * The fserrors[] array has (#columns + 2) entries; the extra entry at
268 * each end saves us from special-casing the first and last pixels.
269 * Each entry is three values long, one value for each color component.
270 *
271 * Note: on a wide image, we might not have enough room in a PC's near data
272 * segment to hold the error array; so it is allocated with alloc_large.
273 */
274
275 #if BITS_IN_JSAMPLE == 8
276 typedef INT16 FSERROR; /* 16 bits should be enough */
277 typedef int LOCFSERROR; /* use 'int' for calculation temps */
278 #else
279 typedef INT32 FSERROR; /* may need more than 16 bits */
280 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
281 #endif
282
283 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
284
285
286 /* Private subobject */
287
288 typedef struct
289 {
290 /* Variables for accumulating image statistics */
291 hist3d histogram; /* pointer to the histogram */
292
293
294 /* Variables for Floyd-Steinberg dithering */
295 FSERRPTR fserrors; /* accumulated errors */
296
297 boolean on_odd_row; /* flag to remember which row we are on */
298 int *error_limiter; /* table for clamping the applied error */
299 int *error_limiter_storage; /* gdMalloc'd storage for the above */
300 }
301 my_cquantizer;
302
303 typedef my_cquantizer *my_cquantize_ptr;
304
305
306 /*
307 * Prescan some rows of pixels.
308 * In this module the prescan simply updates the histogram, which has been
309 * initialized to zeroes by start_pass.
310 * An output_buf parameter is required by the method signature, but no data
311 * is actually output (in fact the buffer controller is probably passing a
312 * NULL pointer).
313 */
314
315 METHODDEF (void)
prescan_quantize(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize)316 prescan_quantize (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
317 {
318 register JSAMPROW ptr;
319 register histptr histp;
320 register hist3d histogram = cquantize->histogram;
321 int row;
322 JDIMENSION col;
323 int width = oim->sx;
324 int num_rows = oim->sy;
325
326 for (row = 0; row < num_rows; row++)
327 {
328 ptr = input_buf[row];
329 for (col = width; col > 0; col--)
330 {
331 int r = gdTrueColorGetRed (*ptr) >> C0_SHIFT;
332 int g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT;
333 int b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT;
334 /* 2.0.12: Steven Brown: support a single totally transparent
335 color in the original. */
336 if ((oim->transparent >= 0) && (*ptr == oim->transparent))
337 {
338 ptr++;
339 continue;
340 }
341 /* get pixel value and index into the histogram */
342 histp = &histogram[r][g][b];
343 /* increment, check for overflow and undo increment if so. */
344 if (++(*histp) == 0)
345 (*histp)--;
346 ptr++;
347 }
348 }
349 }
350
351
352 /*
353 * Next we have the really interesting routines: selection of a colormap
354 * given the completed histogram.
355 * These routines work with a list of "boxes", each representing a rectangular
356 * subset of the input color space (to histogram precision).
357 */
358
359 typedef struct
360 {
361 /* The bounds of the box (inclusive); expressed as histogram indexes */
362 int c0min, c0max;
363 int c1min, c1max;
364 int c2min, c2max;
365 /* The volume (actually 2-norm) of the box */
366 INT32 volume;
367 /* The number of nonzero histogram cells within this box */
368 long colorcount;
369 }
370 box;
371
372 typedef box *boxptr;
373
374
find_biggest_color_pop(boxptr boxlist,int numboxes)375 LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes)
376 /* Find the splittable box with the largest color population */
377 /* Returns NULL if no splittable boxes remain */
378 {
379 register boxptr boxp;
380 register int i;
381 register long maxc = 0;
382 boxptr which = NULL;
383
384 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
385 {
386 if (boxp->colorcount > maxc && boxp->volume > 0)
387 {
388 which = boxp;
389 maxc = boxp->colorcount;
390 }
391 }
392 return which;
393 }
394
395
find_biggest_volume(boxptr boxlist,int numboxes)396 LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes)
397 /* Find the splittable box with the largest (scaled) volume */
398 /* Returns NULL if no splittable boxes remain */
399 {
400 register boxptr boxp;
401 register int i;
402 register INT32 maxv = 0;
403 boxptr which = NULL;
404
405 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
406 {
407 if (boxp->volume > maxv)
408 {
409 which = boxp;
410 maxv = boxp->volume;
411 }
412 }
413 return which;
414 }
415
416
417 LOCAL (void)
update_box(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,boxptr boxp)418 update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp)
419 {
420 hist3d histogram = cquantize->histogram;
421 histptr histp;
422 int c0, c1, c2;
423 int c0min, c0max, c1min, c1max, c2min, c2max;
424 INT32 dist0, dist1, dist2;
425 long ccount;
426
427 c0min = boxp->c0min;
428 c0max = boxp->c0max;
429 c1min = boxp->c1min;
430 c1max = boxp->c1max;
431 c2min = boxp->c2min;
432 c2max = boxp->c2max;
433
434 if (c0max > c0min)
435 for (c0 = c0min; c0 <= c0max; c0++)
436 for (c1 = c1min; c1 <= c1max; c1++)
437 {
438 histp = &histogram[c0][c1][c2min];
439 for (c2 = c2min; c2 <= c2max; c2++)
440 if (*histp++ != 0)
441 {
442 boxp->c0min = c0min = c0;
443 goto have_c0min;
444 }
445 }
446 have_c0min:
447 if (c0max > c0min)
448 for (c0 = c0max; c0 >= c0min; c0--)
449 for (c1 = c1min; c1 <= c1max; c1++)
450 {
451 histp = &histogram[c0][c1][c2min];
452 for (c2 = c2min; c2 <= c2max; c2++)
453 if (*histp++ != 0)
454 {
455 boxp->c0max = c0max = c0;
456 goto have_c0max;
457 }
458 }
459 have_c0max:
460 if (c1max > c1min)
461 for (c1 = c1min; c1 <= c1max; c1++)
462 for (c0 = c0min; c0 <= c0max; c0++)
463 {
464 histp = &histogram[c0][c1][c2min];
465 for (c2 = c2min; c2 <= c2max; c2++)
466 if (*histp++ != 0)
467 {
468 boxp->c1min = c1min = c1;
469 goto have_c1min;
470 }
471 }
472 have_c1min:
473 if (c1max > c1min)
474 for (c1 = c1max; c1 >= c1min; c1--)
475 for (c0 = c0min; c0 <= c0max; c0++)
476 {
477 histp = &histogram[c0][c1][c2min];
478 for (c2 = c2min; c2 <= c2max; c2++)
479 if (*histp++ != 0)
480 {
481 boxp->c1max = c1max = c1;
482 goto have_c1max;
483 }
484 }
485 have_c1max:
486 if (c2max > c2min)
487 for (c2 = c2min; c2 <= c2max; c2++)
488 for (c0 = c0min; c0 <= c0max; c0++)
489 {
490 histp = &histogram[c0][c1min][c2];
491 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
492 if (*histp != 0)
493 {
494 boxp->c2min = c2min = c2;
495 goto have_c2min;
496 }
497 }
498 have_c2min:
499 if (c2max > c2min)
500 for (c2 = c2max; c2 >= c2min; c2--)
501 for (c0 = c0min; c0 <= c0max; c0++)
502 {
503 histp = &histogram[c0][c1min][c2];
504 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
505 if (*histp != 0)
506 {
507 boxp->c2max = c2max = c2;
508 goto have_c2max;
509 }
510 }
511 have_c2max:
512
513 /* Update box volume.
514 * We use 2-norm rather than real volume here; this biases the method
515 * against making long narrow boxes, and it has the side benefit that
516 * a box is splittable iff norm > 0.
517 * Since the differences are expressed in histogram-cell units,
518 * we have to shift back to JSAMPLE units to get consistent distances;
519 * after which, we scale according to the selected distance scale factors.
520 */
521 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
522 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
523 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
524 boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
525
526 /* Now scan remaining volume of box and compute population */
527 ccount = 0;
528 for (c0 = c0min; c0 <= c0max; c0++)
529 for (c1 = c1min; c1 <= c1max; c1++)
530 {
531 histp = &histogram[c0][c1][c2min];
532 for (c2 = c2min; c2 <= c2max; c2++, histp++)
533 if (*histp != 0)
534 {
535 ccount++;
536 }
537 }
538 boxp->colorcount = ccount;
539 }
540
541
542 LOCAL (int)
median_cut(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,boxptr boxlist,int numboxes,int desired_colors)543 median_cut (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
544 boxptr boxlist, int numboxes, int desired_colors)
545 /* Repeatedly select and split the largest box until we have enough boxes */
546 {
547 int n, lb;
548 int c0, c1, c2, cmax;
549 register boxptr b1, b2;
550
551 while (numboxes < desired_colors)
552 {
553 /* Select box to split.
554 * Current algorithm: by population for first half, then by volume.
555 */
556 if (numboxes * 2 <= desired_colors)
557 {
558 b1 = find_biggest_color_pop (boxlist, numboxes);
559 }
560 else
561 {
562 b1 = find_biggest_volume (boxlist, numboxes);
563 }
564 if (b1 == NULL) /* no splittable boxes left! */
565 break;
566 b2 = &boxlist[numboxes]; /* where new box will go */
567 /* Copy the color bounds to the new box. */
568 b2->c0max = b1->c0max;
569 b2->c1max = b1->c1max;
570 b2->c2max = b1->c2max;
571 b2->c0min = b1->c0min;
572 b2->c1min = b1->c1min;
573 b2->c2min = b1->c2min;
574 /* Choose which axis to split the box on.
575 * Current algorithm: longest scaled axis.
576 * See notes in update_box about scaling distances.
577 */
578 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
579 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
580 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
581 /* We want to break any ties in favor of green, then red, blue last.
582 * This code does the right thing for R,G,B or B,G,R color orders only.
583 */
584 #if RGB_RED == 0
585 cmax = c1;
586 n = 1;
587 if (c0 > cmax)
588 {
589 cmax = c0;
590 n = 0;
591 }
592 if (c2 > cmax)
593 {
594 n = 2;
595 }
596 #else
597 cmax = c1;
598 n = 1;
599 if (c2 > cmax)
600 {
601 cmax = c2;
602 n = 2;
603 }
604 if (c0 > cmax)
605 {
606 n = 0;
607 }
608 #endif
609 /* Choose split point along selected axis, and update box bounds.
610 * Current algorithm: split at halfway point.
611 * (Since the box has been shrunk to minimum volume,
612 * any split will produce two nonempty subboxes.)
613 * Note that lb value is max for lower box, so must be < old max.
614 */
615 switch (n)
616 {
617 case 0:
618 lb = (b1->c0max + b1->c0min) / 2;
619 b1->c0max = lb;
620 b2->c0min = lb + 1;
621 break;
622 case 1:
623 lb = (b1->c1max + b1->c1min) / 2;
624 b1->c1max = lb;
625 b2->c1min = lb + 1;
626 break;
627 case 2:
628 lb = (b1->c2max + b1->c2min) / 2;
629 b1->c2max = lb;
630 b2->c2min = lb + 1;
631 break;
632 }
633 /* Update stats for boxes */
634 update_box (oim, nim, cquantize, b1);
635 update_box (oim, nim, cquantize, b2);
636 numboxes++;
637 }
638 return numboxes;
639 }
640
641
642 LOCAL (void)
compute_color(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,boxptr boxp,int icolor)643 compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
644 boxptr boxp, int icolor)
645 /* Compute representative color for a box, put it in colormap[icolor] */
646 {
647 /* Current algorithm: mean weighted by pixels (not colors) */
648 /* Note it is important to get the rounding correct! */
649 hist3d histogram = cquantize->histogram;
650 histptr histp;
651 int c0, c1, c2;
652 int c0min, c0max, c1min, c1max, c2min, c2max;
653 long count = 0; /* 2.0.28: = 0 */
654 long total = 0;
655 long c0total = 0;
656 long c1total = 0;
657 long c2total = 0;
658
659 c0min = boxp->c0min;
660 c0max = boxp->c0max;
661 c1min = boxp->c1min;
662 c1max = boxp->c1max;
663 c2min = boxp->c2min;
664 c2max = boxp->c2max;
665
666 for (c0 = c0min; c0 <= c0max; c0++)
667 for (c1 = c1min; c1 <= c1max; c1++)
668 {
669 histp = &histogram[c0][c1][c2min];
670 for (c2 = c2min; c2 <= c2max; c2++)
671 {
672 if ((count = *histp++) != 0)
673 {
674 total += count;
675 c0total +=
676 ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
677 c1total +=
678 ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
679 c2total +=
680 ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
681 }
682 }
683 }
684
685 /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */
686 if (total)
687 {
688 nim->red[icolor] = (int) ((c0total + (total >> 1)) / total);
689 nim->green[icolor] = (int) ((c1total + (total >> 1)) / total);
690 nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total);
691 }
692 else
693 {
694 nim->red[icolor] = 255;
695 nim->green[icolor] = 255;
696 nim->blue[icolor] = 255;
697 }
698 nim->open[icolor] = 0;
699 }
700
701
702 LOCAL (void)
select_colors(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,int desired_colors)703 select_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int desired_colors)
704 /* Master routine for color selection */
705 {
706 boxptr boxlist;
707 int numboxes;
708 int i;
709
710 /* Allocate workspace for box list */
711 boxlist = (boxptr) safe_emalloc(desired_colors, sizeof (box), 1);
712 /* Initialize one box containing whole space */
713 numboxes = 1;
714 boxlist[0].c0min = 0;
715 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
716 boxlist[0].c1min = 0;
717 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
718 boxlist[0].c2min = 0;
719 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
720 /* Shrink it to actually-used volume and set its statistics */
721 update_box (oim, nim, cquantize, &boxlist[0]);
722 /* Perform median-cut to produce final box list */
723 numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors);
724 /* Compute the representative color for each box, fill colormap */
725 for (i = 0; i < numboxes; i++)
726 compute_color (oim, nim, cquantize, &boxlist[i], i);
727 nim->colorsTotal = numboxes;
728
729 /* If we had a pure transparency color, add it as the last palette entry.
730 * Skip incrementing the color count so that the dither / matching phase
731 * won't use it on pixels that shouldn't have been transparent. We'll
732 * increment it after all that finishes. */
733 if (oim->transparent >= 0)
734 {
735 /* Save the transparent color. */
736 nim->red[nim->colorsTotal] = gdTrueColorGetRed (oim->transparent);
737 nim->green[nim->colorsTotal] = gdTrueColorGetGreen (oim->transparent);
738 nim->blue[nim->colorsTotal] = gdTrueColorGetBlue (oim->transparent);
739 nim->alpha[nim->colorsTotal] = gdAlphaTransparent;
740 nim->open[nim->colorsTotal] = 0;
741 }
742
743 gdFree (boxlist);
744 }
745
746
747 /*
748 * These routines are concerned with the time-critical task of mapping input
749 * colors to the nearest color in the selected colormap.
750 *
751 * We re-use the histogram space as an "inverse color map", essentially a
752 * cache for the results of nearest-color searches. All colors within a
753 * histogram cell will be mapped to the same colormap entry, namely the one
754 * closest to the cell's center. This may not be quite the closest entry to
755 * the actual input color, but it's almost as good. A zero in the cache
756 * indicates we haven't found the nearest color for that cell yet; the array
757 * is cleared to zeroes before starting the mapping pass. When we find the
758 * nearest color for a cell, its colormap index plus one is recorded in the
759 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
760 * when they need to use an unfilled entry in the cache.
761 *
762 * Our method of efficiently finding nearest colors is based on the "locally
763 * sorted search" idea described by Heckbert and on the incremental distance
764 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
765 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
766 * the distances from a given colormap entry to each cell of the histogram can
767 * be computed quickly using an incremental method: the differences between
768 * distances to adjacent cells themselves differ by a constant. This allows a
769 * fairly fast implementation of the "brute force" approach of computing the
770 * distance from every colormap entry to every histogram cell. Unfortunately,
771 * it needs a work array to hold the best-distance-so-far for each histogram
772 * cell (because the inner loop has to be over cells, not colormap entries).
773 * The work array elements have to be INT32s, so the work array would need
774 * 256Kb at our recommended precision. This is not feasible in DOS machines.
775 *
776 * To get around these problems, we apply Thomas' method to compute the
777 * nearest colors for only the cells within a small subbox of the histogram.
778 * The work array need be only as big as the subbox, so the memory usage
779 * problem is solved. Furthermore, we need not fill subboxes that are never
780 * referenced in pass2; many images use only part of the color gamut, so a
781 * fair amount of work is saved. An additional advantage of this
782 * approach is that we can apply Heckbert's locality criterion to quickly
783 * eliminate colormap entries that are far away from the subbox; typically
784 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
785 * and we need not compute their distances to individual cells in the subbox.
786 * The speed of this approach is heavily influenced by the subbox size: too
787 * small means too much overhead, too big loses because Heckbert's criterion
788 * can't eliminate as many colormap entries. Empirically the best subbox
789 * size seems to be about 1/512th of the histogram (1/8th in each direction).
790 *
791 * Thomas' article also describes a refined method which is asymptotically
792 * faster than the brute-force method, but it is also far more complex and
793 * cannot efficiently be applied to small subboxes. It is therefore not
794 * useful for programs intended to be portable to DOS machines. On machines
795 * with plenty of memory, filling the whole histogram in one shot with Thomas'
796 * refined method might be faster than the present code --- but then again,
797 * it might not be any faster, and it's certainly more complicated.
798 */
799
800
801 /* log2(histogram cells in update box) for each axis; this can be adjusted */
802 #define BOX_C0_LOG (HIST_C0_BITS-3)
803 #define BOX_C1_LOG (HIST_C1_BITS-3)
804 #define BOX_C2_LOG (HIST_C2_BITS-3)
805
806 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
807 #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
808 #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
809
810 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
811 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
812 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
813
814
815 /*
816 * The next three routines implement inverse colormap filling. They could
817 * all be folded into one big routine, but splitting them up this way saves
818 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
819 * and may allow some compilers to produce better code by registerizing more
820 * inner-loop variables.
821 */
822
823 LOCAL (int)
find_nearby_colors(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,int minc0,int minc1,int minc2,JSAMPLE colorlist[])824 find_nearby_colors (
825 gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
826 int minc0, int minc1, int minc2, JSAMPLE colorlist[])
827 /* Locate the colormap entries close enough to an update box to be candidates
828 * for the nearest entry to some cell(s) in the update box. The update box
829 * is specified by the center coordinates of its first cell. The number of
830 * candidate colormap entries is returned, and their colormap indexes are
831 * placed in colorlist[].
832 * This routine uses Heckbert's "locally sorted search" criterion to select
833 * the colors that need further consideration.
834 */
835 {
836 int numcolors = nim->colorsTotal;
837 int maxc0, maxc1, maxc2;
838 int centerc0, centerc1, centerc2;
839 int i, x, ncolors;
840 INT32 minmaxdist, min_dist, max_dist, tdist;
841 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
842
843 /* Compute true coordinates of update box's upper corner and center.
844 * Actually we compute the coordinates of the center of the upper-corner
845 * histogram cell, which are the upper bounds of the volume we care about.
846 * Note that since ">>" rounds down, the "center" values may be closer to
847 * min than to max; hence comparisons to them must be "<=", not "<".
848 */
849 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
850 centerc0 = (minc0 + maxc0) >> 1;
851 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
852 centerc1 = (minc1 + maxc1) >> 1;
853 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
854 centerc2 = (minc2 + maxc2) >> 1;
855
856 /* For each color in colormap, find:
857 * 1. its minimum squared-distance to any point in the update box
858 * (zero if color is within update box);
859 * 2. its maximum squared-distance to any point in the update box.
860 * Both of these can be found by considering only the corners of the box.
861 * We save the minimum distance for each color in mindist[];
862 * only the smallest maximum distance is of interest.
863 */
864 minmaxdist = 0x7FFFFFFFL;
865
866 for (i = 0; i < numcolors; i++)
867 {
868 /* We compute the squared-c0-distance term, then add in the other two. */
869 x = nim->red[i];
870 if (x < minc0)
871 {
872 tdist = (x - minc0) * C0_SCALE;
873 min_dist = tdist * tdist;
874 tdist = (x - maxc0) * C0_SCALE;
875 max_dist = tdist * tdist;
876 }
877 else if (x > maxc0)
878 {
879 tdist = (x - maxc0) * C0_SCALE;
880 min_dist = tdist * tdist;
881 tdist = (x - minc0) * C0_SCALE;
882 max_dist = tdist * tdist;
883 }
884 else
885 {
886 /* within cell range so no contribution to min_dist */
887 min_dist = 0;
888 if (x <= centerc0)
889 {
890 tdist = (x - maxc0) * C0_SCALE;
891 max_dist = tdist * tdist;
892 }
893 else
894 {
895 tdist = (x - minc0) * C0_SCALE;
896 max_dist = tdist * tdist;
897 }
898 }
899
900 x = nim->green[i];
901 if (x < minc1)
902 {
903 tdist = (x - minc1) * C1_SCALE;
904 min_dist += tdist * tdist;
905 tdist = (x - maxc1) * C1_SCALE;
906 max_dist += tdist * tdist;
907 }
908 else if (x > maxc1)
909 {
910 tdist = (x - maxc1) * C1_SCALE;
911 min_dist += tdist * tdist;
912 tdist = (x - minc1) * C1_SCALE;
913 max_dist += tdist * tdist;
914 }
915 else
916 {
917 /* within cell range so no contribution to min_dist */
918 if (x <= centerc1)
919 {
920 tdist = (x - maxc1) * C1_SCALE;
921 max_dist += tdist * tdist;
922 }
923 else
924 {
925 tdist = (x - minc1) * C1_SCALE;
926 max_dist += tdist * tdist;
927 }
928 }
929
930 x = nim->blue[i];
931 if (x < minc2)
932 {
933 tdist = (x - minc2) * C2_SCALE;
934 min_dist += tdist * tdist;
935 tdist = (x - maxc2) * C2_SCALE;
936 max_dist += tdist * tdist;
937 }
938 else if (x > maxc2)
939 {
940 tdist = (x - maxc2) * C2_SCALE;
941 min_dist += tdist * tdist;
942 tdist = (x - minc2) * C2_SCALE;
943 max_dist += tdist * tdist;
944 }
945 else
946 {
947 /* within cell range so no contribution to min_dist */
948 if (x <= centerc2)
949 {
950 tdist = (x - maxc2) * C2_SCALE;
951 max_dist += tdist * tdist;
952 }
953 else
954 {
955 tdist = (x - minc2) * C2_SCALE;
956 max_dist += tdist * tdist;
957 }
958 }
959
960 mindist[i] = min_dist; /* save away the results */
961 if (max_dist < minmaxdist)
962 minmaxdist = max_dist;
963 }
964
965 /* Now we know that no cell in the update box is more than minmaxdist
966 * away from some colormap entry. Therefore, only colors that are
967 * within minmaxdist of some part of the box need be considered.
968 */
969 ncolors = 0;
970 for (i = 0; i < numcolors; i++)
971 {
972 if (mindist[i] <= minmaxdist)
973 colorlist[ncolors++] = (JSAMPLE) i;
974 }
975 return ncolors;
976 }
977
978
find_best_colors(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])979 LOCAL (void) find_best_colors (
980 gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
981 int minc0, int minc1, int minc2,
982 int numcolors, JSAMPLE colorlist[],
983 JSAMPLE bestcolor[])
984 /* Find the closest colormap entry for each cell in the update box,
985 * given the list of candidate colors prepared by find_nearby_colors.
986 * Return the indexes of the closest entries in the bestcolor[] array.
987 * This routine uses Thomas' incremental distance calculation method to
988 * find the distance from a colormap entry to successive cells in the box.
989 */
990 {
991 int ic0, ic1, ic2;
992 int i, icolor;
993 register INT32 *bptr; /* pointer into bestdist[] array */
994 JSAMPLE *cptr; /* pointer into bestcolor[] array */
995 INT32 dist0, dist1; /* initial distance values */
996 register INT32 dist2; /* current distance in inner loop */
997 INT32 xx0, xx1; /* distance increments */
998 register INT32 xx2;
999 INT32 inc0, inc1, inc2; /* initial values for increments */
1000 /* This array holds the distance to the nearest-so-far color for each cell */
1001 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
1002
1003 /* Initialize best-distance for each cell of the update box */
1004 bptr = bestdist;
1005 for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
1006 *bptr++ = 0x7FFFFFFFL;
1007
1008 /* For each color selected by find_nearby_colors,
1009 * compute its distance to the center of each cell in the box.
1010 * If that's less than best-so-far, update best distance and color number.
1011 */
1012
1013 /* Nominal steps between cell centers ("x" in Thomas article) */
1014 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
1015 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
1016 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
1017
1018 for (i = 0; i < numcolors; i++)
1019 {
1020 int r, g, b;
1021 icolor = colorlist[i];
1022 r = nim->red[icolor];
1023 g = nim->green[icolor];
1024 b = nim->blue[icolor];
1025
1026 /* Compute (square of) distance from minc0/c1/c2 to this color */
1027 inc0 = (minc0 - r) * C0_SCALE;
1028 dist0 = inc0 * inc0;
1029 inc1 = (minc1 - g) * C1_SCALE;
1030 dist0 += inc1 * inc1;
1031 inc2 = (minc2 - b) * C2_SCALE;
1032 dist0 += inc2 * inc2;
1033 /* Form the initial difference increments */
1034 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
1035 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
1036 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
1037 /* Now loop over all cells in box, updating distance per Thomas method */
1038 bptr = bestdist;
1039 cptr = bestcolor;
1040 xx0 = inc0;
1041 for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--)
1042 {
1043 dist1 = dist0;
1044 xx1 = inc1;
1045 for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--)
1046 {
1047 dist2 = dist1;
1048 xx2 = inc2;
1049 for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--)
1050 {
1051 if (dist2 < *bptr)
1052 {
1053 *bptr = dist2;
1054 *cptr = (JSAMPLE) icolor;
1055 }
1056 dist2 += xx2;
1057 xx2 += 2 * STEP_C2 * STEP_C2;
1058 bptr++;
1059 cptr++;
1060 }
1061 dist1 += xx1;
1062 xx1 += 2 * STEP_C1 * STEP_C1;
1063 }
1064 dist0 += xx0;
1065 xx0 += 2 * STEP_C0 * STEP_C0;
1066 }
1067 }
1068 }
1069
1070
1071 LOCAL (void)
fill_inverse_cmap(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize,int c0,int c1,int c2)1072 fill_inverse_cmap (
1073 gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
1074 int c0, int c1, int c2)
1075 /* Fill the inverse-colormap entries in the update box that contains */
1076 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
1077 /* we can fill as many others as we wish.) */
1078 {
1079 hist3d histogram = cquantize->histogram;
1080 int minc0, minc1, minc2; /* lower left corner of update box */
1081 int ic0, ic1, ic2;
1082 register JSAMPLE *cptr; /* pointer into bestcolor[] array */
1083 register histptr cachep; /* pointer into main cache array */
1084 /* This array lists the candidate colormap indexes. */
1085 JSAMPLE colorlist[MAXNUMCOLORS];
1086 int numcolors; /* number of candidate colors */
1087 /* This array holds the actually closest colormap index for each cell. */
1088 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
1089
1090 /* Convert cell coordinates to update box ID */
1091 c0 >>= BOX_C0_LOG;
1092 c1 >>= BOX_C1_LOG;
1093 c2 >>= BOX_C2_LOG;
1094
1095 /* Compute true coordinates of update box's origin corner.
1096 * Actually we compute the coordinates of the center of the corner
1097 * histogram cell, which are the lower bounds of the volume we care about.
1098 */
1099 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
1100 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
1101 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
1102
1103 /* Determine which colormap entries are close enough to be candidates
1104 * for the nearest entry to some cell in the update box.
1105 */
1106 numcolors =
1107 find_nearby_colors (oim, nim, cquantize, minc0, minc1, minc2, colorlist);
1108 find_best_colors (oim, nim, cquantize, minc0, minc1, minc2, numcolors,
1109 colorlist, bestcolor);
1110
1111 /* Save the best color numbers (plus 1) in the main cache array */
1112 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
1113 c1 <<= BOX_C1_LOG;
1114 c2 <<= BOX_C2_LOG;
1115 cptr = bestcolor;
1116 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++)
1117 {
1118 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++)
1119 {
1120 cachep = &histogram[c0 + ic0][c1 + ic1][c2];
1121 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++)
1122 {
1123 *cachep++ = (histcell) ((*cptr++) + 1);
1124 }
1125 }
1126 }
1127 }
1128
1129
1130 /*
1131 * Map some rows of pixels to the output colormapped representation.
1132 */
1133
1134 METHODDEF (void)
pass2_no_dither(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize)1135 pass2_no_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
1136 {
1137 register int *inptr;
1138 register unsigned char *outptr;
1139 int width = oim->sx;
1140 int num_rows = oim->sy;
1141 hist3d histogram = cquantize->histogram;
1142 register int c0, c1, c2;
1143 int row;
1144 JDIMENSION col;
1145 register histptr cachep;
1146
1147
1148 for (row = 0; row < num_rows; row++)
1149 {
1150 inptr = input_buf[row];
1151 outptr = output_buf[row];
1152 for (col = width; col > 0; col--)
1153 {
1154 /* get pixel value and index into the cache */
1155 int r, g, b;
1156 r = gdTrueColorGetRed (*inptr);
1157 g = gdTrueColorGetGreen (*inptr);
1158 /*
1159 2.0.24: inptr must not be incremented until after
1160 transparency check, if any. Thanks to "Super Pikeman."
1161 */
1162 b = gdTrueColorGetBlue (*inptr);
1163
1164 /* If the pixel is transparent, we assign it the palette index that
1165 * will later be added at the end of the palette as the transparent
1166 * index. */
1167 if ((oim->transparent >= 0) && (oim->transparent == *inptr))
1168 {
1169 *outptr++ = nim->colorsTotal;
1170 inptr++;
1171 continue;
1172 }
1173 inptr++;
1174 c0 = r >> C0_SHIFT;
1175 c1 = g >> C1_SHIFT;
1176 c2 = b >> C2_SHIFT;
1177 cachep = &histogram[c0][c1][c2];
1178 /* If we have not seen this color before, find nearest colormap entry */
1179 /* and update the cache */
1180 if (*cachep == 0)
1181 fill_inverse_cmap (oim, nim, cquantize, c0, c1, c2);
1182 /* Now emit the colormap index for this cell */
1183 *outptr++ = (*cachep - 1);
1184 }
1185 }
1186 }
1187
1188
1189 METHODDEF (void)
pass2_fs_dither(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize)1190 pass2_fs_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
1191 {
1192 hist3d histogram = cquantize->histogram;
1193 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
1194 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
1195 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
1196 register FSERRPTR errorptr; /* => fserrors[] at column before current */
1197 histptr cachep;
1198 int dir; /* +1 or -1 depending on direction */
1199 int dir3; /* 3*dir, for advancing inptr & errorptr */
1200 int row;
1201 JDIMENSION col;
1202 int *inptr; /* => current input pixel */
1203 unsigned char *outptr; /* => current output pixel */
1204 int width = oim->sx;
1205 int num_rows = oim->sy;
1206 int *colormap0 = nim->red;
1207 int *colormap1 = nim->green;
1208 int *colormap2 = nim->blue;
1209 int *error_limit = cquantize->error_limiter;
1210
1211
1212 SHIFT_TEMPS for (row = 0; row < num_rows; row++)
1213 {
1214 inptr = input_buf[row];
1215 outptr = output_buf[row];
1216 if (cquantize->on_odd_row)
1217 {
1218 /* work right to left in this row */
1219 inptr += (width - 1) * 3; /* so point to rightmost pixel */
1220 outptr += width - 1;
1221 dir = -1;
1222 dir3 = -3;
1223 errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
1224 }
1225 else
1226 {
1227 /* work left to right in this row */
1228 dir = 1;
1229 dir3 = 3;
1230 errorptr = cquantize->fserrors; /* => entry before first real column */
1231 }
1232 /* Preset error values: no error propagated to first pixel from left */
1233 cur0 = cur1 = cur2 = 0;
1234 /* and no error propagated to row below yet */
1235 belowerr0 = belowerr1 = belowerr2 = 0;
1236 bpreverr0 = bpreverr1 = bpreverr2 = 0;
1237
1238 for (col = width; col > 0; col--)
1239 {
1240
1241 /* If this pixel is transparent, we want to assign it to the special
1242 * transparency color index past the end of the palette rather than
1243 * go through matching / dithering. */
1244 if ((oim->transparent >= 0) && (*inptr == oim->transparent))
1245 {
1246 *outptr = nim->colorsTotal;
1247 errorptr[0] = 0;
1248 errorptr[1] = 0;
1249 errorptr[2] = 0;
1250 errorptr[3] = 0;
1251 inptr += dir;
1252 outptr += dir;
1253 errorptr += dir3;
1254 continue;
1255 }
1256 /* curN holds the error propagated from the previous pixel on the
1257 * current line. Add the error propagated from the previous line
1258 * to form the complete error correction term for this pixel, and
1259 * round the error term (which is expressed * 16) to an integer.
1260 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1261 * for either sign of the error value.
1262 * Note: errorptr points to *previous* column's array entry.
1263 */
1264 cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4);
1265 cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4);
1266 cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4);
1267 /* Limit the error using transfer function set by init_error_limit.
1268 * See comments with init_error_limit for rationale.
1269 */
1270 cur0 = error_limit[cur0];
1271 cur1 = error_limit[cur1];
1272 cur2 = error_limit[cur2];
1273 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1274 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1275 * this sets the required size of the range_limit array.
1276 */
1277 cur0 += gdTrueColorGetRed (*inptr);
1278 cur1 += gdTrueColorGetGreen (*inptr);
1279 cur2 += gdTrueColorGetBlue (*inptr);
1280 range_limit (cur0);
1281 range_limit (cur1);
1282 range_limit (cur2);
1283
1284 /* Index into the cache with adjusted pixel value */
1285 cachep =
1286 &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
1287 /* If we have not seen this color before, find nearest colormap */
1288 /* entry and update the cache */
1289 if (*cachep == 0)
1290 fill_inverse_cmap (oim, nim, cquantize, cur0 >> C0_SHIFT,
1291 cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
1292 /* Now emit the colormap index for this cell */
1293 {
1294 register int pixcode = *cachep - 1;
1295 *outptr = (JSAMPLE) pixcode;
1296 /* Compute representation error for this pixel */
1297 #define GETJSAMPLE
1298 cur0 -= GETJSAMPLE (colormap0[pixcode]);
1299 cur1 -= GETJSAMPLE (colormap1[pixcode]);
1300 cur2 -= GETJSAMPLE (colormap2[pixcode]);
1301 #undef GETJSAMPLE
1302 }
1303 /* Compute error fractions to be propagated to adjacent pixels.
1304 * Add these into the running sums, and simultaneously shift the
1305 * next-line error sums left by 1 column.
1306 */
1307 {
1308 register LOCFSERROR bnexterr, delta;
1309
1310 bnexterr = cur0; /* Process component 0 */
1311 delta = cur0 * 2;
1312 cur0 += delta; /* form error * 3 */
1313 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1314 cur0 += delta; /* form error * 5 */
1315 bpreverr0 = belowerr0 + cur0;
1316 belowerr0 = bnexterr;
1317 cur0 += delta; /* form error * 7 */
1318 bnexterr = cur1; /* Process component 1 */
1319 delta = cur1 * 2;
1320 cur1 += delta; /* form error * 3 */
1321 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1322 cur1 += delta; /* form error * 5 */
1323 bpreverr1 = belowerr1 + cur1;
1324 belowerr1 = bnexterr;
1325 cur1 += delta; /* form error * 7 */
1326 bnexterr = cur2; /* Process component 2 */
1327 delta = cur2 * 2;
1328 cur2 += delta; /* form error * 3 */
1329 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1330 cur2 += delta; /* form error * 5 */
1331 bpreverr2 = belowerr2 + cur2;
1332 belowerr2 = bnexterr;
1333 cur2 += delta; /* form error * 7 */
1334 }
1335 /* At this point curN contains the 7/16 error value to be propagated
1336 * to the next pixel on the current line, and all the errors for the
1337 * next line have been shifted over. We are therefore ready to move on.
1338 */
1339 inptr += dir; /* Advance pixel pointers to next column */
1340 outptr += dir;
1341 errorptr += dir3; /* advance errorptr to current column */
1342 }
1343 /* Post-loop cleanup: we must unload the final error values into the
1344 * final fserrors[] entry. Note we need not unload belowerrN because
1345 * it is for the dummy column before or after the actual array.
1346 */
1347 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1348 errorptr[1] = (FSERROR) bpreverr1;
1349 errorptr[2] = (FSERROR) bpreverr2;
1350 }
1351 }
1352
1353
1354 /*
1355 * Initialize the error-limiting transfer function (lookup table).
1356 * The raw F-S error computation can potentially compute error values of up to
1357 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1358 * much less, otherwise obviously wrong pixels will be created. (Typical
1359 * effects include weird fringes at color-area boundaries, isolated bright
1360 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1361 * is to ensure that the "corners" of the color cube are allocated as output
1362 * colors; then repeated errors in the same direction cannot cause cascading
1363 * error buildup. However, that only prevents the error from getting
1364 * completely out of hand; Aaron Giles reports that error limiting improves
1365 * the results even with corner colors allocated.
1366 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1367 * well, but the smoother transfer function used below is even better. Thanks
1368 * to Aaron Giles for this idea.
1369 */
1370
1371 LOCAL (void)
init_error_limit(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize)1372 init_error_limit (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
1373 /* Allocate and fill in the error_limiter table */
1374 {
1375 int *table;
1376 int in, out;
1377
1378 cquantize->error_limiter_storage =
1379 (int *) safe_emalloc ((MAXJSAMPLE * 2 + 1), sizeof (int), 0);
1380 if (!cquantize->error_limiter_storage)
1381 {
1382 return;
1383 }
1384 table = cquantize->error_limiter_storage;
1385
1386 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1387 cquantize->error_limiter = table;
1388
1389 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1390 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1391 out = 0;
1392 for (in = 0; in < STEPSIZE; in++, out++)
1393 {
1394 table[in] = out;
1395 table[-in] = -out;
1396 }
1397 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1398 for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1)
1399 {
1400 table[in] = out;
1401 table[-in] = -out;
1402 }
1403 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1404 for (; in <= MAXJSAMPLE; in++)
1405 {
1406 table[in] = out;
1407 table[-in] = -out;
1408 }
1409 #undef STEPSIZE
1410 }
1411
1412
1413 /*
1414 * Finish up at the end of each pass.
1415 */
1416
1417 static void
zeroHistogram(hist3d histogram)1418 zeroHistogram (hist3d histogram)
1419 {
1420 int i;
1421 /* Zero the histogram or inverse color map */
1422 for (i = 0; i < HIST_C0_ELEMS; i++)
1423 {
1424 memset (histogram[i],
1425 0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
1426 }
1427 }
1428
1429 static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP);
1430
gdImageCreatePaletteFromTrueColor(gdImagePtr im,int dither,int colorsWanted)1431 gdImagePtr gdImageCreatePaletteFromTrueColor (gdImagePtr im, int dither, int colorsWanted)
1432 {
1433 gdImagePtr nim;
1434 if (TRUE == gdImageTrueColorToPaletteBody(im, dither, colorsWanted, &nim)) {
1435 return nim;
1436 }
1437 return NULL;
1438 }
1439
gdImageTrueColorToPalette(gdImagePtr im,int dither,int colorsWanted)1440 int gdImageTrueColorToPalette (gdImagePtr im, int dither, int colorsWanted)
1441 {
1442 return gdImageTrueColorToPaletteBody(im, dither, colorsWanted, 0);
1443 }
1444
free_truecolor_image_data(gdImagePtr oim)1445 static void free_truecolor_image_data(gdImagePtr oim)
1446 {
1447 int i;
1448 oim->trueColor = 0;
1449 /* Junk the truecolor pixels */
1450 for (i = 0; i < oim->sy; i++)
1451 {
1452 gdFree (oim->tpixels[i]);
1453 }
1454 gdFree (oim->tpixels);
1455 oim->tpixels = 0;
1456 }
1457
1458 /*
1459 * Module initialization routine for 2-pass color quantization.
1460 */
1461
gdImageTrueColorToPaletteBody(gdImagePtr oim,int dither,int colorsWanted,gdImagePtr * cimP)1462 static int gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP)
1463 {
1464 my_cquantize_ptr cquantize = NULL;
1465 int i, conversionSucceeded=0;
1466
1467 /* Allocate the JPEG palette-storage */
1468 size_t arraysize;
1469 int maxColors = gdMaxColors;
1470 gdImagePtr nim;
1471 if (cimP) {
1472 nim = gdImageCreate(oim->sx, oim->sy);
1473 *cimP = nim;
1474 if (!nim) {
1475 return FALSE;
1476 }
1477 } else {
1478 nim = oim;
1479 }
1480 if (!oim->trueColor)
1481 {
1482 /* (Almost) nothing to do! */
1483 if (cimP) {
1484 gdImageCopy(nim, oim, 0, 0, 0, 0, oim->sx, oim->sy);
1485 *cimP = nim;
1486 }
1487 return TRUE;
1488 }
1489
1490 /* If we have a transparent color (the alphaless mode of transparency), we
1491 * must reserve a palette entry for it at the end of the palette. */
1492 if (oim->transparent >= 0)
1493 {
1494 maxColors--;
1495 }
1496 if (colorsWanted > maxColors)
1497 {
1498 colorsWanted = maxColors;
1499 }
1500 if (!cimP) {
1501 nim->pixels = gdCalloc (sizeof (unsigned char *), oim->sy);
1502 if (!nim->pixels)
1503 {
1504 /* No can do */
1505 goto outOfMemory;
1506 }
1507 for (i = 0; (i < nim->sy); i++)
1508 {
1509 nim->pixels[i] = gdCalloc (sizeof (unsigned char *), oim->sx);
1510 if (!nim->pixels[i])
1511 {
1512 goto outOfMemory;
1513 }
1514 }
1515 }
1516
1517 cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1);
1518 if (!cquantize)
1519 {
1520 /* No can do */
1521 goto outOfMemory;
1522 }
1523 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1524 cquantize->error_limiter = NULL;
1525
1526
1527 /* Allocate the histogram/inverse colormap storage */
1528 cquantize->histogram = (hist3d) safe_emalloc (HIST_C0_ELEMS, sizeof (hist2d), 0);
1529 for (i = 0; i < HIST_C0_ELEMS; i++)
1530 {
1531 cquantize->histogram[i] =
1532 (hist2d) safe_emalloc (HIST_C1_ELEMS * HIST_C2_ELEMS, sizeof (histcell), 0);
1533 if (!cquantize->histogram[i])
1534 {
1535 goto outOfMemory;
1536 }
1537 }
1538
1539 cquantize->fserrors = (FSERRPTR) safe_emalloc (3, sizeof (FSERROR), 0);
1540 init_error_limit (oim, nim, cquantize);
1541 arraysize = (size_t) ((nim->sx + 2) * (3 * sizeof (FSERROR)));
1542 /* Allocate Floyd-Steinberg workspace. */
1543 cquantize->fserrors = gdRealloc(cquantize->fserrors, arraysize);
1544 memset(cquantize->fserrors, 0, arraysize);
1545 if (!cquantize->fserrors)
1546 {
1547 goto outOfMemory;
1548 }
1549 cquantize->on_odd_row = FALSE;
1550
1551 /* Do the work! */
1552 zeroHistogram (cquantize->histogram);
1553 prescan_quantize (oim, nim, cquantize);
1554 /* TBB 2.0.5: pass colorsWanted, not 256! */
1555 select_colors (oim, nim, cquantize, colorsWanted);
1556 zeroHistogram (cquantize->histogram);
1557 if (dither)
1558 {
1559 pass2_fs_dither (oim, nim, cquantize);
1560 }
1561 else
1562 {
1563 pass2_no_dither (oim, nim, cquantize);
1564 }
1565 #if 0 /* 2.0.12; we no longer attempt full alpha in palettes */
1566 if (cquantize->transparentIsPresent)
1567 {
1568 int mt = -1;
1569 int mtIndex = -1;
1570 for (i = 0; (i < im->colorsTotal); i++)
1571 {
1572 if (im->alpha[i] > mt)
1573 {
1574 mtIndex = i;
1575 mt = im->alpha[i];
1576 }
1577 }
1578 for (i = 0; (i < im->colorsTotal); i++)
1579 {
1580 if (im->alpha[i] == mt)
1581 {
1582 im->alpha[i] = gdAlphaTransparent;
1583 }
1584 }
1585 }
1586 if (cquantize->opaqueIsPresent)
1587 {
1588 int mo = 128;
1589 int moIndex = -1;
1590 for (i = 0; (i < im->colorsTotal); i++)
1591 {
1592 if (im->alpha[i] < mo)
1593 {
1594 moIndex = i;
1595 mo = im->alpha[i];
1596 }
1597 }
1598 for (i = 0; (i < im->colorsTotal); i++)
1599 {
1600 if (im->alpha[i] == mo)
1601 {
1602 im->alpha[i] = gdAlphaOpaque;
1603 }
1604 }
1605 }
1606 #endif
1607
1608 /* If we had a 'transparent' color, increment the color count so it's
1609 * officially in the palette and convert the transparent variable to point to
1610 * an index rather than a color (Its data already exists and transparent
1611 * pixels have already been mapped to it by this point, it is done late as to
1612 * avoid color matching / dithering with it). */
1613 if (oim->transparent >= 0)
1614 {
1615 nim->transparent = nim->colorsTotal;
1616 nim->colorsTotal++;
1617 }
1618
1619 /* Success! Get rid of the truecolor image data. */
1620 conversionSucceeded = TRUE;
1621 if (!cimP)
1622 {
1623 free_truecolor_image_data(oim);
1624 }
1625
1626 goto freeQuantizeData;
1627 /* Tediously free stuff. */
1628 outOfMemory:
1629 conversionSucceeded = FALSE;
1630 if (oim->trueColor)
1631 {
1632 if (!cimP) {
1633 /* On failure only */
1634 for (i = 0; i < nim->sy; i++)
1635 {
1636 if (nim->pixels[i])
1637 {
1638 gdFree (nim->pixels[i]);
1639 }
1640 }
1641 if (nim->pixels)
1642 {
1643 gdFree (nim->pixels);
1644 }
1645 nim->pixels = 0;
1646 } else {
1647 gdImageDestroy(nim);
1648 *cimP = 0;
1649 }
1650 }
1651 freeQuantizeData:
1652 for (i = 0; i < HIST_C0_ELEMS; i++)
1653 {
1654 if (cquantize->histogram[i])
1655 {
1656 gdFree (cquantize->histogram[i]);
1657 }
1658 }
1659 if (cquantize->histogram)
1660 {
1661 gdFree (cquantize->histogram);
1662 }
1663 if (cquantize->fserrors)
1664 {
1665 gdFree (cquantize->fserrors);
1666 }
1667 if (cquantize->error_limiter_storage)
1668 {
1669 gdFree (cquantize->error_limiter_storage);
1670 }
1671 if (cquantize)
1672 {
1673 gdFree (cquantize);
1674 }
1675 return conversionSucceeded;
1676 }
1677
1678
1679 #endif
1680