xref: /PHP-5.5/ext/gd/libgd/gd_topal.c (revision e9ac8954)
1 /* TODO: oim and nim in the lower level functions;
2   correct use of stub (sigh). */
3 
4 /* 2.0.12: a new adaptation from the same original, this time
5 	by Barend Gehrels. My attempt to incorporate alpha channel
6 	into the result worked poorly and degraded the quality of
7 	palette conversion even when the source contained no
8 	alpha channel data. This version does not attempt to produce
9 	an output file with transparency in some of the palette
10 	indexes, which, in practice, doesn't look so hot anyway. TBB */
11 
12 /*
13  * gd_topal, adapted from jquant2.c
14  *
15  * Copyright (C) 1991-1996, Thomas G. Lane.
16  * This file is part of the Independent JPEG Group's software.
17  * For conditions of distribution and use, see the accompanying README file.
18  *
19  * This file contains 2-pass color quantization (color mapping) routines.
20  * These routines provide selection of a custom color map for an image,
21  * followed by mapping of the image to that color map, with optional
22  * Floyd-Steinberg dithering.
23  * It is also possible to use just the second pass to map to an arbitrary
24  * externally-given color map.
25  *
26  * Note: ordered dithering is not supported, since there isn't any fast
27  * way to compute intercolor distances; it's unclear that ordered dither's
28  * fundamental assumptions even hold with an irregularly spaced color map.
29  */
30 
31 #ifdef ORIGINAL_LIB_JPEG
32 
33 #define JPEG_INTERNALS
34 
35 #include "jinclude.h"
36 #include "jpeglib.h"
37 
38 #else
39 
40 /*
41  * THOMAS BOUTELL & BAREND GEHRELS, february 2003
42  * adapted the code to work within gd rather than within libjpeg.
43  * If it is not working, it's not Thomas G. Lane's fault.
44  */
45 
46 /*
47   SETTING THIS ONE CAUSES STRIPED IMAGE
48   to be done: solve this
49   #define ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS
50  */
51 
52 #include <string.h>
53 #include "gd.h"
54 #include "gdhelpers.h"
55 
56 /* (Re)define some defines known by libjpeg */
57 #define QUANT_2PASS_SUPPORTED
58 
59 #define RGB_RED		0
60 #define RGB_GREEN	1
61 #define RGB_BLUE	2
62 
63 #define JSAMPLE unsigned char
64 #define MAXJSAMPLE (gdMaxColors-1)
65 #define BITS_IN_JSAMPLE 8
66 
67 #define JSAMPROW int*
68 #define JDIMENSION int
69 
70 #define METHODDEF(type) static type
71 #define LOCAL(type)	static type
72 
73 
74 /* We assume that right shift corresponds to signed division by 2 with
75  * rounding towards minus infinity.  This is correct for typical "arithmetic
76  * shift" instructions that shift in copies of the sign bit.  But some
77  * C compilers implement >> with an unsigned shift.  For these machines you
78  * must define RIGHT_SHIFT_IS_UNSIGNED.
79  * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
80  * It is only applied with constant shift counts.  SHIFT_TEMPS must be
81  * included in the variables of any routine using RIGHT_SHIFT.
82  */
83 
84 #ifdef RIGHT_SHIFT_IS_UNSIGNED
85 #define SHIFT_TEMPS	INT32 shift_temp;
86 #define RIGHT_SHIFT(x,shft)  \
87 	((shift_temp = (x)) < 0 ? \
88 	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
89 	 (shift_temp >> (shft)))
90 #else
91 #define SHIFT_TEMPS
92 #define RIGHT_SHIFT(x,shft)	((x) >> (shft))
93 #endif
94 
95 
96 #define range_limit(x) { if(x<0) x=0; if (x>255) x=255; }
97 
98 
99 #ifndef INT16
100 #define INT16  short
101 #endif
102 
103 #ifndef UINT16
104 #define UINT16 unsigned short
105 #endif
106 
107 #ifndef INT32
108 #define INT32 int
109 #endif
110 
111 #ifndef FAR
112 #define FAR
113 #endif
114 
115 
116 
117 #ifndef boolean
118 #define boolean int
119 #endif
120 
121 #ifndef TRUE
122 #define TRUE 1
123 #endif
124 
125 #ifndef FALSE
126 #define FALSE 0
127 #endif
128 
129 
130 #define input_buf (oim->tpixels)
131 #define output_buf (nim->pixels)
132 
133 #endif
134 
135 #ifdef QUANT_2PASS_SUPPORTED
136 
137 
138 /*
139  * This module implements the well-known Heckbert paradigm for color
140  * quantization.  Most of the ideas used here can be traced back to
141  * Heckbert's seminal paper
142  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
143  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
144  *
145  * In the first pass over the image, we accumulate a histogram showing the
146  * usage count of each possible color.  To keep the histogram to a reasonable
147  * size, we reduce the precision of the input; typical practice is to retain
148  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
149  * in the same histogram cell.
150  *
151  * Next, the color-selection step begins with a box representing the whole
152  * color space, and repeatedly splits the "largest" remaining box until we
153  * have as many boxes as desired colors.  Then the mean color in each
154  * remaining box becomes one of the possible output colors.
155  *
156  * The second pass over the image maps each input pixel to the closest output
157  * color (optionally after applying a Floyd-Steinberg dithering correction).
158  * This mapping is logically trivial, but making it go fast enough requires
159  * considerable care.
160  *
161  * Heckbert-style quantizers vary a good deal in their policies for choosing
162  * the "largest" box and deciding where to cut it.  The particular policies
163  * used here have proved out well in experimental comparisons, but better ones
164  * may yet be found.
165  *
166  * In earlier versions of the IJG code, this module quantized in YCbCr color
167  * space, processing the raw upsampled data without a color conversion step.
168  * This allowed the color conversion math to be done only once per colormap
169  * entry, not once per pixel.  However, that optimization precluded other
170  * useful optimizations (such as merging color conversion with upsampling)
171  * and it also interfered with desired capabilities such as quantizing to an
172  * externally-supplied colormap.  We have therefore abandoned that approach.
173  * The present code works in the post-conversion color space, typically RGB.
174  *
175  * To improve the visual quality of the results, we actually work in scaled
176  * RGB space, giving G distances more weight than R, and R in turn more than
177  * B.  To do everything in integer math, we must use integer scale factors.
178  * The 2/3/1 scale factors used here correspond loosely to the relative
179  * weights of the colors in the NTSC grayscale equation.
180  * If you want to use this code to quantize a non-RGB color space, you'll
181  * probably need to change these scale factors.
182  */
183 
184 #define R_SCALE 2		/* scale R distances by this much */
185 #define G_SCALE 3		/* scale G distances by this much */
186 #define B_SCALE 1		/* and B by this much */
187 
188 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
189  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
190  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
191  * you'll get compile errors until you extend this logic.  In that case
192  * you'll probably want to tweak the histogram sizes too.
193  */
194 
195 #if RGB_RED == 0
196 #define C0_SCALE R_SCALE
197 #endif
198 #if RGB_BLUE == 0
199 #define C0_SCALE B_SCALE
200 #endif
201 #if RGB_GREEN == 1
202 #define C1_SCALE G_SCALE
203 #endif
204 #if RGB_RED == 2
205 #define C2_SCALE R_SCALE
206 #endif
207 #if RGB_BLUE == 2
208 #define C2_SCALE B_SCALE
209 #endif
210 
211 
212 /*
213  * First we have the histogram data structure and routines for creating it.
214  *
215  * The number of bits of precision can be adjusted by changing these symbols.
216  * We recommend keeping 6 bits for G and 5 each for R and B.
217  * If you have plenty of memory and cycles, 6 bits all around gives marginally
218  * better results; if you are short of memory, 5 bits all around will save
219  * some space but degrade the results.
220  * To maintain a fully accurate histogram, we'd need to allocate a "long"
221  * (preferably unsigned long) for each cell.  In practice this is overkill;
222  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
223  * and clamping those that do overflow to the maximum value will give close-
224  * enough results.  This reduces the recommended histogram size from 256Kb
225  * to 128Kb, which is a useful savings on PC-class machines.
226  * (In the second pass the histogram space is re-used for pixel mapping data;
227  * in that capacity, each cell must be able to store zero to the number of
228  * desired colors.  16 bits/cell is plenty for that too.)
229  * Since the JPEG code is intended to run in small memory model on 80x86
230  * machines, we can't just allocate the histogram in one chunk.  Instead
231  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
232  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
233  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
234  * on 80x86 machines, the pointer row is in near memory but the actual
235  * arrays are in far memory (same arrangement as we use for image arrays).
236  */
237 
238 #define MAXNUMCOLORS  (MAXJSAMPLE+1)	/* maximum size of colormap */
239 
240 /* These will do the right thing for either R,G,B or B,G,R color order,
241  * but you may not like the results for other color orders.
242  */
243 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
244 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
245 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
246 
247 /* Number of elements along histogram axes. */
248 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
249 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
250 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
251 
252 /* These are the amounts to shift an input value to get a histogram index. */
253 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
254 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
255 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
256 
257 
258 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
259 
260 typedef histcell FAR *histptr;	/* for pointers to histogram cells */
261 
262 typedef histcell hist1d[HIST_C2_ELEMS];	/* typedefs for the array */
263 typedef hist1d FAR *hist2d;	/* type for the 2nd-level pointers */
264 typedef hist2d *hist3d;		/* type for top-level pointer */
265 
266 
267 /* Declarations for Floyd-Steinberg dithering.
268  *
269  * Errors are accumulated into the array fserrors[], at a resolution of
270  * 1/16th of a pixel count.  The error at a given pixel is propagated
271  * to its not-yet-processed neighbors using the standard F-S fractions,
272  *		...	(here)	7/16
273  *		3/16	5/16	1/16
274  * We work left-to-right on even rows, right-to-left on odd rows.
275  *
276  * We can get away with a single array (holding one row's worth of errors)
277  * by using it to store the current row's errors at pixel columns not yet
278  * processed, but the next row's errors at columns already processed.  We
279  * need only a few extra variables to hold the errors immediately around the
280  * current column.  (If we are lucky, those variables are in registers, but
281  * even if not, they're probably cheaper to access than array elements are.)
282  *
283  * The fserrors[] array has (#columns + 2) entries; the extra entry at
284  * each end saves us from special-casing the first and last pixels.
285  * Each entry is three values long, one value for each color component.
286  *
287  * Note: on a wide image, we might not have enough room in a PC's near data
288  * segment to hold the error array; so it is allocated with alloc_large.
289  */
290 
291 #if BITS_IN_JSAMPLE == 8
292 typedef INT16 FSERROR;		/* 16 bits should be enough */
293 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
294 #else
295 typedef INT32 FSERROR;		/* may need more than 16 bits */
296 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
297 #endif
298 
299 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
300 
301 
302 /* Private subobject */
303 
304 typedef struct
305 {
306 #ifdef ORIGINAL_LIB_JPEG
307   struct jpeg_color_quantizer pub;	/* public fields */
308 
309   /* Space for the eventually created colormap is stashed here */
310   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
311   int desired;			/* desired # of colors = size of colormap */
312   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
313 #endif
314 
315   /* Variables for accumulating image statistics */
316   hist3d histogram;		/* pointer to the histogram */
317 
318 
319   /* Variables for Floyd-Steinberg dithering */
320   FSERRPTR fserrors;		/* accumulated errors */
321 
322   boolean on_odd_row;		/* flag to remember which row we are on */
323   int *error_limiter;		/* table for clamping the applied error */
324 #ifndef ORIGINAL_LIB_JPEG
325   int *error_limiter_storage;	/* gdMalloc'd storage for the above */
326 #endif
327 }
328 my_cquantizer;
329 
330 typedef my_cquantizer *my_cquantize_ptr;
331 
332 
333 /*
334  * Prescan some rows of pixels.
335  * In this module the prescan simply updates the histogram, which has been
336  * initialized to zeroes by start_pass.
337  * An output_buf parameter is required by the method signature, but no data
338  * is actually output (in fact the buffer controller is probably passing a
339  * NULL pointer).
340  */
341 
342 METHODDEF (void)
343 #ifndef ORIGINAL_LIB_JPEG
prescan_quantize(gdImagePtr oim,gdImagePtr nim,my_cquantize_ptr cquantize)344 prescan_quantize (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
345 {
346 #else
347 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
348 		  JSAMPARRAY output_buf, int num_rows)
349 {
350   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
351 #endif
352   register JSAMPROW ptr;
353   register histptr histp;
354   register hist3d histogram = cquantize->histogram;
355   int row;
356   JDIMENSION col;
357 #ifdef ORIGINAL_LIB_JPEG
358   JDIMENSION width = cinfo->output_width;
359 #else
360   int width = oim->sx;
361   int num_rows = oim->sy;
362 #endif
363 
364   for (row = 0; row < num_rows; row++)
365     {
366       ptr = input_buf[row];
367       for (col = width; col > 0; col--)
368 	{
369 #ifdef ORIGINAL_LIB_JPEG
370 	  int r = GETJSAMPLE (ptr[0]) >> C0_SHIFT;
371 	  int g = GETJSAMPLE (ptr[1]) >> C1_SHIFT;
372 	  int b = GETJSAMPLE (ptr[2]) >> C2_SHIFT;
373 #else
374 	  int r = gdTrueColorGetRed (*ptr) >> C0_SHIFT;
375 	  int g = gdTrueColorGetGreen (*ptr) >> C1_SHIFT;
376 	  int b = gdTrueColorGetBlue (*ptr) >> C2_SHIFT;
377 	  /* 2.0.12: Steven Brown: support a single totally transparent
378 	     color in the original. */
379 	  if ((oim->transparent >= 0) && (*ptr == oim->transparent))
380 	    {
381 	      ptr++;
382 	      continue;
383 	    }
384 #endif
385 	  /* get pixel value and index into the histogram */
386 	  histp = &histogram[r][g][b];
387 	  /* increment, check for overflow and undo increment if so. */
388 	  if (++(*histp) == 0)
389 	    (*histp)--;
390 #ifdef ORIGINAL_LIB_JPEG
391 	  ptr += 3;
392 #else
393 	  ptr++;
394 #endif
395 	}
396     }
397 }
398 
399 
400 /*
401  * Next we have the really interesting routines: selection of a colormap
402  * given the completed histogram.
403  * These routines work with a list of "boxes", each representing a rectangular
404  * subset of the input color space (to histogram precision).
405  */
406 
407 typedef struct
408 {
409   /* The bounds of the box (inclusive); expressed as histogram indexes */
410   int c0min, c0max;
411   int c1min, c1max;
412   int c2min, c2max;
413   /* The volume (actually 2-norm) of the box */
414   INT32 volume;
415   /* The number of nonzero histogram cells within this box */
416   long colorcount;
417 }
418 box;
419 
420 typedef box *boxptr;
421 
422 
423 LOCAL (boxptr) find_biggest_color_pop (boxptr boxlist, int numboxes)
424 /* Find the splittable box with the largest color population */
425 /* Returns NULL if no splittable boxes remain */
426 {
427   register boxptr boxp;
428   register int i;
429   register long maxc = 0;
430   boxptr which = NULL;
431 
432   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
433     {
434       if (boxp->colorcount > maxc && boxp->volume > 0)
435 	{
436 	  which = boxp;
437 	  maxc = boxp->colorcount;
438 	}
439     }
440   return which;
441 }
442 
443 
444 LOCAL (boxptr) find_biggest_volume (boxptr boxlist, int numboxes)
445 /* Find the splittable box with the largest (scaled) volume */
446 /* Returns NULL if no splittable boxes remain */
447 {
448   register boxptr boxp;
449   register int i;
450   register INT32 maxv = 0;
451   boxptr which = NULL;
452 
453   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
454     {
455       if (boxp->volume > maxv)
456 	{
457 	  which = boxp;
458 	  maxv = boxp->volume;
459 	}
460     }
461   return which;
462 }
463 
464 
465 LOCAL (void)
466 #ifndef ORIGINAL_LIB_JPEG
467   update_box (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, boxptr boxp)
468 {
469 #else
470   update_box (j_decompress_ptr cinfo, boxptr boxp)
471 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
472 /* and recompute its volume and population */
473 {
474   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
475 #endif
476   hist3d histogram = cquantize->histogram;
477   histptr histp;
478   int c0, c1, c2;
479   int c0min, c0max, c1min, c1max, c2min, c2max;
480   INT32 dist0, dist1, dist2;
481   long ccount;
482 
483   c0min = boxp->c0min;
484   c0max = boxp->c0max;
485   c1min = boxp->c1min;
486   c1max = boxp->c1max;
487   c2min = boxp->c2min;
488   c2max = boxp->c2max;
489 
490   if (c0max > c0min)
491     for (c0 = c0min; c0 <= c0max; c0++)
492       for (c1 = c1min; c1 <= c1max; c1++)
493 	{
494 	  histp = &histogram[c0][c1][c2min];
495 	  for (c2 = c2min; c2 <= c2max; c2++)
496 	    if (*histp++ != 0)
497 	      {
498 		boxp->c0min = c0min = c0;
499 		goto have_c0min;
500 	      }
501 	}
502 have_c0min:
503   if (c0max > c0min)
504     for (c0 = c0max; c0 >= c0min; c0--)
505       for (c1 = c1min; c1 <= c1max; c1++)
506 	{
507 	  histp = &histogram[c0][c1][c2min];
508 	  for (c2 = c2min; c2 <= c2max; c2++)
509 	    if (*histp++ != 0)
510 	      {
511 		boxp->c0max = c0max = c0;
512 		goto have_c0max;
513 	      }
514 	}
515 have_c0max:
516   if (c1max > c1min)
517     for (c1 = c1min; c1 <= c1max; c1++)
518       for (c0 = c0min; c0 <= c0max; c0++)
519 	{
520 	  histp = &histogram[c0][c1][c2min];
521 	  for (c2 = c2min; c2 <= c2max; c2++)
522 	    if (*histp++ != 0)
523 	      {
524 		boxp->c1min = c1min = c1;
525 		goto have_c1min;
526 	      }
527 	}
528 have_c1min:
529   if (c1max > c1min)
530     for (c1 = c1max; c1 >= c1min; c1--)
531       for (c0 = c0min; c0 <= c0max; c0++)
532 	{
533 	  histp = &histogram[c0][c1][c2min];
534 	  for (c2 = c2min; c2 <= c2max; c2++)
535 	    if (*histp++ != 0)
536 	      {
537 		boxp->c1max = c1max = c1;
538 		goto have_c1max;
539 	      }
540 	}
541 have_c1max:
542   if (c2max > c2min)
543     for (c2 = c2min; c2 <= c2max; c2++)
544       for (c0 = c0min; c0 <= c0max; c0++)
545 	{
546 	  histp = &histogram[c0][c1min][c2];
547 	  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
548 	    if (*histp != 0)
549 	      {
550 		boxp->c2min = c2min = c2;
551 		goto have_c2min;
552 	      }
553 	}
554 have_c2min:
555   if (c2max > c2min)
556     for (c2 = c2max; c2 >= c2min; c2--)
557       for (c0 = c0min; c0 <= c0max; c0++)
558 	{
559 	  histp = &histogram[c0][c1min][c2];
560 	  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
561 	    if (*histp != 0)
562 	      {
563 		boxp->c2max = c2max = c2;
564 		goto have_c2max;
565 	      }
566 	}
567 have_c2max:
568 
569   /* Update box volume.
570    * We use 2-norm rather than real volume here; this biases the method
571    * against making long narrow boxes, and it has the side benefit that
572    * a box is splittable iff norm > 0.
573    * Since the differences are expressed in histogram-cell units,
574    * we have to shift back to JSAMPLE units to get consistent distances;
575    * after which, we scale according to the selected distance scale factors.
576    */
577   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
578   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
579   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
580   boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
581 
582   /* Now scan remaining volume of box and compute population */
583   ccount = 0;
584   for (c0 = c0min; c0 <= c0max; c0++)
585     for (c1 = c1min; c1 <= c1max; c1++)
586       {
587 	histp = &histogram[c0][c1][c2min];
588 	for (c2 = c2min; c2 <= c2max; c2++, histp++)
589 	  if (*histp != 0)
590 	    {
591 	      ccount++;
592 	    }
593       }
594   boxp->colorcount = ccount;
595 }
596 
597 
598 LOCAL (int)
599 #ifdef ORIGINAL_LIB_JPEG
600 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
601 	    int desired_colors)
602 #else
603 median_cut (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
604 	    boxptr boxlist, int numboxes, int desired_colors)
605 #endif
606 /* Repeatedly select and split the largest box until we have enough boxes */
607 {
608   int n, lb;
609   int c0, c1, c2, cmax;
610   register boxptr b1, b2;
611 
612   while (numboxes < desired_colors)
613     {
614       /* Select box to split.
615        * Current algorithm: by population for first half, then by volume.
616        */
617       if (numboxes * 2 <= desired_colors)
618 	{
619 	  b1 = find_biggest_color_pop (boxlist, numboxes);
620 	}
621       else
622 	{
623 	  b1 = find_biggest_volume (boxlist, numboxes);
624 	}
625       if (b1 == NULL)		/* no splittable boxes left! */
626 	break;
627       b2 = &boxlist[numboxes];	/* where new box will go */
628       /* Copy the color bounds to the new box. */
629       b2->c0max = b1->c0max;
630       b2->c1max = b1->c1max;
631       b2->c2max = b1->c2max;
632       b2->c0min = b1->c0min;
633       b2->c1min = b1->c1min;
634       b2->c2min = b1->c2min;
635       /* Choose which axis to split the box on.
636        * Current algorithm: longest scaled axis.
637        * See notes in update_box about scaling distances.
638        */
639       c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
640       c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
641       c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
642       /* We want to break any ties in favor of green, then red, blue last.
643        * This code does the right thing for R,G,B or B,G,R color orders only.
644        */
645 #if RGB_RED == 0
646       cmax = c1;
647       n = 1;
648       if (c0 > cmax)
649 	{
650 	  cmax = c0;
651 	  n = 0;
652 	}
653       if (c2 > cmax)
654 	{
655 	  n = 2;
656 	}
657 #else
658       cmax = c1;
659       n = 1;
660       if (c2 > cmax)
661 	{
662 	  cmax = c2;
663 	  n = 2;
664 	}
665       if (c0 > cmax)
666 	{
667 	  n = 0;
668 	}
669 #endif
670       /* Choose split point along selected axis, and update box bounds.
671        * Current algorithm: split at halfway point.
672        * (Since the box has been shrunk to minimum volume,
673        * any split will produce two nonempty subboxes.)
674        * Note that lb value is max for lower box, so must be < old max.
675        */
676       switch (n)
677 	{
678 	case 0:
679 	  lb = (b1->c0max + b1->c0min) / 2;
680 	  b1->c0max = lb;
681 	  b2->c0min = lb + 1;
682 	  break;
683 	case 1:
684 	  lb = (b1->c1max + b1->c1min) / 2;
685 	  b1->c1max = lb;
686 	  b2->c1min = lb + 1;
687 	  break;
688 	case 2:
689 	  lb = (b1->c2max + b1->c2min) / 2;
690 	  b1->c2max = lb;
691 	  b2->c2min = lb + 1;
692 	  break;
693 	}
694       /* Update stats for boxes */
695 #ifdef ORIGINAL_LIB_JPEG
696       update_box (cinfo, b1);
697       update_box (cinfo, b2);
698 #else
699       update_box (oim, nim, cquantize, b1);
700       update_box (oim, nim, cquantize, b2);
701 #endif
702       numboxes++;
703     }
704   return numboxes;
705 }
706 
707 
708 LOCAL (void)
709 #ifndef ORIGINAL_LIB_JPEG
710   compute_color (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
711 	       boxptr boxp, int icolor)
712 {
713 #else
714   compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
715 /* Compute representative color for a box, put it in colormap[icolor] */
716 {
717   /* Current algorithm: mean weighted by pixels (not colors) */
718   /* Note it is important to get the rounding correct! */
719   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
720 #endif
721   hist3d histogram = cquantize->histogram;
722   histptr histp;
723   int c0, c1, c2;
724   int c0min, c0max, c1min, c1max, c2min, c2max;
725   long count = 0; /* 2.0.28: = 0 */
726   long total = 0;
727   long c0total = 0;
728   long c1total = 0;
729   long c2total = 0;
730 
731   c0min = boxp->c0min;
732   c0max = boxp->c0max;
733   c1min = boxp->c1min;
734   c1max = boxp->c1max;
735   c2min = boxp->c2min;
736   c2max = boxp->c2max;
737 
738   for (c0 = c0min; c0 <= c0max; c0++)
739     for (c1 = c1min; c1 <= c1max; c1++)
740       {
741 	histp = &histogram[c0][c1][c2min];
742 	for (c2 = c2min; c2 <= c2max; c2++)
743 	  {
744 	    if ((count = *histp++) != 0)
745 	      {
746 		total += count;
747 		c0total +=
748 		  ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
749 		c1total +=
750 		  ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
751 		c2total +=
752 		  ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
753 	      }
754 	  }
755       }
756 
757 #ifdef ORIGINAL_LIB_JPEG
758   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total >> 1)) / total);
759   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total >> 1)) / total);
760   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total >> 1)) / total);
761 #else
762   /* 2.0.16: Paul den Dulk found an occasion where total can be 0 */
763   if (count)
764     {
765       nim->red[icolor] = (int) ((c0total + (total >> 1)) / total);
766       nim->green[icolor] = (int) ((c1total + (total >> 1)) / total);
767       nim->blue[icolor] = (int) ((c2total + (total >> 1)) / total);
768     }
769   else
770     {
771       nim->red[icolor] = 255;
772       nim->green[icolor] = 255;
773       nim->blue[icolor] = 255;
774     }
775 		nim->open[icolor] = 0;
776 #endif
777 }
778 
779 
780 LOCAL (void)
781 #ifdef ORIGINAL_LIB_JPEG
782 select_colors (j_decompress_ptr cinfo, int desired_colors)
783 #else
784 select_colors (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize, int desired_colors)
785 #endif
786 /* Master routine for color selection */
787 {
788   boxptr boxlist;
789   int numboxes;
790   int i;
791 
792   /* Allocate workspace for box list */
793 #ifdef ORIGINAL_LIB_JPEG
794   boxlist = (boxptr) (*cinfo->mem->alloc_small)
795     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF (box));
796 #else
797   boxlist = (boxptr) safe_emalloc(desired_colors, sizeof (box), 1);
798 #endif
799   /* Initialize one box containing whole space */
800   numboxes = 1;
801   boxlist[0].c0min = 0;
802   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
803   boxlist[0].c1min = 0;
804   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
805   boxlist[0].c2min = 0;
806   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
807 #ifdef ORIGINAL_LIB_JPEG
808   /* Shrink it to actually-used volume and set its statistics */
809   update_box (cinfo, &boxlist[0]);
810   /* Perform median-cut to produce final box list */
811   numboxes = median_cut (cinfo, boxlist, numboxes, desired_colors);
812   /* Compute the representative color for each box, fill colormap */
813   for (i = 0; i < numboxes; i++)
814     compute_color (cinfo, &boxlist[i], i);
815   cinfo->actual_number_of_colors = numboxes;
816   TRACEMS1 (cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
817 #else
818   /* Shrink it to actually-used volume and set its statistics */
819   update_box (oim, nim, cquantize, &boxlist[0]);
820   /* Perform median-cut to produce final box list */
821   numboxes = median_cut (oim, nim, cquantize, boxlist, numboxes, desired_colors);
822   /* Compute the representative color for each box, fill colormap */
823   for (i = 0; i < numboxes; i++)
824     compute_color (oim, nim, cquantize, &boxlist[i], i);
825   nim->colorsTotal = numboxes;
826 
827   /* If we had a pure transparency color, add it as the last palette entry.
828    * Skip incrementing the color count so that the dither / matching phase
829    * won't use it on pixels that shouldn't have been transparent.  We'll
830    * increment it after all that finishes. */
831   if (oim->transparent >= 0)
832     {
833       /* Save the transparent color. */
834       nim->red[nim->colorsTotal] = gdTrueColorGetRed (oim->transparent);
835       nim->green[nim->colorsTotal] = gdTrueColorGetGreen (oim->transparent);
836       nim->blue[nim->colorsTotal] = gdTrueColorGetBlue (oim->transparent);
837       nim->alpha[nim->colorsTotal] = gdAlphaTransparent;
838       nim->open[nim->colorsTotal] = 0;
839     }
840 
841   gdFree (boxlist);
842 #endif
843 }
844 
845 
846 /*
847  * These routines are concerned with the time-critical task of mapping input
848  * colors to the nearest color in the selected colormap.
849  *
850  * We re-use the histogram space as an "inverse color map", essentially a
851  * cache for the results of nearest-color searches.  All colors within a
852  * histogram cell will be mapped to the same colormap entry, namely the one
853  * closest to the cell's center.  This may not be quite the closest entry to
854  * the actual input color, but it's almost as good.  A zero in the cache
855  * indicates we haven't found the nearest color for that cell yet; the array
856  * is cleared to zeroes before starting the mapping pass.  When we find the
857  * nearest color for a cell, its colormap index plus one is recorded in the
858  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
859  * when they need to use an unfilled entry in the cache.
860  *
861  * Our method of efficiently finding nearest colors is based on the "locally
862  * sorted search" idea described by Heckbert and on the incremental distance
863  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
864  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
865  * the distances from a given colormap entry to each cell of the histogram can
866  * be computed quickly using an incremental method: the differences between
867  * distances to adjacent cells themselves differ by a constant.  This allows a
868  * fairly fast implementation of the "brute force" approach of computing the
869  * distance from every colormap entry to every histogram cell.  Unfortunately,
870  * it needs a work array to hold the best-distance-so-far for each histogram
871  * cell (because the inner loop has to be over cells, not colormap entries).
872  * The work array elements have to be INT32s, so the work array would need
873  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
874  *
875  * To get around these problems, we apply Thomas' method to compute the
876  * nearest colors for only the cells within a small subbox of the histogram.
877  * The work array need be only as big as the subbox, so the memory usage
878  * problem is solved.  Furthermore, we need not fill subboxes that are never
879  * referenced in pass2; many images use only part of the color gamut, so a
880  * fair amount of work is saved.  An additional advantage of this
881  * approach is that we can apply Heckbert's locality criterion to quickly
882  * eliminate colormap entries that are far away from the subbox; typically
883  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
884  * and we need not compute their distances to individual cells in the subbox.
885  * The speed of this approach is heavily influenced by the subbox size: too
886  * small means too much overhead, too big loses because Heckbert's criterion
887  * can't eliminate as many colormap entries.  Empirically the best subbox
888  * size seems to be about 1/512th of the histogram (1/8th in each direction).
889  *
890  * Thomas' article also describes a refined method which is asymptotically
891  * faster than the brute-force method, but it is also far more complex and
892  * cannot efficiently be applied to small subboxes.  It is therefore not
893  * useful for programs intended to be portable to DOS machines.  On machines
894  * with plenty of memory, filling the whole histogram in one shot with Thomas'
895  * refined method might be faster than the present code --- but then again,
896  * it might not be any faster, and it's certainly more complicated.
897  */
898 
899 
900 /* log2(histogram cells in update box) for each axis; this can be adjusted */
901 #define BOX_C0_LOG  (HIST_C0_BITS-3)
902 #define BOX_C1_LOG  (HIST_C1_BITS-3)
903 #define BOX_C2_LOG  (HIST_C2_BITS-3)
904 
905 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG)	/* # of hist cells in update box */
906 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
907 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
908 
909 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
910 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
911 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
912 
913 
914 /*
915  * The next three routines implement inverse colormap filling.  They could
916  * all be folded into one big routine, but splitting them up this way saves
917  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
918  * and may allow some compilers to produce better code by registerizing more
919  * inner-loop variables.
920  */
921 
922 LOCAL (int)
923 find_nearby_colors (
924 #ifdef ORIGINAL_LIB_JPEG
925 		     j_decompress_ptr cinfo,
926 #else
927 		     gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
928 #endif
929 		     int minc0, int minc1, int minc2, JSAMPLE colorlist[])
930 /* Locate the colormap entries close enough to an update box to be candidates
931  * for the nearest entry to some cell(s) in the update box.  The update box
932  * is specified by the center coordinates of its first cell.  The number of
933  * candidate colormap entries is returned, and their colormap indexes are
934  * placed in colorlist[].
935  * This routine uses Heckbert's "locally sorted search" criterion to select
936  * the colors that need further consideration.
937  */
938 {
939 #ifdef ORIGINAL_LIB_JPEG
940   int numcolors = cinfo->actual_number_of_colors;
941 #else
942   int numcolors = nim->colorsTotal;
943 #endif
944   int maxc0, maxc1, maxc2;
945   int centerc0, centerc1, centerc2;
946   int i, x, ncolors;
947   INT32 minmaxdist, min_dist, max_dist, tdist;
948   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
949 
950   /* Compute true coordinates of update box's upper corner and center.
951    * Actually we compute the coordinates of the center of the upper-corner
952    * histogram cell, which are the upper bounds of the volume we care about.
953    * Note that since ">>" rounds down, the "center" values may be closer to
954    * min than to max; hence comparisons to them must be "<=", not "<".
955    */
956   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
957   centerc0 = (minc0 + maxc0) >> 1;
958   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
959   centerc1 = (minc1 + maxc1) >> 1;
960   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
961   centerc2 = (minc2 + maxc2) >> 1;
962 
963   /* For each color in colormap, find:
964    *  1. its minimum squared-distance to any point in the update box
965    *     (zero if color is within update box);
966    *  2. its maximum squared-distance to any point in the update box.
967    * Both of these can be found by considering only the corners of the box.
968    * We save the minimum distance for each color in mindist[];
969    * only the smallest maximum distance is of interest.
970    */
971   minmaxdist = 0x7FFFFFFFL;
972 
973   for (i = 0; i < numcolors; i++)
974     {
975       /* We compute the squared-c0-distance term, then add in the other two. */
976 #ifdef ORIGINAL_LIB_JPEG
977       x = GETJSAMPLE (cinfo->colormap[0][i]);
978 #else
979       x = nim->red[i];
980 #endif
981       if (x < minc0)
982 	{
983 	  tdist = (x - minc0) * C0_SCALE;
984 	  min_dist = tdist * tdist;
985 	  tdist = (x - maxc0) * C0_SCALE;
986 	  max_dist = tdist * tdist;
987 	}
988       else if (x > maxc0)
989 	{
990 	  tdist = (x - maxc0) * C0_SCALE;
991 	  min_dist = tdist * tdist;
992 	  tdist = (x - minc0) * C0_SCALE;
993 	  max_dist = tdist * tdist;
994 	}
995       else
996 	{
997 	  /* within cell range so no contribution to min_dist */
998 	  min_dist = 0;
999 	  if (x <= centerc0)
1000 	    {
1001 	      tdist = (x - maxc0) * C0_SCALE;
1002 	      max_dist = tdist * tdist;
1003 	    }
1004 	  else
1005 	    {
1006 	      tdist = (x - minc0) * C0_SCALE;
1007 	      max_dist = tdist * tdist;
1008 	    }
1009 	}
1010 
1011 #ifdef ORIGINAL_LIB_JPEG
1012       x = GETJSAMPLE (cinfo->colormap[1][i]);
1013 #else
1014       x = nim->green[i];
1015 #endif
1016       if (x < minc1)
1017 	{
1018 	  tdist = (x - minc1) * C1_SCALE;
1019 	  min_dist += tdist * tdist;
1020 	  tdist = (x - maxc1) * C1_SCALE;
1021 	  max_dist += tdist * tdist;
1022 	}
1023       else if (x > maxc1)
1024 	{
1025 	  tdist = (x - maxc1) * C1_SCALE;
1026 	  min_dist += tdist * tdist;
1027 	  tdist = (x - minc1) * C1_SCALE;
1028 	  max_dist += tdist * tdist;
1029 	}
1030       else
1031 	{
1032 	  /* within cell range so no contribution to min_dist */
1033 	  if (x <= centerc1)
1034 	    {
1035 	      tdist = (x - maxc1) * C1_SCALE;
1036 	      max_dist += tdist * tdist;
1037 	    }
1038 	  else
1039 	    {
1040 	      tdist = (x - minc1) * C1_SCALE;
1041 	      max_dist += tdist * tdist;
1042 	    }
1043 	}
1044 
1045 #ifdef ORIGINAL_LIB_JPEG
1046       x = GETJSAMPLE (cinfo->colormap[2][i]);
1047 #else
1048       x = nim->blue[i];
1049 #endif
1050       if (x < minc2)
1051 	{
1052 	  tdist = (x - minc2) * C2_SCALE;
1053 	  min_dist += tdist * tdist;
1054 	  tdist = (x - maxc2) * C2_SCALE;
1055 	  max_dist += tdist * tdist;
1056 	}
1057       else if (x > maxc2)
1058 	{
1059 	  tdist = (x - maxc2) * C2_SCALE;
1060 	  min_dist += tdist * tdist;
1061 	  tdist = (x - minc2) * C2_SCALE;
1062 	  max_dist += tdist * tdist;
1063 	}
1064       else
1065 	{
1066 	  /* within cell range so no contribution to min_dist */
1067 	  if (x <= centerc2)
1068 	    {
1069 	      tdist = (x - maxc2) * C2_SCALE;
1070 	      max_dist += tdist * tdist;
1071 	    }
1072 	  else
1073 	    {
1074 	      tdist = (x - minc2) * C2_SCALE;
1075 	      max_dist += tdist * tdist;
1076 	    }
1077 	}
1078 
1079       mindist[i] = min_dist;	/* save away the results */
1080       if (max_dist < minmaxdist)
1081 	minmaxdist = max_dist;
1082     }
1083 
1084   /* Now we know that no cell in the update box is more than minmaxdist
1085    * away from some colormap entry.  Therefore, only colors that are
1086    * within minmaxdist of some part of the box need be considered.
1087    */
1088   ncolors = 0;
1089   for (i = 0; i < numcolors; i++)
1090     {
1091       if (mindist[i] <= minmaxdist)
1092 	colorlist[ncolors++] = (JSAMPLE) i;
1093     }
1094   return ncolors;
1095 }
1096 
1097 
1098 LOCAL (void) find_best_colors (
1099 #ifdef ORIGINAL_LIB_JPEG
1100 				j_decompress_ptr cinfo,
1101 #else
1102 				gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
1103 #endif
1104 				int minc0, int minc1, int minc2,
1105 				int numcolors, JSAMPLE colorlist[],
1106 				JSAMPLE bestcolor[])
1107 /* Find the closest colormap entry for each cell in the update box,
1108  * given the list of candidate colors prepared by find_nearby_colors.
1109  * Return the indexes of the closest entries in the bestcolor[] array.
1110  * This routine uses Thomas' incremental distance calculation method to
1111  * find the distance from a colormap entry to successive cells in the box.
1112  */
1113 {
1114   int ic0, ic1, ic2;
1115   int i, icolor;
1116   register INT32 *bptr;		/* pointer into bestdist[] array */
1117   JSAMPLE *cptr;		/* pointer into bestcolor[] array */
1118   INT32 dist0, dist1;		/* initial distance values */
1119   register INT32 dist2;		/* current distance in inner loop */
1120   INT32 xx0, xx1;		/* distance increments */
1121   register INT32 xx2;
1122   INT32 inc0, inc1, inc2;	/* initial values for increments */
1123   /* This array holds the distance to the nearest-so-far color for each cell */
1124   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
1125 
1126   /* Initialize best-distance for each cell of the update box */
1127   bptr = bestdist;
1128   for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
1129     *bptr++ = 0x7FFFFFFFL;
1130 
1131   /* For each color selected by find_nearby_colors,
1132    * compute its distance to the center of each cell in the box.
1133    * If that's less than best-so-far, update best distance and color number.
1134    */
1135 
1136   /* Nominal steps between cell centers ("x" in Thomas article) */
1137 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
1138 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
1139 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
1140 
1141   for (i = 0; i < numcolors; i++)
1142     {
1143       int r, g, b;
1144 #ifdef ORIGINAL_LIB_JPEG
1145 
1146       icolor = GETJSAMPLE (colorlist[i]);
1147       r = GETJSAMPLE (cinfo->colormap[0][icolor]);
1148       g = GETJSAMPLE (cinfo->colormap[1][icolor]);
1149       b = GETJSAMPLE (cinfo->colormap[2][icolor]);
1150 #else
1151       icolor = colorlist[i];
1152       r = nim->red[icolor];
1153       g = nim->green[icolor];
1154       b = nim->blue[icolor];
1155 #endif
1156 
1157       /* Compute (square of) distance from minc0/c1/c2 to this color */
1158       inc0 = (minc0 - r) * C0_SCALE;
1159       dist0 = inc0 * inc0;
1160       inc1 = (minc1 - g) * C1_SCALE;
1161       dist0 += inc1 * inc1;
1162       inc2 = (minc2 - b) * C2_SCALE;
1163       dist0 += inc2 * inc2;
1164       /* Form the initial difference increments */
1165       inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
1166       inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
1167       inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
1168       /* Now loop over all cells in box, updating distance per Thomas method */
1169       bptr = bestdist;
1170       cptr = bestcolor;
1171       xx0 = inc0;
1172       for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--)
1173 	{
1174 	  dist1 = dist0;
1175 	  xx1 = inc1;
1176 	  for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--)
1177 	    {
1178 	      dist2 = dist1;
1179 	      xx2 = inc2;
1180 	      for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--)
1181 		{
1182 		  if (dist2 < *bptr)
1183 		    {
1184 		      *bptr = dist2;
1185 		      *cptr = (JSAMPLE) icolor;
1186 		    }
1187 		  dist2 += xx2;
1188 		  xx2 += 2 * STEP_C2 * STEP_C2;
1189 		  bptr++;
1190 		  cptr++;
1191 		}
1192 	      dist1 += xx1;
1193 	      xx1 += 2 * STEP_C1 * STEP_C1;
1194 	    }
1195 	  dist0 += xx0;
1196 	  xx0 += 2 * STEP_C0 * STEP_C0;
1197 	}
1198     }
1199 }
1200 
1201 
1202 LOCAL (void)
1203 fill_inverse_cmap (
1204 #ifdef ORIGINAL_LIB_JPEG
1205 		    j_decompress_ptr cinfo,
1206 #else
1207 		    gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize,
1208 #endif
1209 		    int c0, int c1, int c2)
1210 /* Fill the inverse-colormap entries in the update box that contains */
1211 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
1212 /* we can fill as many others as we wish.) */
1213 {
1214 #ifdef ORIGINAL_LIB_JPEG
1215   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1216 #endif
1217   hist3d histogram = cquantize->histogram;
1218   int minc0, minc1, minc2;	/* lower left corner of update box */
1219   int ic0, ic1, ic2;
1220   register JSAMPLE *cptr;	/* pointer into bestcolor[] array */
1221   register histptr cachep;	/* pointer into main cache array */
1222   /* This array lists the candidate colormap indexes. */
1223   JSAMPLE colorlist[MAXNUMCOLORS];
1224   int numcolors;		/* number of candidate colors */
1225   /* This array holds the actually closest colormap index for each cell. */
1226   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
1227 
1228   /* Convert cell coordinates to update box ID */
1229   c0 >>= BOX_C0_LOG;
1230   c1 >>= BOX_C1_LOG;
1231   c2 >>= BOX_C2_LOG;
1232 
1233   /* Compute true coordinates of update box's origin corner.
1234    * Actually we compute the coordinates of the center of the corner
1235    * histogram cell, which are the lower bounds of the volume we care about.
1236    */
1237   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
1238   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
1239   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
1240 
1241   /* Determine which colormap entries are close enough to be candidates
1242    * for the nearest entry to some cell in the update box.
1243    */
1244 #ifdef ORIGINAL_LIB_JPEG
1245   numcolors = find_nearby_colors (cinfo, minc0, minc1, minc2, colorlist);
1246 
1247   /* Determine the actually nearest colors. */
1248   find_best_colors (cinfo, minc0, minc1, minc2, numcolors, colorlist,
1249 		    bestcolor);
1250 #else
1251   numcolors =
1252     find_nearby_colors (oim, nim, cquantize, minc0, minc1, minc2, colorlist);
1253   find_best_colors (oim, nim, cquantize, minc0, minc1, minc2, numcolors,
1254 		    colorlist, bestcolor);
1255 #endif
1256 
1257   /* Save the best color numbers (plus 1) in the main cache array */
1258   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
1259   c1 <<= BOX_C1_LOG;
1260   c2 <<= BOX_C2_LOG;
1261   cptr = bestcolor;
1262   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++)
1263     {
1264       for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++)
1265 	{
1266 	  cachep = &histogram[c0 + ic0][c1 + ic1][c2];
1267 	  for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++)
1268 	    {
1269 #ifdef ORIGINAL_LIB_JPEG
1270 	      *cachep++ = (histcell) (GETJSAMPLE (*cptr++) + 1);
1271 #else
1272 	      *cachep++ = (histcell) ((*cptr++) + 1);
1273 #endif
1274 	    }
1275 	}
1276     }
1277 }
1278 
1279 
1280 /*
1281  * Map some rows of pixels to the output colormapped representation.
1282  */
1283 
1284 METHODDEF (void)
1285 #ifndef ORIGINAL_LIB_JPEG
1286 pass2_no_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
1287 {
1288   register int *inptr;
1289   register unsigned char *outptr;
1290   int width = oim->sx;
1291   int num_rows = oim->sy;
1292 #else
1293 pass2_no_dither (j_decompress_ptr cinfo,
1294 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
1295 /* This version performs no dithering */
1296 {
1297   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1298   register JSAMPROW inptr, outptr;
1299   JDIMENSION width = cinfo->output_width;
1300 #endif
1301   hist3d histogram = cquantize->histogram;
1302   register int c0, c1, c2;
1303   int row;
1304   JDIMENSION col;
1305   register histptr cachep;
1306 
1307 
1308   for (row = 0; row < num_rows; row++)
1309     {
1310       inptr = input_buf[row];
1311       outptr = output_buf[row];
1312       for (col = width; col > 0; col--)
1313 	{
1314 	  /* get pixel value and index into the cache */
1315 	  int r, g, b;
1316 #ifdef ORIGINAL_LIB_JPEG
1317 	  r = GETJSAMPLE (*inptr++);
1318 	  g = GETJSAMPLE (*inptr++);
1319 	  b = GETJSAMPLE (*inptr++);
1320 #else
1321 	  r = gdTrueColorGetRed (*inptr);
1322 	  g = gdTrueColorGetGreen (*inptr);
1323 	  /*
1324 	     2.0.24: inptr must not be incremented until after
1325 	     transparency check, if any. Thanks to "Super Pikeman."
1326 	   */
1327 	  b = gdTrueColorGetBlue (*inptr);
1328 
1329 	  /* If the pixel is transparent, we assign it the palette index that
1330 	   * will later be added at the end of the palette as the transparent
1331 	   * index. */
1332 	  if ((oim->transparent >= 0) && (oim->transparent == *inptr))
1333 	    {
1334 	      *outptr++ = nim->colorsTotal;
1335 	      inptr++;
1336 	      continue;
1337 	    }
1338 	  inptr++;
1339 #endif
1340 	  c0 = r >> C0_SHIFT;
1341 	  c1 = g >> C1_SHIFT;
1342 	  c2 = b >> C2_SHIFT;
1343 	  cachep = &histogram[c0][c1][c2];
1344 	  /* If we have not seen this color before, find nearest colormap entry */
1345 	  /* and update the cache */
1346 	  if (*cachep == 0)
1347 #ifdef ORIGINAL_LIB_JPEG
1348 	    fill_inverse_cmap (cinfo, c0, c1, c2);
1349 #else
1350 	    fill_inverse_cmap (oim, nim, cquantize, c0, c1, c2);
1351 #endif
1352 	  /* Now emit the colormap index for this cell */
1353 #ifdef ORIGINAL_LIB_JPEG
1354 	  *outptr++ = (JSAMPLE) (*cachep - 1);
1355 #else
1356 	  *outptr++ = (*cachep - 1);
1357 #endif
1358 	}
1359     }
1360 }
1361 
1362 
1363 METHODDEF (void)
1364 #ifndef ORIGINAL_LIB_JPEG
1365 pass2_fs_dither (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
1366 {
1367 #else
1368 pass2_fs_dither (j_decompress_ptr cinfo,
1369 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
1370 /* This version performs Floyd-Steinberg dithering */
1371 {
1372   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1373   JSAMPROW inptr;		/* => current input pixel */
1374 #endif
1375   hist3d histogram = cquantize->histogram;
1376   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
1377   LOCFSERROR belowerr0, belowerr1, belowerr2;	/* error for pixel below cur */
1378   LOCFSERROR bpreverr0, bpreverr1, bpreverr2;	/* error for below/prev col */
1379   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
1380   histptr cachep;
1381   int dir;			/* +1 or -1 depending on direction */
1382   int dir3;			/* 3*dir, for advancing inptr & errorptr */
1383   int row;
1384   JDIMENSION col;
1385 #ifdef ORIGINAL_LIB_JPEG
1386   JSAMPROW outptr;		/* => current output pixel */
1387   JDIMENSION width = cinfo->output_width;
1388   JSAMPLE *range_limit = cinfo->sample_range_limit;
1389   JSAMPROW colormap0 = cinfo->colormap[0];
1390   JSAMPROW colormap1 = cinfo->colormap[1];
1391   JSAMPROW colormap2 = cinfo->colormap[2];
1392 #else
1393   int *inptr;			/* => current input pixel */
1394   unsigned char *outptr;	/* => current output pixel */
1395   int width = oim->sx;
1396   int num_rows = oim->sy;
1397   int *colormap0 = nim->red;
1398   int *colormap1 = nim->green;
1399   int *colormap2 = nim->blue;
1400 #endif
1401   int *error_limit = cquantize->error_limiter;
1402 
1403 
1404   SHIFT_TEMPS for (row = 0; row < num_rows; row++)
1405     {
1406       inptr = input_buf[row];
1407       outptr = output_buf[row];
1408       if (cquantize->on_odd_row)
1409 	{
1410 	  /* work right to left in this row */
1411 	  inptr += (width - 1) * 3;	/* so point to rightmost pixel */
1412 	  outptr += width - 1;
1413 	  dir = -1;
1414 	  dir3 = -3;
1415 	  errorptr = cquantize->fserrors + (width + 1) * 3;	/* => entry after last column */
1416 #ifdef ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS
1417 	  cquantize->on_odd_row = FALSE;	/* flip for next time */
1418 #endif
1419 	}
1420       else
1421 	{
1422 	  /* work left to right in this row */
1423 	  dir = 1;
1424 	  dir3 = 3;
1425 	  errorptr = cquantize->fserrors;	/* => entry before first real column */
1426 #ifdef ORIGINAL_LIB_JPEG_REVERSE_ODD_ROWS
1427 	  cquantize->on_odd_row = TRUE;	/* flip for next time */
1428 #endif
1429 	}
1430       /* Preset error values: no error propagated to first pixel from left */
1431       cur0 = cur1 = cur2 = 0;
1432       /* and no error propagated to row below yet */
1433       belowerr0 = belowerr1 = belowerr2 = 0;
1434       bpreverr0 = bpreverr1 = bpreverr2 = 0;
1435 
1436       for (col = width; col > 0; col--)
1437 	{
1438 
1439 	  /* If this pixel is transparent, we want to assign it to the special
1440 	   * transparency color index past the end of the palette rather than
1441 	   * go through matching / dithering. */
1442 	  if ((oim->transparent >= 0) && (*inptr == oim->transparent))
1443 	    {
1444 	      *outptr = nim->colorsTotal;
1445 	      errorptr[0] = 0;
1446 	      errorptr[1] = 0;
1447 	      errorptr[2] = 0;
1448 	      errorptr[3] = 0;
1449 	      inptr += dir;
1450 	      outptr += dir;
1451 	      errorptr += dir3;
1452 	      continue;
1453 	    }
1454 	  /* curN holds the error propagated from the previous pixel on the
1455 	   * current line.  Add the error propagated from the previous line
1456 	   * to form the complete error correction term for this pixel, and
1457 	   * round the error term (which is expressed * 16) to an integer.
1458 	   * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1459 	   * for either sign of the error value.
1460 	   * Note: errorptr points to *previous* column's array entry.
1461 	   */
1462 	  cur0 = RIGHT_SHIFT (cur0 + errorptr[dir3 + 0] + 8, 4);
1463 	  cur1 = RIGHT_SHIFT (cur1 + errorptr[dir3 + 1] + 8, 4);
1464 	  cur2 = RIGHT_SHIFT (cur2 + errorptr[dir3 + 2] + 8, 4);
1465 	  /* Limit the error using transfer function set by init_error_limit.
1466 	   * See comments with init_error_limit for rationale.
1467 	   */
1468 	  cur0 = error_limit[cur0];
1469 	  cur1 = error_limit[cur1];
1470 	  cur2 = error_limit[cur2];
1471 	  /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1472 	   * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1473 	   * this sets the required size of the range_limit array.
1474 	   */
1475 #ifdef ORIGINAL_LIB_JPEG
1476 	  cur0 += GETJSAMPLE (inptr[0]);
1477 	  cur1 += GETJSAMPLE (inptr[1]);
1478 	  cur2 += GETJSAMPLE (inptr[2]);
1479 	  cur0 = GETJSAMPLE (range_limit[cur0]);
1480 	  cur1 = GETJSAMPLE (range_limit[cur1]);
1481 	  cur2 = GETJSAMPLE (range_limit[cur2]);
1482 #else
1483 	  cur0 += gdTrueColorGetRed (*inptr);
1484 	  cur1 += gdTrueColorGetGreen (*inptr);
1485 	  cur2 += gdTrueColorGetBlue (*inptr);
1486 	  range_limit (cur0);
1487 	  range_limit (cur1);
1488 	  range_limit (cur2);
1489 #endif
1490 
1491 	  /* Index into the cache with adjusted pixel value */
1492 	  cachep =
1493 	    &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
1494 	  /* If we have not seen this color before, find nearest colormap */
1495 	  /* entry and update the cache */
1496 	  if (*cachep == 0)
1497 #ifdef ORIGINAL_LIB_JPEG
1498 	    fill_inverse_cmap (cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT,
1499 			       cur2 >> C2_SHIFT);
1500 #else
1501 	    fill_inverse_cmap (oim, nim, cquantize, cur0 >> C0_SHIFT,
1502 			       cur1 >> C1_SHIFT, cur2 >> C2_SHIFT);
1503 #endif
1504 	  /* Now emit the colormap index for this cell */
1505 	  {
1506 	    register int pixcode = *cachep - 1;
1507 	    *outptr = (JSAMPLE) pixcode;
1508 	    /* Compute representation error for this pixel */
1509 #define GETJSAMPLE
1510 	    cur0 -= GETJSAMPLE (colormap0[pixcode]);
1511 	    cur1 -= GETJSAMPLE (colormap1[pixcode]);
1512 	    cur2 -= GETJSAMPLE (colormap2[pixcode]);
1513 #undef GETJSAMPLE
1514 	  }
1515 	  /* Compute error fractions to be propagated to adjacent pixels.
1516 	   * Add these into the running sums, and simultaneously shift the
1517 	   * next-line error sums left by 1 column.
1518 	   */
1519 	  {
1520 	    register LOCFSERROR bnexterr, delta;
1521 
1522 	    bnexterr = cur0;	/* Process component 0 */
1523 	    delta = cur0 * 2;
1524 	    cur0 += delta;	/* form error * 3 */
1525 	    errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1526 	    cur0 += delta;	/* form error * 5 */
1527 	    bpreverr0 = belowerr0 + cur0;
1528 	    belowerr0 = bnexterr;
1529 	    cur0 += delta;	/* form error * 7 */
1530 	    bnexterr = cur1;	/* Process component 1 */
1531 	    delta = cur1 * 2;
1532 	    cur1 += delta;	/* form error * 3 */
1533 	    errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1534 	    cur1 += delta;	/* form error * 5 */
1535 	    bpreverr1 = belowerr1 + cur1;
1536 	    belowerr1 = bnexterr;
1537 	    cur1 += delta;	/* form error * 7 */
1538 	    bnexterr = cur2;	/* Process component 2 */
1539 	    delta = cur2 * 2;
1540 	    cur2 += delta;	/* form error * 3 */
1541 	    errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1542 	    cur2 += delta;	/* form error * 5 */
1543 	    bpreverr2 = belowerr2 + cur2;
1544 	    belowerr2 = bnexterr;
1545 	    cur2 += delta;	/* form error * 7 */
1546 	  }
1547 	  /* At this point curN contains the 7/16 error value to be propagated
1548 	   * to the next pixel on the current line, and all the errors for the
1549 	   * next line have been shifted over.  We are therefore ready to move on.
1550 	   */
1551 #ifdef ORIGINAL_LIB_JPEG
1552 	  inptr += dir3;	/* Advance pixel pointers to next column */
1553 #else
1554 	  inptr += dir;		/* Advance pixel pointers to next column */
1555 #endif
1556 	  outptr += dir;
1557 	  errorptr += dir3;	/* advance errorptr to current column */
1558 	}
1559       /* Post-loop cleanup: we must unload the final error values into the
1560        * final fserrors[] entry.  Note we need not unload belowerrN because
1561        * it is for the dummy column before or after the actual array.
1562        */
1563       errorptr[0] = (FSERROR) bpreverr0;	/* unload prev errs into array */
1564       errorptr[1] = (FSERROR) bpreverr1;
1565       errorptr[2] = (FSERROR) bpreverr2;
1566     }
1567 }
1568 
1569 
1570 /*
1571  * Initialize the error-limiting transfer function (lookup table).
1572  * The raw F-S error computation can potentially compute error values of up to
1573  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1574  * much less, otherwise obviously wrong pixels will be created.  (Typical
1575  * effects include weird fringes at color-area boundaries, isolated bright
1576  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1577  * is to ensure that the "corners" of the color cube are allocated as output
1578  * colors; then repeated errors in the same direction cannot cause cascading
1579  * error buildup.  However, that only prevents the error from getting
1580  * completely out of hand; Aaron Giles reports that error limiting improves
1581  * the results even with corner colors allocated.
1582  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1583  * well, but the smoother transfer function used below is even better.  Thanks
1584  * to Aaron Giles for this idea.
1585  */
1586 
1587 LOCAL (void)
1588 #ifdef ORIGINAL_LIB_JPEG
1589 init_error_limit (j_decompress_ptr cinfo)
1590 #else
1591 init_error_limit (gdImagePtr oim, gdImagePtr nim, my_cquantize_ptr cquantize)
1592 #endif
1593 /* Allocate and fill in the error_limiter table */
1594 {
1595   int *table;
1596   int in, out;
1597 #ifdef ORIGINAL_LIB_JPEG
1598   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1599   table = (int *) (*cinfo->mem->alloc_small)
1600     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE * 2 + 1) * SIZEOF (int));
1601 #else
1602   cquantize->error_limiter_storage =
1603     (int *) safe_emalloc ((MAXJSAMPLE * 2 + 1), sizeof (int), 0);
1604   if (!cquantize->error_limiter_storage)
1605     {
1606       return;
1607     }
1608   table = cquantize->error_limiter_storage;
1609 #endif
1610 
1611   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1612   cquantize->error_limiter = table;
1613 
1614 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1615   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1616   out = 0;
1617   for (in = 0; in < STEPSIZE; in++, out++)
1618     {
1619       table[in] = out;
1620       table[-in] = -out;
1621     }
1622   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1623   for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1)
1624     {
1625       table[in] = out;
1626       table[-in] = -out;
1627     }
1628   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1629   for (; in <= MAXJSAMPLE; in++)
1630     {
1631       table[in] = out;
1632       table[-in] = -out;
1633     }
1634 #undef STEPSIZE
1635 }
1636 
1637 
1638 /*
1639  * Finish up at the end of each pass.
1640  */
1641 
1642 #ifdef ORIGINAL_LIB_JPEG
1643 METHODDEF (void)
1644 finish_pass1 (j_decompress_ptr cinfo)
1645 {
1646   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1647 
1648   /* Select the representative colors and fill in cinfo->colormap */
1649   cinfo->colormap = cquantize->sv_colormap;
1650   select_colors (cinfo, cquantize->desired);
1651   /* Force next pass to zero the color index table */
1652   cquantize->needs_zeroed = TRUE;
1653 }
1654 
1655 
1656 METHODDEF (void)
1657 finish_pass2 (j_decompress_ptr cinfo)
1658 {
1659   /* no work */
1660 }
1661 
1662 /*
1663  * Initialize for each processing pass.
1664  */
1665 
1666 METHODDEF (void)
1667 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1668 {
1669   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1670   hist3d histogram = cquantize->histogram;
1671   int i;
1672 
1673   /* Only F-S dithering or no dithering is supported. */
1674   /* If user asks for ordered dither, give him F-S. */
1675   if (cinfo->dither_mode != JDITHER_NONE)
1676     cinfo->dither_mode = JDITHER_FS;
1677 
1678   if (is_pre_scan)
1679     {
1680       /* Set up method pointers */
1681       cquantize->pub.color_quantize = prescan_quantize;
1682       cquantize->pub.finish_pass = finish_pass1;
1683       cquantize->needs_zeroed = TRUE;	/* Always zero histogram */
1684     }
1685   else
1686     {
1687       /* Set up method pointers */
1688       if (cinfo->dither_mode == JDITHER_FS)
1689 	cquantize->pub.color_quantize = pass2_fs_dither;
1690       else
1691 	cquantize->pub.color_quantize = pass2_no_dither;
1692       cquantize->pub.finish_pass = finish_pass2;
1693 
1694       /* Make sure color count is acceptable */
1695       i = cinfo->actual_number_of_colors;
1696       if (i < 1)
1697 	ERREXIT1 (cinfo, JERR_QUANT_FEW_COLORS, 1);
1698       if (i > MAXNUMCOLORS)
1699 	ERREXIT1 (cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1700 
1701       if (cinfo->dither_mode == JDITHER_FS)
1702 	{
1703 	  size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1704 				       (3 * SIZEOF (FSERROR)));
1705 	  /* Allocate Floyd-Steinberg workspace if we didn't already. */
1706 	  if (cquantize->fserrors == NULL)
1707 	    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1708 	      ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1709 	  /* Initialize the propagated errors to zero. */
1710 	  jzero_far ((void FAR *) cquantize->fserrors, arraysize);
1711 	  /* Make the error-limit table if we didn't already. */
1712 	  if (cquantize->error_limiter == NULL)
1713 	    init_error_limit (cinfo);
1714 	  cquantize->on_odd_row = FALSE;
1715 	}
1716 
1717     }
1718   /* Zero the histogram or inverse color map, if necessary */
1719   if (cquantize->needs_zeroed)
1720     {
1721       for (i = 0; i < HIST_C0_ELEMS; i++)
1722 	{
1723 	  jzero_far ((void FAR *) histogram[i],
1724 		     HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF (histcell));
1725 	}
1726       cquantize->needs_zeroed = FALSE;
1727     }
1728 }
1729 
1730 
1731 /*
1732  * Switch to a new external colormap between output passes.
1733  */
1734 
1735 METHODDEF (void)
1736 new_color_map_2_quant (j_decompress_ptr cinfo)
1737 {
1738   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1739 
1740   /* Reset the inverse color map */
1741   cquantize->needs_zeroed = TRUE;
1742 }
1743 #else
1744 static void
1745 zeroHistogram (hist3d histogram)
1746 {
1747   int i;
1748   /* Zero the histogram or inverse color map */
1749   for (i = 0; i < HIST_C0_ELEMS; i++)
1750     {
1751       memset (histogram[i],
1752 	      0, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof (histcell));
1753     }
1754 }
1755 #endif
1756 
1757 static void gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP);
1758 
1759 gdImagePtr gdImageCreatePaletteFromTrueColor (gdImagePtr im, int dither, int colorsWanted)
1760 {
1761 	gdImagePtr nim;
1762 	gdImageTrueColorToPaletteBody(im, dither, colorsWanted, &nim);
1763 	return nim;
1764 }
1765 
1766 void gdImageTrueColorToPalette (gdImagePtr im, int dither, int colorsWanted)
1767 {
1768 	gdImageTrueColorToPaletteBody(im, dither, colorsWanted, 0);
1769 }
1770 
1771 /*
1772  * Module initialization routine for 2-pass color quantization.
1773  */
1774 
1775 #ifdef ORIGINAL_LIB_JPEG
1776 GLOBAL (void)
1777 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1778 #else
1779 static void gdImageTrueColorToPaletteBody (gdImagePtr oim, int dither, int colorsWanted, gdImagePtr *cimP)
1780 #endif
1781 {
1782   my_cquantize_ptr cquantize = NULL;
1783   int i;
1784 
1785 #ifndef ORIGINAL_LIB_JPEG
1786   /* Allocate the JPEG palette-storage */
1787   size_t arraysize;
1788   int maxColors = gdMaxColors;
1789   gdImagePtr nim;
1790   if (cimP) {
1791     nim = gdImageCreate(oim->sx, oim->sy);
1792     *cimP = nim;
1793     if (!nim) {
1794       return;
1795     }
1796   } else {
1797     nim = oim;
1798   }
1799   if (!oim->trueColor)
1800     {
1801       /* (Almost) nothing to do! */
1802       if (cimP) {
1803         gdImageCopy(nim, oim, 0, 0, 0, 0, oim->sx, oim->sy);
1804         *cimP = nim;
1805       }
1806       return;
1807     }
1808 
1809   /* If we have a transparent color (the alphaless mode of transparency), we
1810    * must reserve a palette entry for it at the end of the palette. */
1811   if (oim->transparent >= 0)
1812     {
1813       maxColors--;
1814     }
1815   if (colorsWanted > maxColors)
1816     {
1817       colorsWanted = maxColors;
1818     }
1819   if (!cimP) {
1820     nim->pixels = gdCalloc (sizeof (unsigned char *), oim->sy);
1821     if (!nim->pixels)
1822       {
1823         /* No can do */
1824         goto outOfMemory;
1825       }
1826     for (i = 0; (i < nim->sy); i++)
1827       {
1828         nim->pixels[i] = gdCalloc (sizeof (unsigned char *), oim->sx);
1829         if (!nim->pixels[i])
1830   	{
1831   	  goto outOfMemory;
1832   	}
1833       }
1834   }
1835 #endif
1836 
1837 #ifdef ORIGINAL_LIB_JPEG
1838   cquantize = (my_cquantize_ptr)
1839     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1840 				SIZEOF (my_cquantizer));
1841   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1842   cquantize->pub.start_pass = start_pass_2_quant;
1843   cquantize->pub.new_color_map = new_color_map_2_quant;
1844   /* Make sure jdmaster didn't give me a case I can't handle */
1845   if (cinfo->out_color_components != 3)
1846     ERREXIT (cinfo, JERR_NOTIMPL);
1847 #else
1848   cquantize = (my_cquantize_ptr) gdCalloc (sizeof (my_cquantizer), 1);
1849   if (!cquantize)
1850     {
1851       /* No can do */
1852       goto outOfMemory;
1853     }
1854 #endif
1855   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
1856   cquantize->error_limiter = NULL;
1857 
1858 
1859   /* Allocate the histogram/inverse colormap storage */
1860 #ifdef ORIGINAL_LIB_JPEG
1861   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1862     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF (hist2d));
1863   for (i = 0; i < HIST_C0_ELEMS; i++)
1864     {
1865       cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1866 	((j_common_ptr) cinfo, JPOOL_IMAGE,
1867 	 HIST_C1_ELEMS * HIST_C2_ELEMS * SIZEOF (histcell));
1868     }
1869   cquantize->needs_zeroed = TRUE;	/* histogram is garbage now */
1870 #else
1871   cquantize->histogram = (hist3d) safe_emalloc (HIST_C0_ELEMS, sizeof (hist2d), 0);
1872   for (i = 0; i < HIST_C0_ELEMS; i++)
1873     {
1874       cquantize->histogram[i] =
1875 	(hist2d) safe_emalloc (HIST_C1_ELEMS * HIST_C2_ELEMS, sizeof (histcell), 0);
1876       if (!cquantize->histogram[i])
1877 	{
1878 	  goto outOfMemory;
1879 	}
1880     }
1881 #endif
1882 
1883 #ifdef ORIGINAL_LIB_JPEG
1884   /* Allocate storage for the completed colormap, if required.
1885    * We do this now since it is FAR storage and may affect
1886    * the memory manager's space calculations.
1887    */
1888   if (cinfo->enable_2pass_quant)
1889     {
1890       /* Make sure color count is acceptable */
1891       int desired = cinfo->desired_number_of_colors;
1892       /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1893       if (desired < 8)
1894 	ERREXIT1 (cinfo, JERR_QUANT_FEW_COLORS, 8);
1895       /* Make sure colormap indexes can be represented by JSAMPLEs */
1896       if (desired > MAXNUMCOLORS)
1897 	ERREXIT1 (cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1898       cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1899 	((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) desired,
1900 	 (JDIMENSION) 3);
1901       cquantize->desired = desired;
1902     }
1903   else
1904     cquantize->sv_colormap = NULL;
1905 
1906   /* Only F-S dithering or no dithering is supported. */
1907   /* If user asks for ordered dither, give him F-S. */
1908   if (cinfo->dither_mode != JDITHER_NONE)
1909     cinfo->dither_mode = JDITHER_FS;
1910 
1911   /* Allocate Floyd-Steinberg workspace if necessary.
1912    * This isn't really needed until pass 2, but again it is FAR storage.
1913    * Although we will cope with a later change in dither_mode,
1914    * we do not promise to honor max_memory_to_use if dither_mode changes.
1915    */
1916   if (cinfo->dither_mode == JDITHER_FS)
1917     {
1918       cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1919 	((j_common_ptr) cinfo, JPOOL_IMAGE,
1920 	 (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF (FSERROR))));
1921       /* Might as well create the error-limiting table too. */
1922       init_error_limit (cinfo);
1923     }
1924 #else
1925 
1926   cquantize->fserrors = (FSERRPTR) safe_emalloc (3, sizeof (FSERROR), 0);
1927   init_error_limit (oim, nim, cquantize);
1928   arraysize = (size_t) ((nim->sx + 2) * (3 * sizeof (FSERROR)));
1929   /* Allocate Floyd-Steinberg workspace. */
1930   cquantize->fserrors = gdRealloc(cquantize->fserrors, arraysize);
1931   memset(cquantize->fserrors, 0, arraysize);
1932   if (!cquantize->fserrors)
1933     {
1934       goto outOfMemory;
1935     }
1936   cquantize->on_odd_row = FALSE;
1937 
1938   /* Do the work! */
1939   zeroHistogram (cquantize->histogram);
1940   prescan_quantize (oim, nim, cquantize);
1941   /* TBB 2.0.5: pass colorsWanted, not 256! */
1942   select_colors (oim, nim, cquantize, colorsWanted);
1943   zeroHistogram (cquantize->histogram);
1944   if (dither)
1945     {
1946       pass2_fs_dither (oim, nim, cquantize);
1947     }
1948   else
1949     {
1950       pass2_no_dither (oim, nim, cquantize);
1951     }
1952 #if 0				/* 2.0.12; we no longer attempt full alpha in palettes */
1953   if (cquantize->transparentIsPresent)
1954     {
1955       int mt = -1;
1956       int mtIndex = -1;
1957       for (i = 0; (i < im->colorsTotal); i++)
1958 	{
1959 	  if (im->alpha[i] > mt)
1960 	    {
1961 	      mtIndex = i;
1962 	      mt = im->alpha[i];
1963 	    }
1964 	}
1965       for (i = 0; (i < im->colorsTotal); i++)
1966 	{
1967 	  if (im->alpha[i] == mt)
1968 	    {
1969 	      im->alpha[i] = gdAlphaTransparent;
1970 	    }
1971 	}
1972     }
1973   if (cquantize->opaqueIsPresent)
1974     {
1975       int mo = 128;
1976       int moIndex = -1;
1977       for (i = 0; (i < im->colorsTotal); i++)
1978 	{
1979 	  if (im->alpha[i] < mo)
1980 	    {
1981 	      moIndex = i;
1982 	      mo = im->alpha[i];
1983 	    }
1984 	}
1985       for (i = 0; (i < im->colorsTotal); i++)
1986 	{
1987 	  if (im->alpha[i] == mo)
1988 	    {
1989 	      im->alpha[i] = gdAlphaOpaque;
1990 	    }
1991 	}
1992     }
1993 #endif
1994 
1995   /* If we had a 'transparent' color, increment the color count so it's
1996    * officially in the palette and convert the transparent variable to point to
1997    * an index rather than a color (Its data already exists and transparent
1998    * pixels have already been mapped to it by this point, it is done late as to
1999    * avoid color matching / dithering with it). */
2000   if (oim->transparent >= 0)
2001     {
2002       nim->transparent = nim->colorsTotal;
2003       nim->colorsTotal++;
2004     }
2005 
2006   /* Success! Get rid of the truecolor image data. */
2007   if (!cimP) {
2008     oim->trueColor = 0;
2009     /* Junk the truecolor pixels */
2010     for (i = 0; i < oim->sy; i++)
2011       {
2012         gdFree (oim->tpixels[i]);
2013       }
2014     gdFree (oim->tpixels);
2015     oim->tpixels = 0;
2016   }
2017   goto success;
2018   /* Tediously free stuff. */
2019 outOfMemory:
2020   if (oim->trueColor)
2021     {
2022       if (!cimP) {
2023         /* On failure only */
2024         for (i = 0; i < nim->sy; i++)
2025   	{
2026   	  if (nim->pixels[i])
2027   	    {
2028   	      gdFree (nim->pixels[i]);
2029   	    }
2030   	}
2031         if (nim->pixels)
2032   	{
2033   	  gdFree (nim->pixels);
2034   	}
2035         nim->pixels = 0;
2036       } else {
2037         gdImageDestroy(nim);
2038         *cimP = 0;
2039       }
2040     }
2041 success:
2042   for (i = 0; i < HIST_C0_ELEMS; i++)
2043     {
2044       if (cquantize->histogram[i])
2045 	{
2046 	  gdFree (cquantize->histogram[i]);
2047 	}
2048     }
2049   if (cquantize->histogram)
2050     {
2051       gdFree (cquantize->histogram);
2052     }
2053   if (cquantize->fserrors)
2054     {
2055       gdFree (cquantize->fserrors);
2056     }
2057   if (cquantize->error_limiter_storage)
2058     {
2059       gdFree (cquantize->error_limiter_storage);
2060     }
2061   if (cquantize)
2062     {
2063       gdFree (cquantize);
2064     }
2065 
2066 #endif
2067 }
2068 
2069 
2070 #endif
2071