1 /*
2 * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <openssl/x509.h>
13 #include <openssl/x509v3.h>
14 #include <openssl/pem.h>
15 #include <openssl/err.h>
16 #include "internal/nelem.h"
17
18 #include "testutil.h"
19
20 static const char *infile;
21
test_pathlen(void)22 static int test_pathlen(void)
23 {
24 X509 *x = NULL;
25 BIO *b = NULL;
26 long pathlen;
27 int ret = 0;
28
29 if (!TEST_ptr(b = BIO_new_file(infile, "r"))
30 || !TEST_ptr(x = PEM_read_bio_X509(b, NULL, NULL, NULL))
31 || !TEST_int_eq(pathlen = X509_get_pathlen(x), 6))
32 goto end;
33
34 ret = 1;
35
36 end:
37 BIO_free(b);
38 X509_free(x);
39 return ret;
40 }
41
42 #ifndef OPENSSL_NO_RFC3779
test_asid(void)43 static int test_asid(void)
44 {
45 ASN1_INTEGER *val1 = NULL, *val2 = NULL;
46 ASIdentifiers *asid1 = ASIdentifiers_new(), *asid2 = ASIdentifiers_new(),
47 *asid3 = ASIdentifiers_new(), *asid4 = ASIdentifiers_new();
48 int testresult = 0;
49
50 if (!TEST_ptr(asid1)
51 || !TEST_ptr(asid2)
52 || !TEST_ptr(asid3))
53 goto err;
54
55 if (!TEST_ptr(val1 = ASN1_INTEGER_new())
56 || !TEST_true(ASN1_INTEGER_set_int64(val1, 64496)))
57 goto err;
58
59 if (!TEST_true(X509v3_asid_add_id_or_range(asid1, V3_ASID_ASNUM, val1, NULL)))
60 goto err;
61
62 val1 = NULL;
63 if (!TEST_ptr(val2 = ASN1_INTEGER_new())
64 || !TEST_true(ASN1_INTEGER_set_int64(val2, 64497)))
65 goto err;
66
67 if (!TEST_true(X509v3_asid_add_id_or_range(asid2, V3_ASID_ASNUM, val2, NULL)))
68 goto err;
69
70 val2 = NULL;
71 if (!TEST_ptr(val1 = ASN1_INTEGER_new())
72 || !TEST_true(ASN1_INTEGER_set_int64(val1, 64496))
73 || !TEST_ptr(val2 = ASN1_INTEGER_new())
74 || !TEST_true(ASN1_INTEGER_set_int64(val2, 64497)))
75 goto err;
76
77 /*
78 * Just tests V3_ASID_ASNUM for now. Could be extended at some point to also
79 * test V3_ASID_RDI if we think it is worth it.
80 */
81 if (!TEST_true(X509v3_asid_add_id_or_range(asid3, V3_ASID_ASNUM, val1, val2)))
82 goto err;
83 val1 = val2 = NULL;
84
85 /* Actual subsets */
86 if (!TEST_true(X509v3_asid_subset(NULL, NULL))
87 || !TEST_true(X509v3_asid_subset(NULL, asid1))
88 || !TEST_true(X509v3_asid_subset(asid1, asid1))
89 || !TEST_true(X509v3_asid_subset(asid2, asid2))
90 || !TEST_true(X509v3_asid_subset(asid1, asid3))
91 || !TEST_true(X509v3_asid_subset(asid2, asid3))
92 || !TEST_true(X509v3_asid_subset(asid3, asid3))
93 || !TEST_true(X509v3_asid_subset(asid4, asid1))
94 || !TEST_true(X509v3_asid_subset(asid4, asid2))
95 || !TEST_true(X509v3_asid_subset(asid4, asid3)))
96 goto err;
97
98 /* Not subsets */
99 if (!TEST_false(X509v3_asid_subset(asid1, NULL))
100 || !TEST_false(X509v3_asid_subset(asid1, asid2))
101 || !TEST_false(X509v3_asid_subset(asid2, asid1))
102 || !TEST_false(X509v3_asid_subset(asid3, asid1))
103 || !TEST_false(X509v3_asid_subset(asid3, asid2))
104 || !TEST_false(X509v3_asid_subset(asid1, asid4))
105 || !TEST_false(X509v3_asid_subset(asid2, asid4))
106 || !TEST_false(X509v3_asid_subset(asid3, asid4)))
107 goto err;
108
109 testresult = 1;
110 err:
111 ASN1_INTEGER_free(val1);
112 ASN1_INTEGER_free(val2);
113 ASIdentifiers_free(asid1);
114 ASIdentifiers_free(asid2);
115 ASIdentifiers_free(asid3);
116 ASIdentifiers_free(asid4);
117 return testresult;
118 }
119
120 static struct ip_ranges_st {
121 const unsigned int afi;
122 const char *ip1;
123 const char *ip2;
124 int rorp;
125 } ranges[] = {
126 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.1", IPAddressOrRange_addressPrefix},
127 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.2", IPAddressOrRange_addressRange},
128 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.3", IPAddressOrRange_addressPrefix},
129 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.254", IPAddressOrRange_addressRange},
130 { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.255", IPAddressOrRange_addressPrefix},
131 { IANA_AFI_IPV4, "192.168.0.1", "192.168.0.255", IPAddressOrRange_addressRange},
132 { IANA_AFI_IPV4, "192.168.0.1", "192.168.0.1", IPAddressOrRange_addressPrefix},
133 { IANA_AFI_IPV4, "192.168.0.0", "192.168.255.255", IPAddressOrRange_addressPrefix},
134 { IANA_AFI_IPV4, "192.168.1.0", "192.168.255.255", IPAddressOrRange_addressRange},
135 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::1", IPAddressOrRange_addressPrefix},
136 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::2", IPAddressOrRange_addressRange},
137 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::3", IPAddressOrRange_addressPrefix},
138 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::fffe", IPAddressOrRange_addressRange},
139 { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::ffff", IPAddressOrRange_addressPrefix},
140 { IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::ffff", IPAddressOrRange_addressRange},
141 { IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::1", IPAddressOrRange_addressPrefix},
142 { IANA_AFI_IPV6, "2001:0db8::0:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressPrefix},
143 { IANA_AFI_IPV6, "2001:0db8::1:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressRange}
144 };
145
check_addr(IPAddrBlocks * addr,int type)146 static int check_addr(IPAddrBlocks *addr, int type)
147 {
148 IPAddressFamily *fam;
149 IPAddressOrRange *aorr;
150
151 if (!TEST_int_eq(sk_IPAddressFamily_num(addr), 1))
152 return 0;
153
154 fam = sk_IPAddressFamily_value(addr, 0);
155 if (!TEST_ptr(fam))
156 return 0;
157
158 if (!TEST_int_eq(fam->ipAddressChoice->type, IPAddressChoice_addressesOrRanges))
159 return 0;
160
161 if (!TEST_int_eq(sk_IPAddressOrRange_num(fam->ipAddressChoice->u.addressesOrRanges), 1))
162 return 0;
163
164 aorr = sk_IPAddressOrRange_value(fam->ipAddressChoice->u.addressesOrRanges, 0);
165 if (!TEST_ptr(aorr))
166 return 0;
167
168 if (!TEST_int_eq(aorr->type, type))
169 return 0;
170
171 return 1;
172 }
173
test_addr_ranges(void)174 static int test_addr_ranges(void)
175 {
176 IPAddrBlocks *addr = NULL;
177 ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL;
178 size_t i;
179 int testresult = 0;
180
181 for (i = 0; i < OSSL_NELEM(ranges); i++) {
182 addr = sk_IPAddressFamily_new_null();
183 if (!TEST_ptr(addr))
184 goto end;
185 /*
186 * Has the side effect of installing the comparison function onto the
187 * stack.
188 */
189 if (!TEST_true(X509v3_addr_canonize(addr)))
190 goto end;
191
192 ip1 = a2i_IPADDRESS(ranges[i].ip1);
193 if (!TEST_ptr(ip1))
194 goto end;
195 if (!TEST_true(ip1->length == 4 || ip1->length == 16))
196 goto end;
197 ip2 = a2i_IPADDRESS(ranges[i].ip2);
198 if (!TEST_ptr(ip2))
199 goto end;
200 if (!TEST_int_eq(ip2->length, ip1->length))
201 goto end;
202 if (!TEST_true(memcmp(ip1->data, ip2->data, ip1->length) <= 0))
203 goto end;
204
205 if (!TEST_true(X509v3_addr_add_range(addr, ranges[i].afi, NULL, ip1->data, ip2->data)))
206 goto end;
207
208 if (!TEST_true(X509v3_addr_is_canonical(addr)))
209 goto end;
210
211 if (!check_addr(addr, ranges[i].rorp))
212 goto end;
213
214 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
215 addr = NULL;
216 ASN1_OCTET_STRING_free(ip1);
217 ASN1_OCTET_STRING_free(ip2);
218 ip1 = ip2 = NULL;
219 }
220
221 testresult = 1;
222 end:
223 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
224 ASN1_OCTET_STRING_free(ip1);
225 ASN1_OCTET_STRING_free(ip2);
226 return testresult;
227 }
228
test_addr_fam_len(void)229 static int test_addr_fam_len(void)
230 {
231 int testresult = 0;
232 IPAddrBlocks *addr = NULL;
233 IPAddressFamily *f1 = NULL;
234 ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL;
235 unsigned char key[6];
236 unsigned int keylen;
237 unsigned afi = IANA_AFI_IPV4;
238
239 /* Create the IPAddrBlocks with a good IPAddressFamily */
240 addr = sk_IPAddressFamily_new_null();
241 if (!TEST_ptr(addr))
242 goto end;
243 ip1 = a2i_IPADDRESS(ranges[0].ip1);
244 if (!TEST_ptr(ip1))
245 goto end;
246 ip2 = a2i_IPADDRESS(ranges[0].ip2);
247 if (!TEST_ptr(ip2))
248 goto end;
249 if (!TEST_true(X509v3_addr_add_range(addr, ranges[0].afi, NULL, ip1->data, ip2->data)))
250 goto end;
251 if (!TEST_true(X509v3_addr_is_canonical(addr)))
252 goto end;
253
254 /* Create our malformed IPAddressFamily */
255 key[0] = (afi >> 8) & 0xFF;
256 key[1] = afi & 0xFF;
257 key[2] = 0xD;
258 key[3] = 0xE;
259 key[4] = 0xA;
260 key[5] = 0xD;
261 keylen = 6;
262 if ((f1 = IPAddressFamily_new()) == NULL)
263 goto end;
264 if (f1->ipAddressChoice == NULL &&
265 (f1->ipAddressChoice = IPAddressChoice_new()) == NULL)
266 goto end;
267 if (f1->addressFamily == NULL &&
268 (f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
269 goto end;
270 if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen))
271 goto end;
272
273 /* Push and transfer memory ownership to stack */
274 if (!sk_IPAddressFamily_push(addr, f1))
275 goto end;
276 f1 = NULL;
277
278 /* Shouldn't be able to canonize this as the len is > 3*/
279 if (!TEST_false(X509v3_addr_canonize(addr)))
280 goto end;
281
282 /* Pop and free the new stack element */
283 IPAddressFamily_free(sk_IPAddressFamily_pop(addr));
284
285 /* Create a well-formed IPAddressFamily */
286 key[0] = (afi >> 8) & 0xFF;
287 key[1] = afi & 0xFF;
288 key[2] = 0x1;
289 keylen = 3;
290 if ((f1 = IPAddressFamily_new()) == NULL)
291 goto end;
292 if (f1->ipAddressChoice == NULL &&
293 (f1->ipAddressChoice = IPAddressChoice_new()) == NULL)
294 goto end;
295 if (f1->addressFamily == NULL &&
296 (f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
297 goto end;
298 if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen))
299 goto end;
300
301 /* Mark this as inheritance so we skip some of the is_canonize checks */
302 f1->ipAddressChoice->type = IPAddressChoice_inherit;
303
304 /* Push and transfer memory ownership to stack */
305 if (!sk_IPAddressFamily_push(addr, f1))
306 goto end;
307 f1 = NULL;
308
309 /* Should be able to canonize now */
310 if (!TEST_true(X509v3_addr_canonize(addr)))
311 goto end;
312
313 testresult = 1;
314 end:
315 /* Free stack and any memory owned by detached element */
316 IPAddressFamily_free(f1);
317 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
318
319 ASN1_OCTET_STRING_free(ip1);
320 ASN1_OCTET_STRING_free(ip2);
321 return testresult;
322 }
323
324 static struct extvalues_st {
325 const char *value;
326 int pass;
327 } extvalues[] = {
328 /* No prefix is ok */
329 { "sbgp-ipAddrBlock = IPv4:192.0.0.1\n", 1 },
330 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/0\n", 1 },
331 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/1\n", 1 },
332 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/32\n", 1 },
333 /* Prefix is too long */
334 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/33\n", 0 },
335 /* Unreasonably large prefix */
336 { "sbgp-ipAddrBlock = IPv4:192.0.0.0/12341234\n", 0 },
337 /* Invalid IP addresses */
338 { "sbgp-ipAddrBlock = IPv4:192.0.0\n", 0 },
339 { "sbgp-ipAddrBlock = IPv4:256.0.0.0\n", 0 },
340 { "sbgp-ipAddrBlock = IPv4:-1.0.0.0\n", 0 },
341 { "sbgp-ipAddrBlock = IPv4:192.0.0.0.0\n", 0 },
342 { "sbgp-ipAddrBlock = IPv3:192.0.0.0\n", 0 },
343
344 /* IPv6 */
345 /* No prefix is ok */
346 { "sbgp-ipAddrBlock = IPv6:2001:db8::\n", 1 },
347 { "sbgp-ipAddrBlock = IPv6:2001::db8\n", 1 },
348 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000\n", 1 },
349 { "sbgp-ipAddrBlock = IPv6:2001:db8::/0\n", 1 },
350 { "sbgp-ipAddrBlock = IPv6:2001:db8::/1\n", 1 },
351 { "sbgp-ipAddrBlock = IPv6:2001:db8::/32\n", 1 },
352 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000/32\n", 1 },
353 { "sbgp-ipAddrBlock = IPv6:2001:db8::/128\n", 1 },
354 /* Prefix is too long */
355 { "sbgp-ipAddrBlock = IPv6:2001:db8::/129\n", 0 },
356 /* Unreasonably large prefix */
357 { "sbgp-ipAddrBlock = IPv6:2001:db8::/12341234\n", 0 },
358 /* Invalid IP addresses */
359 /* Not enough blocks of numbers */
360 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000\n", 0 },
361 /* Too many blocks of numbers */
362 { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000:0000\n", 0 },
363 /* First value too large */
364 { "sbgp-ipAddrBlock = IPv6:1ffff:0db8:0000:0000:0000:0000:0000:0000\n", 0 },
365 /* First value with invalid characters */
366 { "sbgp-ipAddrBlock = IPv6:fffg:0db8:0000:0000:0000:0000:0000:0000\n", 0 },
367 /* First value is negative */
368 { "sbgp-ipAddrBlock = IPv6:-1:0db8:0000:0000:0000:0000:0000:0000\n", 0 }
369 };
370
test_ext_syntax(void)371 static int test_ext_syntax(void)
372 {
373 size_t i;
374 int testresult = 1;
375
376 for (i = 0; i < OSSL_NELEM(extvalues); i++) {
377 X509V3_CTX ctx;
378 BIO *extbio = BIO_new_mem_buf(extvalues[i].value,
379 strlen(extvalues[i].value));
380 CONF *conf;
381 long eline;
382
383 if (!TEST_ptr(extbio))
384 return 0 ;
385
386 conf = NCONF_new_ex(NULL, NULL);
387 if (!TEST_ptr(conf)) {
388 BIO_free(extbio);
389 return 0;
390 }
391 if (!TEST_long_gt(NCONF_load_bio(conf, extbio, &eline), 0)) {
392 testresult = 0;
393 } else {
394 X509V3_set_ctx_test(&ctx);
395 X509V3_set_nconf(&ctx, conf);
396
397 if (extvalues[i].pass) {
398 if (!TEST_true(X509V3_EXT_add_nconf(conf, &ctx, "default",
399 NULL))) {
400 TEST_info("Value: %s", extvalues[i].value);
401 testresult = 0;
402 }
403 } else {
404 ERR_set_mark();
405 if (!TEST_false(X509V3_EXT_add_nconf(conf, &ctx, "default",
406 NULL))) {
407 testresult = 0;
408 TEST_info("Value: %s", extvalues[i].value);
409 ERR_clear_last_mark();
410 } else {
411 ERR_pop_to_mark();
412 }
413 }
414 }
415 BIO_free(extbio);
416 NCONF_free(conf);
417 }
418
419 return testresult;
420 }
421
test_addr_subset(void)422 static int test_addr_subset(void)
423 {
424 int i;
425 int ret = 0;
426 IPAddrBlocks *addrEmpty = NULL;
427 IPAddrBlocks *addr[3] = { NULL, NULL };
428 ASN1_OCTET_STRING *ip1[3] = { NULL, NULL };
429 ASN1_OCTET_STRING *ip2[3] = { NULL, NULL };
430 int sz = OSSL_NELEM(addr);
431
432 for (i = 0; i < sz; ++i) {
433 /* Create the IPAddrBlocks with a good IPAddressFamily */
434 if (!TEST_ptr(addr[i] = sk_IPAddressFamily_new_null())
435 || !TEST_ptr(ip1[i] = a2i_IPADDRESS(ranges[i].ip1))
436 || !TEST_ptr(ip2[i] = a2i_IPADDRESS(ranges[i].ip2))
437 || !TEST_true(X509v3_addr_add_range(addr[i], ranges[i].afi, NULL,
438 ip1[i]->data, ip2[i]->data)))
439 goto end;
440 }
441
442 ret = TEST_ptr(addrEmpty = sk_IPAddressFamily_new_null())
443 && TEST_true(X509v3_addr_subset(NULL, NULL))
444 && TEST_true(X509v3_addr_subset(NULL, addr[0]))
445 && TEST_true(X509v3_addr_subset(addrEmpty, addr[0]))
446 && TEST_true(X509v3_addr_subset(addr[0], addr[0]))
447 && TEST_true(X509v3_addr_subset(addr[0], addr[1]))
448 && TEST_true(X509v3_addr_subset(addr[0], addr[2]))
449 && TEST_true(X509v3_addr_subset(addr[1], addr[2]))
450 && TEST_false(X509v3_addr_subset(addr[0], NULL))
451 && TEST_false(X509v3_addr_subset(addr[1], addr[0]))
452 && TEST_false(X509v3_addr_subset(addr[2], addr[1]))
453 && TEST_false(X509v3_addr_subset(addr[0], addrEmpty));
454 end:
455 sk_IPAddressFamily_pop_free(addrEmpty, IPAddressFamily_free);
456 for (i = 0; i < sz; ++i) {
457 sk_IPAddressFamily_pop_free(addr[i], IPAddressFamily_free);
458 ASN1_OCTET_STRING_free(ip1[i]);
459 ASN1_OCTET_STRING_free(ip2[i]);
460 }
461 return ret;
462 }
463
464 #endif /* OPENSSL_NO_RFC3779 */
465
466 OPT_TEST_DECLARE_USAGE("cert.pem\n")
467
setup_tests(void)468 int setup_tests(void)
469 {
470 if (!test_skip_common_options()) {
471 TEST_error("Error parsing test options\n");
472 return 0;
473 }
474
475 if (!TEST_ptr(infile = test_get_argument(0)))
476 return 0;
477
478 ADD_TEST(test_pathlen);
479 #ifndef OPENSSL_NO_RFC3779
480 ADD_TEST(test_asid);
481 ADD_TEST(test_addr_ranges);
482 ADD_TEST(test_ext_syntax);
483 ADD_TEST(test_addr_fam_len);
484 ADD_TEST(test_addr_subset);
485 #endif /* OPENSSL_NO_RFC3779 */
486 return 1;
487 }
488