1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24 #include "internal/comp.h"
25
26 /* NB: make sure indices in these tables match values above */
27
28 typedef struct {
29 uint32_t mask;
30 int nid;
31 } ssl_cipher_table;
32
33 /* Table of NIDs for each cipher */
34 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
35 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
36 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
37 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
38 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
39 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
40 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
41 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
42 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
43 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
44 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
45 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
46 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
47 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
48 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
49 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
50 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
51 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
52 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
53 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
54 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
55 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
56 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
57 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
58 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
59 };
60
61 /* NB: make sure indices in this table matches values above */
62 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
63 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
64 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
65 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
66 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
67 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
68 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
69 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
70 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
71 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
72 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
73 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
74 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
75 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
76 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
77 };
78
79 /* *INDENT-OFF* */
80 static const ssl_cipher_table ssl_cipher_table_kx[] = {
81 {SSL_kRSA, NID_kx_rsa},
82 {SSL_kECDHE, NID_kx_ecdhe},
83 {SSL_kDHE, NID_kx_dhe},
84 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
85 {SSL_kDHEPSK, NID_kx_dhe_psk},
86 {SSL_kRSAPSK, NID_kx_rsa_psk},
87 {SSL_kPSK, NID_kx_psk},
88 {SSL_kSRP, NID_kx_srp},
89 {SSL_kGOST, NID_kx_gost},
90 {SSL_kGOST18, NID_kx_gost18},
91 {SSL_kANY, NID_kx_any}
92 };
93
94 static const ssl_cipher_table ssl_cipher_table_auth[] = {
95 {SSL_aRSA, NID_auth_rsa},
96 {SSL_aECDSA, NID_auth_ecdsa},
97 {SSL_aPSK, NID_auth_psk},
98 {SSL_aDSS, NID_auth_dss},
99 {SSL_aGOST01, NID_auth_gost01},
100 {SSL_aGOST12, NID_auth_gost12},
101 {SSL_aSRP, NID_auth_srp},
102 {SSL_aNULL, NID_auth_null},
103 {SSL_aANY, NID_auth_any}
104 };
105 /* *INDENT-ON* */
106
107 /* Utility function for table lookup */
ssl_cipher_info_find(const ssl_cipher_table * table,size_t table_cnt,uint32_t mask)108 static int ssl_cipher_info_find(const ssl_cipher_table *table,
109 size_t table_cnt, uint32_t mask)
110 {
111 size_t i;
112 for (i = 0; i < table_cnt; i++, table++) {
113 if (table->mask == mask)
114 return (int)i;
115 }
116 return -1;
117 }
118
119 #define ssl_cipher_info_lookup(table, x) \
120 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
121
122 /*
123 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
124 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
125 * found
126 */
127 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
128 /* MD5, SHA, GOST94, MAC89 */
129 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
130 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
131 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
132 /* GOST2012_512 */
133 EVP_PKEY_HMAC,
134 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
135 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
136 };
137
138 #define CIPHER_ADD 1
139 #define CIPHER_KILL 2
140 #define CIPHER_DEL 3
141 #define CIPHER_ORD 4
142 #define CIPHER_SPECIAL 5
143 /*
144 * Bump the ciphers to the top of the list.
145 * This rule isn't currently supported by the public cipherstring API.
146 */
147 #define CIPHER_BUMP 6
148
149 typedef struct cipher_order_st {
150 const SSL_CIPHER *cipher;
151 int active;
152 int dead;
153 struct cipher_order_st *next, *prev;
154 } CIPHER_ORDER;
155
156 static const SSL_CIPHER cipher_aliases[] = {
157 /* "ALL" doesn't include eNULL (must be specifically enabled) */
158 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
159 /* "COMPLEMENTOFALL" */
160 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
161
162 /*
163 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
164 * ALL!)
165 */
166 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
167
168 /*
169 * key exchange aliases (some of those using only a single bit here
170 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
171 * combines DHE_DSS and DHE_RSA)
172 */
173 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
174
175 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
176 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
177 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
178
179 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
180 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
181 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
182
183 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
184 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
185 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
186 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
187 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
188 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
189 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
190
191 /* server authentication aliases */
192 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
193 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
194 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
195 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
196 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
197 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
198 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
199 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
200 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
201 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
202 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
203
204 /* aliases combining key exchange and server authentication */
205 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
206 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
207 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
208 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
209 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
210 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
211 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
212 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
213 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
214 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
215
216 /* symmetric encryption aliases */
217 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
218 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
219 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
220 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
221 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
222 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
223 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
224 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
225 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
226 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
227 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
228 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
229 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
230 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
231 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
232 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
233 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
234 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
235 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
236 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
237 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
238 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
239
240 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
241 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
242 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
243 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
244 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
245
246 /* MAC aliases */
247 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
248 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
249 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
250 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
251 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
252 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
253 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
254 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
255
256 /* protocol version aliases */
257 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
258 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
259 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
260 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
261
262 /* strength classes */
263 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
264 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
265 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
266 /* FIPS 140-2 approved ciphersuite */
267 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
268
269 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
270 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
271 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
272 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
273 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
274
275 };
276
277 /*
278 * Search for public key algorithm with given name and return its pkey_id if
279 * it is available. Otherwise return 0
280 */
281 #ifdef OPENSSL_NO_ENGINE
282
get_optional_pkey_id(const char * pkey_name)283 static int get_optional_pkey_id(const char *pkey_name)
284 {
285 const EVP_PKEY_ASN1_METHOD *ameth;
286 int pkey_id = 0;
287 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
288 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
289 ameth) > 0)
290 return pkey_id;
291 return 0;
292 }
293
294 #else
295
get_optional_pkey_id(const char * pkey_name)296 static int get_optional_pkey_id(const char *pkey_name)
297 {
298 const EVP_PKEY_ASN1_METHOD *ameth;
299 ENGINE *tmpeng = NULL;
300 int pkey_id = 0;
301 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
302 if (ameth) {
303 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
304 ameth) <= 0)
305 pkey_id = 0;
306 }
307 tls_engine_finish(tmpeng);
308 return pkey_id;
309 }
310
311 #endif
312
ssl_load_ciphers(SSL_CTX * ctx)313 int ssl_load_ciphers(SSL_CTX *ctx)
314 {
315 size_t i;
316 const ssl_cipher_table *t;
317 EVP_KEYEXCH *kex = NULL;
318 EVP_SIGNATURE *sig = NULL;
319
320 ctx->disabled_enc_mask = 0;
321 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
322 if (t->nid != NID_undef) {
323 const EVP_CIPHER *cipher
324 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
325
326 ctx->ssl_cipher_methods[i] = cipher;
327 if (cipher == NULL)
328 ctx->disabled_enc_mask |= t->mask;
329 }
330 }
331 ctx->disabled_mac_mask = 0;
332 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
333 const EVP_MD *md
334 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
335
336 ctx->ssl_digest_methods[i] = md;
337 if (md == NULL) {
338 ctx->disabled_mac_mask |= t->mask;
339 } else {
340 int tmpsize = EVP_MD_get_size(md);
341
342 if (!ossl_assert(tmpsize > 0))
343 return 0;
344 ctx->ssl_mac_secret_size[i] = tmpsize;
345 }
346 }
347
348 ctx->disabled_mkey_mask = 0;
349 ctx->disabled_auth_mask = 0;
350
351 /*
352 * We ignore any errors from the fetches below. They are expected to fail
353 * if these algorithms are not available.
354 */
355 ERR_set_mark();
356 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
357 if (sig == NULL)
358 ctx->disabled_auth_mask |= SSL_aDSS;
359 else
360 EVP_SIGNATURE_free(sig);
361 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
362 if (kex == NULL)
363 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
364 else
365 EVP_KEYEXCH_free(kex);
366 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
367 if (kex == NULL)
368 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
369 else
370 EVP_KEYEXCH_free(kex);
371 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
372 if (sig == NULL)
373 ctx->disabled_auth_mask |= SSL_aECDSA;
374 else
375 EVP_SIGNATURE_free(sig);
376 ERR_pop_to_mark();
377
378 #ifdef OPENSSL_NO_PSK
379 ctx->disabled_mkey_mask |= SSL_PSK;
380 ctx->disabled_auth_mask |= SSL_aPSK;
381 #endif
382 #ifdef OPENSSL_NO_SRP
383 ctx->disabled_mkey_mask |= SSL_kSRP;
384 #endif
385
386 /*
387 * Check for presence of GOST 34.10 algorithms, and if they are not
388 * present, disable appropriate auth and key exchange
389 */
390 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
391 sizeof(ctx->ssl_mac_pkey_id));
392
393 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
394 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
395 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
396 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
397 else
398 ctx->disabled_mac_mask |= SSL_GOST89MAC;
399
400 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
401 get_optional_pkey_id(SN_gost_mac_12);
402 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
403 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
404 else
405 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
406
407 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
408 get_optional_pkey_id(SN_magma_mac);
409 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
410 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
411 else
412 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
413
414 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
415 get_optional_pkey_id(SN_kuznyechik_mac);
416 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
417 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
418 else
419 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
420
421 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
422 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
423 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
424 ctx->disabled_auth_mask |= SSL_aGOST12;
425 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
426 ctx->disabled_auth_mask |= SSL_aGOST12;
427 /*
428 * Disable GOST key exchange if no GOST signature algs are available *
429 */
430 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
431 (SSL_aGOST01 | SSL_aGOST12))
432 ctx->disabled_mkey_mask |= SSL_kGOST;
433
434 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
435 ctx->disabled_mkey_mask |= SSL_kGOST18;
436
437 return 1;
438 }
439
ssl_cipher_get_evp_cipher(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_CIPHER ** enc)440 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
441 const EVP_CIPHER **enc)
442 {
443 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
444 sslc->algorithm_enc);
445
446 if (i == -1) {
447 *enc = NULL;
448 } else {
449 if (i == SSL_ENC_NULL_IDX) {
450 /*
451 * We assume we don't care about this coming from an ENGINE so
452 * just do a normal EVP_CIPHER_fetch instead of
453 * ssl_evp_cipher_fetch()
454 */
455 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
456 if (*enc == NULL)
457 return 0;
458 } else {
459 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
460
461 if (cipher == NULL
462 || !ssl_evp_cipher_up_ref(cipher))
463 return 0;
464 *enc = ctx->ssl_cipher_methods[i];
465 }
466 }
467 return 1;
468 }
469
ssl_cipher_get_evp_md_mac(SSL_CTX * ctx,const SSL_CIPHER * sslc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size)470 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
471 const EVP_MD **md,
472 int *mac_pkey_type, size_t *mac_secret_size)
473 {
474 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
475
476 if (i == -1) {
477 *md = NULL;
478 if (mac_pkey_type != NULL)
479 *mac_pkey_type = NID_undef;
480 if (mac_secret_size != NULL)
481 *mac_secret_size = 0;
482 } else {
483 const EVP_MD *digest = ctx->ssl_digest_methods[i];
484
485 if (digest == NULL || !ssl_evp_md_up_ref(digest))
486 return 0;
487
488 *md = digest;
489 if (mac_pkey_type != NULL)
490 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
491 if (mac_secret_size != NULL)
492 *mac_secret_size = ctx->ssl_mac_secret_size[i];
493 }
494 return 1;
495 }
496
ssl_cipher_get_evp(SSL_CTX * ctx,const SSL_SESSION * s,const EVP_CIPHER ** enc,const EVP_MD ** md,int * mac_pkey_type,size_t * mac_secret_size,SSL_COMP ** comp,int use_etm)497 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
498 const EVP_CIPHER **enc, const EVP_MD **md,
499 int *mac_pkey_type, size_t *mac_secret_size,
500 SSL_COMP **comp, int use_etm)
501 {
502 int i;
503 const SSL_CIPHER *c;
504
505 c = s->cipher;
506 if (c == NULL)
507 return 0;
508 if (comp != NULL) {
509 SSL_COMP ctmp;
510 STACK_OF(SSL_COMP) *comp_methods;
511
512 *comp = NULL;
513 ctmp.id = s->compress_meth;
514 comp_methods = SSL_COMP_get_compression_methods();
515 if (comp_methods != NULL) {
516 i = sk_SSL_COMP_find(comp_methods, &ctmp);
517 if (i >= 0)
518 *comp = sk_SSL_COMP_value(comp_methods, i);
519 }
520 /* If were only interested in comp then return success */
521 if ((enc == NULL) && (md == NULL))
522 return 1;
523 }
524
525 if ((enc == NULL) || (md == NULL))
526 return 0;
527
528 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
529 return 0;
530
531 if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
532 mac_secret_size)) {
533 ssl_evp_cipher_free(*enc);
534 return 0;
535 }
536
537 if ((*enc != NULL)
538 && (*md != NULL
539 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
540 && (c->algorithm_mac == SSL_AEAD
541 || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
542 const EVP_CIPHER *evp = NULL;
543
544 if (use_etm
545 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
546 || s->ssl_version < TLS1_VERSION)
547 return 1;
548
549 if (c->algorithm_enc == SSL_RC4
550 && c->algorithm_mac == SSL_MD5)
551 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
552 ctx->propq);
553 else if (c->algorithm_enc == SSL_AES128
554 && c->algorithm_mac == SSL_SHA1)
555 evp = ssl_evp_cipher_fetch(ctx->libctx,
556 NID_aes_128_cbc_hmac_sha1,
557 ctx->propq);
558 else if (c->algorithm_enc == SSL_AES256
559 && c->algorithm_mac == SSL_SHA1)
560 evp = ssl_evp_cipher_fetch(ctx->libctx,
561 NID_aes_256_cbc_hmac_sha1,
562 ctx->propq);
563 else if (c->algorithm_enc == SSL_AES128
564 && c->algorithm_mac == SSL_SHA256)
565 evp = ssl_evp_cipher_fetch(ctx->libctx,
566 NID_aes_128_cbc_hmac_sha256,
567 ctx->propq);
568 else if (c->algorithm_enc == SSL_AES256
569 && c->algorithm_mac == SSL_SHA256)
570 evp = ssl_evp_cipher_fetch(ctx->libctx,
571 NID_aes_256_cbc_hmac_sha256,
572 ctx->propq);
573
574 if (evp != NULL) {
575 ssl_evp_cipher_free(*enc);
576 ssl_evp_md_free(*md);
577 *enc = evp;
578 *md = NULL;
579 }
580 return 1;
581 }
582
583 return 0;
584 }
585
ssl_md(SSL_CTX * ctx,int idx)586 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
587 {
588 idx &= SSL_HANDSHAKE_MAC_MASK;
589 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
590 return NULL;
591 return ctx->ssl_digest_methods[idx];
592 }
593
ssl_handshake_md(SSL_CONNECTION * s)594 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
595 {
596 return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
597 }
598
ssl_prf_md(SSL_CONNECTION * s)599 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
600 {
601 return ssl_md(SSL_CONNECTION_GET_CTX(s),
602 ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
603 }
604
605
606 #define ITEM_SEP(a) \
607 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
608
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)609 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
610 CIPHER_ORDER **tail)
611 {
612 if (curr == *tail)
613 return;
614 if (curr == *head)
615 *head = curr->next;
616 if (curr->prev != NULL)
617 curr->prev->next = curr->next;
618 if (curr->next != NULL)
619 curr->next->prev = curr->prev;
620 (*tail)->next = curr;
621 curr->prev = *tail;
622 curr->next = NULL;
623 *tail = curr;
624 }
625
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)626 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
627 CIPHER_ORDER **tail)
628 {
629 if (curr == *head)
630 return;
631 if (curr == *tail)
632 *tail = curr->prev;
633 if (curr->next != NULL)
634 curr->next->prev = curr->prev;
635 if (curr->prev != NULL)
636 curr->prev->next = curr->next;
637 (*head)->prev = curr;
638 curr->next = *head;
639 curr->prev = NULL;
640 *head = curr;
641 }
642
ssl_cipher_collect_ciphers(const SSL_METHOD * ssl_method,int num_of_ciphers,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)643 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
644 int num_of_ciphers,
645 uint32_t disabled_mkey,
646 uint32_t disabled_auth,
647 uint32_t disabled_enc,
648 uint32_t disabled_mac,
649 CIPHER_ORDER *co_list,
650 CIPHER_ORDER **head_p,
651 CIPHER_ORDER **tail_p)
652 {
653 int i, co_list_num;
654 const SSL_CIPHER *c;
655
656 /*
657 * We have num_of_ciphers descriptions compiled in, depending on the
658 * method selected (SSLv3, TLSv1 etc).
659 * These will later be sorted in a linked list with at most num
660 * entries.
661 */
662
663 /* Get the initial list of ciphers */
664 co_list_num = 0; /* actual count of ciphers */
665 for (i = 0; i < num_of_ciphers; i++) {
666 c = ssl_method->get_cipher(i);
667 /* drop those that use any of that is not available */
668 if (c == NULL || !c->valid)
669 continue;
670 if ((c->algorithm_mkey & disabled_mkey) ||
671 (c->algorithm_auth & disabled_auth) ||
672 (c->algorithm_enc & disabled_enc) ||
673 (c->algorithm_mac & disabled_mac))
674 continue;
675 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
676 c->min_tls == 0)
677 continue;
678 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
679 c->min_dtls == 0)
680 continue;
681
682 co_list[co_list_num].cipher = c;
683 co_list[co_list_num].next = NULL;
684 co_list[co_list_num].prev = NULL;
685 co_list[co_list_num].active = 0;
686 co_list_num++;
687 }
688
689 /*
690 * Prepare linked list from list entries
691 */
692 if (co_list_num > 0) {
693 co_list[0].prev = NULL;
694
695 if (co_list_num > 1) {
696 co_list[0].next = &co_list[1];
697
698 for (i = 1; i < co_list_num - 1; i++) {
699 co_list[i].prev = &co_list[i - 1];
700 co_list[i].next = &co_list[i + 1];
701 }
702
703 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
704 }
705
706 co_list[co_list_num - 1].next = NULL;
707
708 *head_p = &co_list[0];
709 *tail_p = &co_list[co_list_num - 1];
710 }
711 }
712
ssl_cipher_collect_aliases(const SSL_CIPHER ** ca_list,int num_of_group_aliases,uint32_t disabled_mkey,uint32_t disabled_auth,uint32_t disabled_enc,uint32_t disabled_mac,CIPHER_ORDER * head)713 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
714 int num_of_group_aliases,
715 uint32_t disabled_mkey,
716 uint32_t disabled_auth,
717 uint32_t disabled_enc,
718 uint32_t disabled_mac,
719 CIPHER_ORDER *head)
720 {
721 CIPHER_ORDER *ciph_curr;
722 const SSL_CIPHER **ca_curr;
723 int i;
724 uint32_t mask_mkey = ~disabled_mkey;
725 uint32_t mask_auth = ~disabled_auth;
726 uint32_t mask_enc = ~disabled_enc;
727 uint32_t mask_mac = ~disabled_mac;
728
729 /*
730 * First, add the real ciphers as already collected
731 */
732 ciph_curr = head;
733 ca_curr = ca_list;
734 while (ciph_curr != NULL) {
735 *ca_curr = ciph_curr->cipher;
736 ca_curr++;
737 ciph_curr = ciph_curr->next;
738 }
739
740 /*
741 * Now we add the available ones from the cipher_aliases[] table.
742 * They represent either one or more algorithms, some of which
743 * in any affected category must be supported (set in enabled_mask),
744 * or represent a cipher strength value (will be added in any case because algorithms=0).
745 */
746 for (i = 0; i < num_of_group_aliases; i++) {
747 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
748 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
749 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
750 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
751
752 if (algorithm_mkey)
753 if ((algorithm_mkey & mask_mkey) == 0)
754 continue;
755
756 if (algorithm_auth)
757 if ((algorithm_auth & mask_auth) == 0)
758 continue;
759
760 if (algorithm_enc)
761 if ((algorithm_enc & mask_enc) == 0)
762 continue;
763
764 if (algorithm_mac)
765 if ((algorithm_mac & mask_mac) == 0)
766 continue;
767
768 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
769 ca_curr++;
770 }
771
772 *ca_curr = NULL; /* end of list */
773 }
774
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,int min_tls,uint32_t algo_strength,int rule,int32_t strength_bits,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)775 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
776 uint32_t alg_auth, uint32_t alg_enc,
777 uint32_t alg_mac, int min_tls,
778 uint32_t algo_strength, int rule,
779 int32_t strength_bits, CIPHER_ORDER **head_p,
780 CIPHER_ORDER **tail_p)
781 {
782 CIPHER_ORDER *head, *tail, *curr, *next, *last;
783 const SSL_CIPHER *cp;
784 int reverse = 0;
785
786 OSSL_TRACE_BEGIN(TLS_CIPHER) {
787 BIO_printf(trc_out,
788 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
789 rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
790 (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
791 (unsigned int)algo_strength, (int)strength_bits);
792 }
793
794 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
795 reverse = 1; /* needed to maintain sorting between currently
796 * deleted ciphers */
797
798 head = *head_p;
799 tail = *tail_p;
800
801 if (reverse) {
802 next = tail;
803 last = head;
804 } else {
805 next = head;
806 last = tail;
807 }
808
809 curr = NULL;
810 for (;;) {
811 if (curr == last)
812 break;
813
814 curr = next;
815
816 if (curr == NULL)
817 break;
818
819 next = reverse ? curr->prev : curr->next;
820
821 cp = curr->cipher;
822
823 /*
824 * Selection criteria is either the value of strength_bits
825 * or the algorithms used.
826 */
827 if (strength_bits >= 0) {
828 if (strength_bits != cp->strength_bits)
829 continue;
830 } else {
831 if (trc_out != NULL) {
832 BIO_printf(trc_out,
833 "\nName: %s:"
834 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
835 cp->name,
836 (unsigned int)cp->algorithm_mkey,
837 (unsigned int)cp->algorithm_auth,
838 (unsigned int)cp->algorithm_enc,
839 (unsigned int)cp->algorithm_mac,
840 cp->min_tls,
841 (unsigned int)cp->algo_strength);
842 }
843 if (cipher_id != 0 && (cipher_id != cp->id))
844 continue;
845 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
846 continue;
847 if (alg_auth && !(alg_auth & cp->algorithm_auth))
848 continue;
849 if (alg_enc && !(alg_enc & cp->algorithm_enc))
850 continue;
851 if (alg_mac && !(alg_mac & cp->algorithm_mac))
852 continue;
853 if (min_tls && (min_tls != cp->min_tls))
854 continue;
855 if ((algo_strength & SSL_STRONG_MASK)
856 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
857 continue;
858 if ((algo_strength & SSL_DEFAULT_MASK)
859 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
860 continue;
861 }
862
863 if (trc_out != NULL)
864 BIO_printf(trc_out, "Action = %d\n", rule);
865
866 /* add the cipher if it has not been added yet. */
867 if (rule == CIPHER_ADD) {
868 /* reverse == 0 */
869 if (!curr->active) {
870 ll_append_tail(&head, curr, &tail);
871 curr->active = 1;
872 }
873 }
874 /* Move the added cipher to this location */
875 else if (rule == CIPHER_ORD) {
876 /* reverse == 0 */
877 if (curr->active) {
878 ll_append_tail(&head, curr, &tail);
879 }
880 } else if (rule == CIPHER_DEL) {
881 /* reverse == 1 */
882 if (curr->active) {
883 /*
884 * most recently deleted ciphersuites get best positions for
885 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
886 * in reverse to maintain the order)
887 */
888 ll_append_head(&head, curr, &tail);
889 curr->active = 0;
890 }
891 } else if (rule == CIPHER_BUMP) {
892 if (curr->active)
893 ll_append_head(&head, curr, &tail);
894 } else if (rule == CIPHER_KILL) {
895 /* reverse == 0 */
896 if (head == curr)
897 head = curr->next;
898 else
899 curr->prev->next = curr->next;
900 if (tail == curr)
901 tail = curr->prev;
902 curr->active = 0;
903 if (curr->next != NULL)
904 curr->next->prev = curr->prev;
905 if (curr->prev != NULL)
906 curr->prev->next = curr->next;
907 curr->next = NULL;
908 curr->prev = NULL;
909 }
910 }
911
912 *head_p = head;
913 *tail_p = tail;
914
915 OSSL_TRACE_END(TLS_CIPHER);
916 }
917
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)918 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
919 CIPHER_ORDER **tail_p)
920 {
921 int32_t max_strength_bits;
922 int i, *number_uses;
923 CIPHER_ORDER *curr;
924
925 /*
926 * This routine sorts the ciphers with descending strength. The sorting
927 * must keep the pre-sorted sequence, so we apply the normal sorting
928 * routine as '+' movement to the end of the list.
929 */
930 max_strength_bits = 0;
931 curr = *head_p;
932 while (curr != NULL) {
933 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
934 max_strength_bits = curr->cipher->strength_bits;
935 curr = curr->next;
936 }
937
938 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
939 if (number_uses == NULL)
940 return 0;
941
942 /*
943 * Now find the strength_bits values actually used
944 */
945 curr = *head_p;
946 while (curr != NULL) {
947 if (curr->active)
948 number_uses[curr->cipher->strength_bits]++;
949 curr = curr->next;
950 }
951 /*
952 * Go through the list of used strength_bits values in descending
953 * order.
954 */
955 for (i = max_strength_bits; i >= 0; i--)
956 if (number_uses[i] > 0)
957 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
958 tail_p);
959
960 OPENSSL_free(number_uses);
961 return 1;
962 }
963
ssl_cipher_process_rulestr(const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,const SSL_CIPHER ** ca_list,CERT * c)964 static int ssl_cipher_process_rulestr(const char *rule_str,
965 CIPHER_ORDER **head_p,
966 CIPHER_ORDER **tail_p,
967 const SSL_CIPHER **ca_list, CERT *c)
968 {
969 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
970 int min_tls;
971 const char *l, *buf;
972 int j, multi, found, rule, retval, ok, buflen;
973 uint32_t cipher_id = 0;
974 char ch;
975
976 retval = 1;
977 l = rule_str;
978 for (;;) {
979 ch = *l;
980
981 if (ch == '\0')
982 break; /* done */
983 if (ch == '-') {
984 rule = CIPHER_DEL;
985 l++;
986 } else if (ch == '+') {
987 rule = CIPHER_ORD;
988 l++;
989 } else if (ch == '!') {
990 rule = CIPHER_KILL;
991 l++;
992 } else if (ch == '@') {
993 rule = CIPHER_SPECIAL;
994 l++;
995 } else {
996 rule = CIPHER_ADD;
997 }
998
999 if (ITEM_SEP(ch)) {
1000 l++;
1001 continue;
1002 }
1003
1004 alg_mkey = 0;
1005 alg_auth = 0;
1006 alg_enc = 0;
1007 alg_mac = 0;
1008 min_tls = 0;
1009 algo_strength = 0;
1010
1011 for (;;) {
1012 ch = *l;
1013 buf = l;
1014 buflen = 0;
1015 #ifndef CHARSET_EBCDIC
1016 while (((ch >= 'A') && (ch <= 'Z')) ||
1017 ((ch >= '0') && (ch <= '9')) ||
1018 ((ch >= 'a') && (ch <= 'z')) ||
1019 (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1020 #else
1021 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1022 || (ch == '='))
1023 #endif
1024 {
1025 ch = *(++l);
1026 buflen++;
1027 }
1028
1029 if (buflen == 0) {
1030 /*
1031 * We hit something we cannot deal with,
1032 * it is no command or separator nor
1033 * alphanumeric, so we call this an error.
1034 */
1035 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1036 return 0;
1037 }
1038
1039 if (rule == CIPHER_SPECIAL) {
1040 found = 0; /* unused -- avoid compiler warning */
1041 break; /* special treatment */
1042 }
1043
1044 /* check for multi-part specification */
1045 if (ch == '+') {
1046 multi = 1;
1047 l++;
1048 } else {
1049 multi = 0;
1050 }
1051
1052 /*
1053 * Now search for the cipher alias in the ca_list. Be careful
1054 * with the strncmp, because the "buflen" limitation
1055 * will make the rule "ADH:SOME" and the cipher
1056 * "ADH-MY-CIPHER" look like a match for buflen=3.
1057 * So additionally check whether the cipher name found
1058 * has the correct length. We can save a strlen() call:
1059 * just checking for the '\0' at the right place is
1060 * sufficient, we have to strncmp() anyway. (We cannot
1061 * use strcmp(), because buf is not '\0' terminated.)
1062 */
1063 j = found = 0;
1064 cipher_id = 0;
1065 while (ca_list[j]) {
1066 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1067 && (ca_list[j]->name[buflen] == '\0')) {
1068 found = 1;
1069 break;
1070 } else if (ca_list[j]->stdname != NULL
1071 && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1072 && ca_list[j]->stdname[buflen] == '\0') {
1073 found = 1;
1074 break;
1075 } else
1076 j++;
1077 }
1078
1079 if (!found)
1080 break; /* ignore this entry */
1081
1082 if (ca_list[j]->algorithm_mkey) {
1083 if (alg_mkey) {
1084 alg_mkey &= ca_list[j]->algorithm_mkey;
1085 if (!alg_mkey) {
1086 found = 0;
1087 break;
1088 }
1089 } else {
1090 alg_mkey = ca_list[j]->algorithm_mkey;
1091 }
1092 }
1093
1094 if (ca_list[j]->algorithm_auth) {
1095 if (alg_auth) {
1096 alg_auth &= ca_list[j]->algorithm_auth;
1097 if (!alg_auth) {
1098 found = 0;
1099 break;
1100 }
1101 } else {
1102 alg_auth = ca_list[j]->algorithm_auth;
1103 }
1104 }
1105
1106 if (ca_list[j]->algorithm_enc) {
1107 if (alg_enc) {
1108 alg_enc &= ca_list[j]->algorithm_enc;
1109 if (!alg_enc) {
1110 found = 0;
1111 break;
1112 }
1113 } else {
1114 alg_enc = ca_list[j]->algorithm_enc;
1115 }
1116 }
1117
1118 if (ca_list[j]->algorithm_mac) {
1119 if (alg_mac) {
1120 alg_mac &= ca_list[j]->algorithm_mac;
1121 if (!alg_mac) {
1122 found = 0;
1123 break;
1124 }
1125 } else {
1126 alg_mac = ca_list[j]->algorithm_mac;
1127 }
1128 }
1129
1130 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1131 if (algo_strength & SSL_STRONG_MASK) {
1132 algo_strength &=
1133 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1134 ~SSL_STRONG_MASK;
1135 if (!(algo_strength & SSL_STRONG_MASK)) {
1136 found = 0;
1137 break;
1138 }
1139 } else {
1140 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1141 }
1142 }
1143
1144 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1145 if (algo_strength & SSL_DEFAULT_MASK) {
1146 algo_strength &=
1147 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1148 ~SSL_DEFAULT_MASK;
1149 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1150 found = 0;
1151 break;
1152 }
1153 } else {
1154 algo_strength |=
1155 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1156 }
1157 }
1158
1159 if (ca_list[j]->valid) {
1160 /*
1161 * explicit ciphersuite found; its protocol version does not
1162 * become part of the search pattern!
1163 */
1164
1165 cipher_id = ca_list[j]->id;
1166 } else {
1167 /*
1168 * not an explicit ciphersuite; only in this case, the
1169 * protocol version is considered part of the search pattern
1170 */
1171
1172 if (ca_list[j]->min_tls) {
1173 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1174 found = 0;
1175 break;
1176 } else {
1177 min_tls = ca_list[j]->min_tls;
1178 }
1179 }
1180 }
1181
1182 if (!multi)
1183 break;
1184 }
1185
1186 /*
1187 * Ok, we have the rule, now apply it
1188 */
1189 if (rule == CIPHER_SPECIAL) { /* special command */
1190 ok = 0;
1191 if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1192 ok = ssl_cipher_strength_sort(head_p, tail_p);
1193 } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1194 int level = *buf - '0';
1195 if (level < 0 || level > 5) {
1196 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1197 } else {
1198 c->sec_level = level;
1199 ok = 1;
1200 }
1201 } else {
1202 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1203 }
1204 if (ok == 0)
1205 retval = 0;
1206 /*
1207 * We do not support any "multi" options
1208 * together with "@", so throw away the
1209 * rest of the command, if any left, until
1210 * end or ':' is found.
1211 */
1212 while ((*l != '\0') && !ITEM_SEP(*l))
1213 l++;
1214 } else if (found) {
1215 ssl_cipher_apply_rule(cipher_id,
1216 alg_mkey, alg_auth, alg_enc, alg_mac,
1217 min_tls, algo_strength, rule, -1, head_p,
1218 tail_p);
1219 } else {
1220 while ((*l != '\0') && !ITEM_SEP(*l))
1221 l++;
1222 }
1223 if (*l == '\0')
1224 break; /* done */
1225 }
1226
1227 return retval;
1228 }
1229
check_suiteb_cipher_list(const SSL_METHOD * meth,CERT * c,const char ** prule_str)1230 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1231 const char **prule_str)
1232 {
1233 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1234 if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1235 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1236 } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1237 suiteb_comb2 = 1;
1238 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1239 } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1240 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1241 } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1242 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1243 }
1244
1245 if (suiteb_flags) {
1246 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1247 c->cert_flags |= suiteb_flags;
1248 } else {
1249 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1250 }
1251
1252 if (!suiteb_flags)
1253 return 1;
1254 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1255
1256 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1257 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1258 return 0;
1259 }
1260
1261 switch (suiteb_flags) {
1262 case SSL_CERT_FLAG_SUITEB_128_LOS:
1263 if (suiteb_comb2)
1264 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1265 else
1266 *prule_str =
1267 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1268 break;
1269 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1270 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1271 break;
1272 case SSL_CERT_FLAG_SUITEB_192_LOS:
1273 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1274 break;
1275 }
1276 return 1;
1277 }
1278
ciphersuite_cb(const char * elem,int len,void * arg)1279 static int ciphersuite_cb(const char *elem, int len, void *arg)
1280 {
1281 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1282 const SSL_CIPHER *cipher;
1283 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1284 char name[80];
1285
1286 if (len > (int)(sizeof(name) - 1))
1287 /* Anyway return 1 so we can parse rest of the list */
1288 return 1;
1289
1290 memcpy(name, elem, len);
1291 name[len] = '\0';
1292
1293 cipher = ssl3_get_cipher_by_std_name(name);
1294 if (cipher == NULL)
1295 /* Ciphersuite not found but return 1 to parse rest of the list */
1296 return 1;
1297
1298 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1299 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1300 return 0;
1301 }
1302
1303 return 1;
1304 }
1305
set_ciphersuites(STACK_OF (SSL_CIPHER)** currciphers,const char * str)1306 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1307 {
1308 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1309
1310 if (newciphers == NULL)
1311 return 0;
1312
1313 /* Parse the list. We explicitly allow an empty list */
1314 if (*str != '\0'
1315 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1316 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1317 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1318 sk_SSL_CIPHER_free(newciphers);
1319 return 0;
1320 }
1321 sk_SSL_CIPHER_free(*currciphers);
1322 *currciphers = newciphers;
1323
1324 return 1;
1325 }
1326
update_cipher_list_by_id(STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* cipherstack)1327 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1328 STACK_OF(SSL_CIPHER) *cipherstack)
1329 {
1330 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1331
1332 if (tmp_cipher_list == NULL) {
1333 return 0;
1334 }
1335
1336 sk_SSL_CIPHER_free(*cipher_list_by_id);
1337 *cipher_list_by_id = tmp_cipher_list;
1338
1339 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1340 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1341
1342 return 1;
1343 }
1344
update_cipher_list(SSL_CTX * ctx,STACK_OF (SSL_CIPHER)** cipher_list,STACK_OF (SSL_CIPHER)** cipher_list_by_id,STACK_OF (SSL_CIPHER)* tls13_ciphersuites)1345 static int update_cipher_list(SSL_CTX *ctx,
1346 STACK_OF(SSL_CIPHER) **cipher_list,
1347 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1348 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1349 {
1350 int i;
1351 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1352
1353 if (tmp_cipher_list == NULL)
1354 return 0;
1355
1356 /*
1357 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1358 * list.
1359 */
1360 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1361 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1362 == TLS1_3_VERSION)
1363 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1364
1365 /* Insert the new TLSv1.3 ciphersuites */
1366 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1367 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1368
1369 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1370 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1371 && (ssl_cipher_table_mac[sslc->algorithm2
1372 & SSL_HANDSHAKE_MAC_MASK].mask
1373 & ctx->disabled_mac_mask) == 0) {
1374 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1375 }
1376 }
1377
1378 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1379 sk_SSL_CIPHER_free(tmp_cipher_list);
1380 return 0;
1381 }
1382
1383 sk_SSL_CIPHER_free(*cipher_list);
1384 *cipher_list = tmp_cipher_list;
1385
1386 return 1;
1387 }
1388
SSL_CTX_set_ciphersuites(SSL_CTX * ctx,const char * str)1389 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1390 {
1391 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1392
1393 if (ret && ctx->cipher_list != NULL)
1394 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1395 ctx->tls13_ciphersuites);
1396
1397 return ret;
1398 }
1399
SSL_set_ciphersuites(SSL * s,const char * str)1400 int SSL_set_ciphersuites(SSL *s, const char *str)
1401 {
1402 STACK_OF(SSL_CIPHER) *cipher_list;
1403 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1404 int ret;
1405
1406 if (sc == NULL)
1407 return 0;
1408
1409 ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1410
1411 if (sc->cipher_list == NULL) {
1412 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1413 sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1414 }
1415 if (ret && sc->cipher_list != NULL)
1416 return update_cipher_list(s->ctx, &sc->cipher_list,
1417 &sc->cipher_list_by_id,
1418 sc->tls13_ciphersuites);
1419
1420 return ret;
1421 }
1422
STACK_OF(SSL_CIPHER)1423 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1424 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1425 STACK_OF(SSL_CIPHER) **cipher_list,
1426 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1427 const char *rule_str,
1428 CERT *c)
1429 {
1430 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1431 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1432 STACK_OF(SSL_CIPHER) *cipherstack;
1433 const char *rule_p;
1434 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1435 const SSL_CIPHER **ca_list = NULL;
1436 const SSL_METHOD *ssl_method = ctx->method;
1437
1438 /*
1439 * Return with error if nothing to do.
1440 */
1441 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1442 return NULL;
1443
1444 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1445 return NULL;
1446
1447 /*
1448 * To reduce the work to do we only want to process the compiled
1449 * in algorithms, so we first get the mask of disabled ciphers.
1450 */
1451
1452 disabled_mkey = ctx->disabled_mkey_mask;
1453 disabled_auth = ctx->disabled_auth_mask;
1454 disabled_enc = ctx->disabled_enc_mask;
1455 disabled_mac = ctx->disabled_mac_mask;
1456
1457 /*
1458 * Now we have to collect the available ciphers from the compiled
1459 * in ciphers. We cannot get more than the number compiled in, so
1460 * it is used for allocation.
1461 */
1462 num_of_ciphers = ssl_method->num_ciphers();
1463
1464 if (num_of_ciphers > 0) {
1465 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1466 if (co_list == NULL)
1467 return NULL; /* Failure */
1468 }
1469
1470 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1471 disabled_mkey, disabled_auth, disabled_enc,
1472 disabled_mac, co_list, &head, &tail);
1473
1474 /* Now arrange all ciphers by preference. */
1475
1476 /*
1477 * Everything else being equal, prefer ephemeral ECDH over other key
1478 * exchange mechanisms.
1479 * For consistency, prefer ECDSA over RSA (though this only matters if the
1480 * server has both certificates, and is using the DEFAULT, or a client
1481 * preference).
1482 */
1483 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1484 -1, &head, &tail);
1485 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1486 &tail);
1487 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1488 &tail);
1489
1490 /* Within each strength group, we prefer GCM over CHACHA... */
1491 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1492 &head, &tail);
1493 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1494 &head, &tail);
1495
1496 /*
1497 * ...and generally, our preferred cipher is AES.
1498 * Note that AEADs will be bumped to take preference after sorting by
1499 * strength.
1500 */
1501 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1502 -1, &head, &tail);
1503
1504 /* Temporarily enable everything else for sorting */
1505 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1506
1507 /* Low priority for MD5 */
1508 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1509 &tail);
1510
1511 /*
1512 * Move anonymous ciphers to the end. Usually, these will remain
1513 * disabled. (For applications that allow them, they aren't too bad, but
1514 * we prefer authenticated ciphers.)
1515 */
1516 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1517 &tail);
1518
1519 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1520 &tail);
1521 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1522 &tail);
1523
1524 /* RC4 is sort-of broken -- move to the end */
1525 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1526 &tail);
1527
1528 /*
1529 * Now sort by symmetric encryption strength. The above ordering remains
1530 * in force within each class
1531 */
1532 if (!ssl_cipher_strength_sort(&head, &tail)) {
1533 OPENSSL_free(co_list);
1534 return NULL;
1535 }
1536
1537 /*
1538 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1539 */
1540 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1541 &head, &tail);
1542
1543 /*
1544 * Irrespective of strength, enforce the following order:
1545 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1546 * Within each group, ciphers remain sorted by strength and previous
1547 * preference, i.e.,
1548 * 1) ECDHE > DHE
1549 * 2) GCM > CHACHA
1550 * 3) AES > rest
1551 * 4) TLS 1.2 > legacy
1552 *
1553 * Because we now bump ciphers to the top of the list, we proceed in
1554 * reverse order of preference.
1555 */
1556 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1557 &head, &tail);
1558 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1559 CIPHER_BUMP, -1, &head, &tail);
1560 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1561 CIPHER_BUMP, -1, &head, &tail);
1562
1563 /* Now disable everything (maintaining the ordering!) */
1564 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1565
1566 /*
1567 * We also need cipher aliases for selecting based on the rule_str.
1568 * There might be two types of entries in the rule_str: 1) names
1569 * of ciphers themselves 2) aliases for groups of ciphers.
1570 * For 1) we need the available ciphers and for 2) the cipher
1571 * groups of cipher_aliases added together in one list (otherwise
1572 * we would be happy with just the cipher_aliases table).
1573 */
1574 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1575 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1576 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1577 if (ca_list == NULL) {
1578 OPENSSL_free(co_list);
1579 return NULL; /* Failure */
1580 }
1581 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1582 disabled_mkey, disabled_auth, disabled_enc,
1583 disabled_mac, head);
1584
1585 /*
1586 * If the rule_string begins with DEFAULT, apply the default rule
1587 * before using the (possibly available) additional rules.
1588 */
1589 ok = 1;
1590 rule_p = rule_str;
1591 if (HAS_PREFIX(rule_str, "DEFAULT")) {
1592 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1593 &head, &tail, ca_list, c);
1594 rule_p += 7;
1595 if (*rule_p == ':')
1596 rule_p++;
1597 }
1598
1599 if (ok && (rule_p[0] != '\0'))
1600 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1601
1602 OPENSSL_free(ca_list); /* Not needed anymore */
1603
1604 if (!ok) { /* Rule processing failure */
1605 OPENSSL_free(co_list);
1606 return NULL;
1607 }
1608
1609 /*
1610 * Allocate new "cipherstack" for the result, return with error
1611 * if we cannot get one.
1612 */
1613 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1614 OPENSSL_free(co_list);
1615 return NULL;
1616 }
1617
1618 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1619 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1620 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1621
1622 /* Don't include any TLSv1.3 ciphers that are disabled */
1623 if ((sslc->algorithm_enc & disabled_enc) != 0
1624 || (ssl_cipher_table_mac[sslc->algorithm2
1625 & SSL_HANDSHAKE_MAC_MASK].mask
1626 & ctx->disabled_mac_mask) != 0) {
1627 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1628 i--;
1629 continue;
1630 }
1631
1632 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1633 OPENSSL_free(co_list);
1634 sk_SSL_CIPHER_free(cipherstack);
1635 return NULL;
1636 }
1637 }
1638
1639 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1640 BIO_printf(trc_out, "cipher selection:\n");
1641 }
1642 /*
1643 * The cipher selection for the list is done. The ciphers are added
1644 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1645 */
1646 for (curr = head; curr != NULL; curr = curr->next) {
1647 if (curr->active) {
1648 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1649 OPENSSL_free(co_list);
1650 sk_SSL_CIPHER_free(cipherstack);
1651 OSSL_TRACE_CANCEL(TLS_CIPHER);
1652 return NULL;
1653 }
1654 if (trc_out != NULL)
1655 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1656 }
1657 }
1658 OPENSSL_free(co_list); /* Not needed any longer */
1659 OSSL_TRACE_END(TLS_CIPHER);
1660
1661 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1662 sk_SSL_CIPHER_free(cipherstack);
1663 return NULL;
1664 }
1665 sk_SSL_CIPHER_free(*cipher_list);
1666 *cipher_list = cipherstack;
1667
1668 return cipherstack;
1669 }
1670
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1671 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1672 {
1673 const char *ver;
1674 const char *kx, *au, *enc, *mac;
1675 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1676 static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1677
1678 if (buf == NULL) {
1679 len = 128;
1680 if ((buf = OPENSSL_malloc(len)) == NULL)
1681 return NULL;
1682 } else if (len < 128) {
1683 return NULL;
1684 }
1685
1686 alg_mkey = cipher->algorithm_mkey;
1687 alg_auth = cipher->algorithm_auth;
1688 alg_enc = cipher->algorithm_enc;
1689 alg_mac = cipher->algorithm_mac;
1690
1691 ver = ssl_protocol_to_string(cipher->min_tls);
1692
1693 switch (alg_mkey) {
1694 case SSL_kRSA:
1695 kx = "RSA";
1696 break;
1697 case SSL_kDHE:
1698 kx = "DH";
1699 break;
1700 case SSL_kECDHE:
1701 kx = "ECDH";
1702 break;
1703 case SSL_kPSK:
1704 kx = "PSK";
1705 break;
1706 case SSL_kRSAPSK:
1707 kx = "RSAPSK";
1708 break;
1709 case SSL_kECDHEPSK:
1710 kx = "ECDHEPSK";
1711 break;
1712 case SSL_kDHEPSK:
1713 kx = "DHEPSK";
1714 break;
1715 case SSL_kSRP:
1716 kx = "SRP";
1717 break;
1718 case SSL_kGOST:
1719 kx = "GOST";
1720 break;
1721 case SSL_kGOST18:
1722 kx = "GOST18";
1723 break;
1724 case SSL_kANY:
1725 kx = "any";
1726 break;
1727 default:
1728 kx = "unknown";
1729 }
1730
1731 switch (alg_auth) {
1732 case SSL_aRSA:
1733 au = "RSA";
1734 break;
1735 case SSL_aDSS:
1736 au = "DSS";
1737 break;
1738 case SSL_aNULL:
1739 au = "None";
1740 break;
1741 case SSL_aECDSA:
1742 au = "ECDSA";
1743 break;
1744 case SSL_aPSK:
1745 au = "PSK";
1746 break;
1747 case SSL_aSRP:
1748 au = "SRP";
1749 break;
1750 case SSL_aGOST01:
1751 au = "GOST01";
1752 break;
1753 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1754 case (SSL_aGOST12 | SSL_aGOST01):
1755 au = "GOST12";
1756 break;
1757 case SSL_aANY:
1758 au = "any";
1759 break;
1760 default:
1761 au = "unknown";
1762 break;
1763 }
1764
1765 switch (alg_enc) {
1766 case SSL_DES:
1767 enc = "DES(56)";
1768 break;
1769 case SSL_3DES:
1770 enc = "3DES(168)";
1771 break;
1772 case SSL_RC4:
1773 enc = "RC4(128)";
1774 break;
1775 case SSL_RC2:
1776 enc = "RC2(128)";
1777 break;
1778 case SSL_IDEA:
1779 enc = "IDEA(128)";
1780 break;
1781 case SSL_eNULL:
1782 enc = "None";
1783 break;
1784 case SSL_AES128:
1785 enc = "AES(128)";
1786 break;
1787 case SSL_AES256:
1788 enc = "AES(256)";
1789 break;
1790 case SSL_AES128GCM:
1791 enc = "AESGCM(128)";
1792 break;
1793 case SSL_AES256GCM:
1794 enc = "AESGCM(256)";
1795 break;
1796 case SSL_AES128CCM:
1797 enc = "AESCCM(128)";
1798 break;
1799 case SSL_AES256CCM:
1800 enc = "AESCCM(256)";
1801 break;
1802 case SSL_AES128CCM8:
1803 enc = "AESCCM8(128)";
1804 break;
1805 case SSL_AES256CCM8:
1806 enc = "AESCCM8(256)";
1807 break;
1808 case SSL_CAMELLIA128:
1809 enc = "Camellia(128)";
1810 break;
1811 case SSL_CAMELLIA256:
1812 enc = "Camellia(256)";
1813 break;
1814 case SSL_ARIA128GCM:
1815 enc = "ARIAGCM(128)";
1816 break;
1817 case SSL_ARIA256GCM:
1818 enc = "ARIAGCM(256)";
1819 break;
1820 case SSL_SEED:
1821 enc = "SEED(128)";
1822 break;
1823 case SSL_eGOST2814789CNT:
1824 case SSL_eGOST2814789CNT12:
1825 enc = "GOST89(256)";
1826 break;
1827 case SSL_MAGMA:
1828 enc = "MAGMA";
1829 break;
1830 case SSL_KUZNYECHIK:
1831 enc = "KUZNYECHIK";
1832 break;
1833 case SSL_CHACHA20POLY1305:
1834 enc = "CHACHA20/POLY1305(256)";
1835 break;
1836 default:
1837 enc = "unknown";
1838 break;
1839 }
1840
1841 switch (alg_mac) {
1842 case SSL_MD5:
1843 mac = "MD5";
1844 break;
1845 case SSL_SHA1:
1846 mac = "SHA1";
1847 break;
1848 case SSL_SHA256:
1849 mac = "SHA256";
1850 break;
1851 case SSL_SHA384:
1852 mac = "SHA384";
1853 break;
1854 case SSL_AEAD:
1855 mac = "AEAD";
1856 break;
1857 case SSL_GOST89MAC:
1858 case SSL_GOST89MAC12:
1859 mac = "GOST89";
1860 break;
1861 case SSL_GOST94:
1862 mac = "GOST94";
1863 break;
1864 case SSL_GOST12_256:
1865 case SSL_GOST12_512:
1866 mac = "GOST2012";
1867 break;
1868 default:
1869 mac = "unknown";
1870 break;
1871 }
1872
1873 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1874
1875 return buf;
1876 }
1877
SSL_CIPHER_get_version(const SSL_CIPHER * c)1878 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1879 {
1880 if (c == NULL)
1881 return "(NONE)";
1882
1883 /*
1884 * Backwards-compatibility crutch. In almost all contexts we report TLS
1885 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1886 */
1887 if (c->min_tls == TLS1_VERSION)
1888 return "TLSv1.0";
1889 return ssl_protocol_to_string(c->min_tls);
1890 }
1891
1892 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * c)1893 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1894 {
1895 if (c != NULL)
1896 return c->name;
1897 return "(NONE)";
1898 }
1899
1900 /* return the actual cipher being used in RFC standard name */
SSL_CIPHER_standard_name(const SSL_CIPHER * c)1901 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1902 {
1903 if (c != NULL)
1904 return c->stdname;
1905 return "(NONE)";
1906 }
1907
1908 /* return the OpenSSL name based on given RFC standard name */
OPENSSL_cipher_name(const char * stdname)1909 const char *OPENSSL_cipher_name(const char *stdname)
1910 {
1911 const SSL_CIPHER *c;
1912
1913 if (stdname == NULL)
1914 return "(NONE)";
1915 c = ssl3_get_cipher_by_std_name(stdname);
1916 return SSL_CIPHER_get_name(c);
1917 }
1918
1919 /* number of bits for symmetric cipher */
SSL_CIPHER_get_bits(const SSL_CIPHER * c,int * alg_bits)1920 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1921 {
1922 int ret = 0;
1923
1924 if (c != NULL) {
1925 if (alg_bits != NULL)
1926 *alg_bits = (int)c->alg_bits;
1927 ret = (int)c->strength_bits;
1928 }
1929 return ret;
1930 }
1931
SSL_CIPHER_get_id(const SSL_CIPHER * c)1932 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1933 {
1934 return c->id;
1935 }
1936
SSL_CIPHER_get_protocol_id(const SSL_CIPHER * c)1937 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1938 {
1939 return c->id & 0xFFFF;
1940 }
1941
ssl3_comp_find(STACK_OF (SSL_COMP)* sk,int n)1942 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1943 {
1944 SSL_COMP *ctmp;
1945 SSL_COMP srch_key;
1946 int i;
1947
1948 if ((n == 0) || (sk == NULL))
1949 return NULL;
1950 srch_key.id = n;
1951 i = sk_SSL_COMP_find(sk, &srch_key);
1952 if (i >= 0)
1953 ctmp = sk_SSL_COMP_value(sk, i);
1954 else
1955 ctmp = NULL;
1956
1957 return ctmp;
1958 }
1959
1960 #ifdef OPENSSL_NO_COMP
STACK_OF(SSL_COMP)1961 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1962 {
1963 return NULL;
1964 }
1965
STACK_OF(SSL_COMP)1966 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1967 *meths)
1968 {
1969 return meths;
1970 }
1971
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1972 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1973 {
1974 return 1;
1975 }
1976
1977 #else
STACK_OF(SSL_COMP)1978 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1979 {
1980 STACK_OF(SSL_COMP) **rv;
1981
1982 rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1983 OSSL_LIB_CTX_COMP_METHODS);
1984 if (rv != NULL)
1985 return *rv;
1986 else
1987 return NULL;
1988 }
1989
STACK_OF(SSL_COMP)1990 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1991 *meths)
1992 {
1993 STACK_OF(SSL_COMP) **comp_methods;
1994 STACK_OF(SSL_COMP) *old_meths;
1995
1996 comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1997 OSSL_LIB_CTX_COMP_METHODS);
1998 if (comp_methods == NULL) {
1999 old_meths = meths;
2000 } else {
2001 old_meths = *comp_methods;
2002 *comp_methods = meths;
2003 }
2004
2005 return old_meths;
2006 }
2007
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)2008 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2009 {
2010 STACK_OF(SSL_COMP) *comp_methods;
2011 SSL_COMP *comp;
2012
2013 comp_methods = SSL_COMP_get_compression_methods();
2014
2015 if (comp_methods == NULL)
2016 return 1;
2017
2018 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2019 return 1;
2020
2021 /*-
2022 * According to draft-ietf-tls-compression-04.txt, the
2023 * compression number ranges should be the following:
2024 *
2025 * 0 to 63: methods defined by the IETF
2026 * 64 to 192: external party methods assigned by IANA
2027 * 193 to 255: reserved for private use
2028 */
2029 if (id < 193 || id > 255) {
2030 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2031 return 1;
2032 }
2033
2034 comp = OPENSSL_malloc(sizeof(*comp));
2035 if (comp == NULL)
2036 return 1;
2037
2038 comp->id = id;
2039 if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2040 OPENSSL_free(comp);
2041 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2042 return 1;
2043 }
2044 if (!sk_SSL_COMP_push(comp_methods, comp)) {
2045 OPENSSL_free(comp);
2046 ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2047 return 1;
2048 }
2049
2050 return 0;
2051 }
2052 #endif
2053
SSL_COMP_get_name(const COMP_METHOD * comp)2054 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2055 {
2056 #ifndef OPENSSL_NO_COMP
2057 return comp ? COMP_get_name(comp) : NULL;
2058 #else
2059 return NULL;
2060 #endif
2061 }
2062
SSL_COMP_get0_name(const SSL_COMP * comp)2063 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2064 {
2065 #ifndef OPENSSL_NO_COMP
2066 return comp->name;
2067 #else
2068 return NULL;
2069 #endif
2070 }
2071
SSL_COMP_get_id(const SSL_COMP * comp)2072 int SSL_COMP_get_id(const SSL_COMP *comp)
2073 {
2074 #ifndef OPENSSL_NO_COMP
2075 return comp->id;
2076 #else
2077 return -1;
2078 #endif
2079 }
2080
ssl_get_cipher_by_char(SSL_CONNECTION * s,const unsigned char * ptr,int all)2081 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2082 const unsigned char *ptr,
2083 int all)
2084 {
2085 const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2086
2087 if (c == NULL || (!all && c->valid == 0))
2088 return NULL;
2089 return c;
2090 }
2091
SSL_CIPHER_find(SSL * ssl,const unsigned char * ptr)2092 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2093 {
2094 return ssl->method->get_cipher_by_char(ptr);
2095 }
2096
SSL_CIPHER_get_cipher_nid(const SSL_CIPHER * c)2097 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2098 {
2099 int i;
2100 if (c == NULL)
2101 return NID_undef;
2102 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2103 if (i == -1)
2104 return NID_undef;
2105 return ssl_cipher_table_cipher[i].nid;
2106 }
2107
SSL_CIPHER_get_digest_nid(const SSL_CIPHER * c)2108 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2109 {
2110 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2111
2112 if (i == -1)
2113 return NID_undef;
2114 return ssl_cipher_table_mac[i].nid;
2115 }
2116
SSL_CIPHER_get_kx_nid(const SSL_CIPHER * c)2117 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2118 {
2119 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2120
2121 if (i == -1)
2122 return NID_undef;
2123 return ssl_cipher_table_kx[i].nid;
2124 }
2125
SSL_CIPHER_get_auth_nid(const SSL_CIPHER * c)2126 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2127 {
2128 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2129
2130 if (i == -1)
2131 return NID_undef;
2132 return ssl_cipher_table_auth[i].nid;
2133 }
2134
ssl_get_md_idx(int md_nid)2135 int ssl_get_md_idx(int md_nid) {
2136 int i;
2137
2138 for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2139 if (md_nid == ssl_cipher_table_mac[i].nid)
2140 return i;
2141 }
2142 return -1;
2143 }
2144
SSL_CIPHER_get_handshake_digest(const SSL_CIPHER * c)2145 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2146 {
2147 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2148
2149 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2150 return NULL;
2151 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2152 }
2153
SSL_CIPHER_is_aead(const SSL_CIPHER * c)2154 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2155 {
2156 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2157 }
2158
ssl_cipher_get_overhead(const SSL_CIPHER * c,size_t * mac_overhead,size_t * int_overhead,size_t * blocksize,size_t * ext_overhead)2159 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2160 size_t *int_overhead, size_t *blocksize,
2161 size_t *ext_overhead)
2162 {
2163 int mac = 0, in = 0, blk = 0, out = 0;
2164
2165 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2166 * because there are no handy #defines for those. */
2167 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2168 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2169 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2170 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2171 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2172 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2173 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2174 out = 16;
2175 } else if (c->algorithm_mac & SSL_AEAD) {
2176 /* We're supposed to have handled all the AEAD modes above */
2177 return 0;
2178 } else {
2179 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2180 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2181 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2182
2183 if (e_md == NULL)
2184 return 0;
2185
2186 mac = EVP_MD_get_size(e_md);
2187 if (mac <= 0)
2188 return 0;
2189 if (c->algorithm_enc != SSL_eNULL) {
2190 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2191 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2192
2193 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2194 known CBC cipher. */
2195 if (e_ciph == NULL ||
2196 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2197 return 0;
2198
2199 in = 1; /* padding length byte */
2200 out = EVP_CIPHER_get_iv_length(e_ciph);
2201 if (out < 0)
2202 return 0;
2203 blk = EVP_CIPHER_get_block_size(e_ciph);
2204 if (blk <= 0)
2205 return 0;
2206 }
2207 }
2208
2209 *mac_overhead = (size_t)mac;
2210 *int_overhead = (size_t)in;
2211 *blocksize = (size_t)blk;
2212 *ext_overhead = (size_t)out;
2213
2214 return 1;
2215 }
2216
ssl_cert_is_disabled(SSL_CTX * ctx,size_t idx)2217 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2218 {
2219 const SSL_CERT_LOOKUP *cl;
2220
2221 /* A provider-loaded key type is always enabled */
2222 if (idx >= SSL_PKEY_NUM)
2223 return 0;
2224
2225 cl = ssl_cert_lookup_by_idx(idx, ctx);
2226 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2227 return 1;
2228 return 0;
2229 }
2230
2231 /*
2232 * Default list of TLSv1.2 (and earlier) ciphers
2233 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2234 * Update both macro and function simultaneously
2235 */
OSSL_default_cipher_list(void)2236 const char *OSSL_default_cipher_list(void)
2237 {
2238 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2239 }
2240
2241 /*
2242 * Default list of TLSv1.3 (and later) ciphers
2243 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2244 * Update both macro and function simultaneously
2245 */
OSSL_default_ciphersuites(void)2246 const char *OSSL_default_ciphersuites(void)
2247 {
2248 return "TLS_AES_256_GCM_SHA384:"
2249 "TLS_CHACHA20_POLY1305_SHA256:"
2250 "TLS_AES_128_GCM_SHA256";
2251 }
2252