xref: /openssl/ssl/record/methods/ssl3_cbc.c (revision da1c088f)
1 /*
2  * Copyright 2012-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * This file has no dependencies on the rest of libssl because it is shared
12  * with the providers. It contains functions for low level MAC calculations.
13  * Responsibility for this lies with the HMAC implementation in the
14  * providers. However there are legacy code paths in libssl which also need to
15  * do this. In time those legacy code paths can be removed and this file can be
16  * moved out of libssl.
17  */
18 
19 /*
20  * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
21  * internal use.
22  */
23 #include "internal/deprecated.h"
24 
25 #include <openssl/evp.h>
26 #ifndef FIPS_MODULE
27 # include <openssl/md5.h>
28 #endif
29 #include <openssl/sha.h>
30 
31 #include "internal/ssl3_cbc.h"
32 #include "internal/constant_time.h"
33 #include "internal/cryptlib.h"
34 
35 /*
36  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
37  * length field. (SHA-384/512 have 128-bit length.)
38  */
39 #define MAX_HASH_BIT_COUNT_BYTES 16
40 
41 /*
42  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
43  * Currently SHA-384/512 has a 128-byte block size and that's the largest
44  * supported by TLS.)
45  */
46 #define MAX_HASH_BLOCK_SIZE 128
47 
48 #ifndef FIPS_MODULE
49 /*
50  * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
51  * little-endian order. The value of p is advanced by four.
52  */
53 # define u32toLE(n, p) \
54          (*((p)++) = (unsigned char)(n      ), \
55           *((p)++) = (unsigned char)(n >>  8), \
56           *((p)++) = (unsigned char)(n >> 16), \
57           *((p)++) = (unsigned char)(n >> 24))
58 
59 /*
60  * These functions serialize the state of a hash and thus perform the
61  * standard "final" operation without adding the padding and length that such
62  * a function typically does.
63  */
tls1_md5_final_raw(void * ctx,unsigned char * md_out)64 static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
65 {
66     MD5_CTX *md5 = ctx;
67 
68     u32toLE(md5->A, md_out);
69     u32toLE(md5->B, md_out);
70     u32toLE(md5->C, md_out);
71     u32toLE(md5->D, md_out);
72 }
73 #endif /* FIPS_MODULE */
74 
tls1_sha1_final_raw(void * ctx,unsigned char * md_out)75 static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
76 {
77     SHA_CTX *sha1 = ctx;
78 
79     l2n(sha1->h0, md_out);
80     l2n(sha1->h1, md_out);
81     l2n(sha1->h2, md_out);
82     l2n(sha1->h3, md_out);
83     l2n(sha1->h4, md_out);
84 }
85 
tls1_sha256_final_raw(void * ctx,unsigned char * md_out)86 static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
87 {
88     SHA256_CTX *sha256 = ctx;
89     unsigned i;
90 
91     for (i = 0; i < 8; i++)
92         l2n(sha256->h[i], md_out);
93 }
94 
tls1_sha512_final_raw(void * ctx,unsigned char * md_out)95 static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
96 {
97     SHA512_CTX *sha512 = ctx;
98     unsigned i;
99 
100     for (i = 0; i < 8; i++)
101         l2n8(sha512->h[i], md_out);
102 }
103 
104 #undef  LARGEST_DIGEST_CTX
105 #define LARGEST_DIGEST_CTX SHA512_CTX
106 
107 /*-
108  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
109  * record.
110  *
111  *   ctx: the EVP_MD_CTX from which we take the hash function.
112  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
113  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
114  *   md_out_size: if non-NULL, the number of output bytes is written here.
115  *   header: the 13-byte, TLS record header.
116  *   data: the record data itself, less any preceding explicit IV.
117  *   data_size: the secret, reported length of the data once the MAC and padding
118  *              has been removed.
119  *   data_plus_mac_plus_padding_size: the public length of the whole
120  *     record, including MAC and padding.
121  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
122  *
123  * On entry: we know that data is data_plus_mac_plus_padding_size in length
124  * Returns 1 on success or 0 on error
125  */
ssl3_cbc_digest_record(const EVP_MD * md,unsigned char * md_out,size_t * md_out_size,const unsigned char * header,const unsigned char * data,size_t data_size,size_t data_plus_mac_plus_padding_size,const unsigned char * mac_secret,size_t mac_secret_length,char is_sslv3)126 int ssl3_cbc_digest_record(const EVP_MD *md,
127                            unsigned char *md_out,
128                            size_t *md_out_size,
129                            const unsigned char *header,
130                            const unsigned char *data,
131                            size_t data_size,
132                            size_t data_plus_mac_plus_padding_size,
133                            const unsigned char *mac_secret,
134                            size_t mac_secret_length, char is_sslv3)
135 {
136     union {
137         OSSL_UNION_ALIGN;
138         unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
139     } md_state;
140     void (*md_final_raw) (void *ctx, unsigned char *md_out);
141     void (*md_transform) (void *ctx, const unsigned char *block);
142     size_t md_size, md_block_size = 64;
143     size_t sslv3_pad_length = 40, header_length, variance_blocks,
144         len, max_mac_bytes, num_blocks,
145         num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
146     size_t bits;          /* at most 18 bits */
147     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
148     /* hmac_pad is the masked HMAC key. */
149     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
150     unsigned char first_block[MAX_HASH_BLOCK_SIZE];
151     unsigned char mac_out[EVP_MAX_MD_SIZE];
152     size_t i, j;
153     unsigned md_out_size_u;
154     EVP_MD_CTX *md_ctx = NULL;
155     /*
156      * mdLengthSize is the number of bytes in the length field that
157      * terminates * the hash.
158      */
159     size_t md_length_size = 8;
160     char length_is_big_endian = 1;
161     int ret = 0;
162 
163     /*
164      * This is a, hopefully redundant, check that allows us to forget about
165      * many possible overflows later in this function.
166      */
167     if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
168         return 0;
169 
170     if (EVP_MD_is_a(md, "MD5")) {
171 #ifdef FIPS_MODULE
172         return 0;
173 #else
174         if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
175             return 0;
176         md_final_raw = tls1_md5_final_raw;
177         md_transform =
178             (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
179         md_size = 16;
180         sslv3_pad_length = 48;
181         length_is_big_endian = 0;
182 #endif
183     } else if (EVP_MD_is_a(md, "SHA1")) {
184         if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
185             return 0;
186         md_final_raw = tls1_sha1_final_raw;
187         md_transform =
188             (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
189         md_size = 20;
190     } else if (EVP_MD_is_a(md, "SHA2-224")) {
191         if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
192             return 0;
193         md_final_raw = tls1_sha256_final_raw;
194         md_transform =
195             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
196         md_size = 224 / 8;
197     } else if (EVP_MD_is_a(md, "SHA2-256")) {
198         if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
199             return 0;
200         md_final_raw = tls1_sha256_final_raw;
201         md_transform =
202             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
203         md_size = 32;
204     } else if (EVP_MD_is_a(md, "SHA2-384")) {
205         if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
206             return 0;
207         md_final_raw = tls1_sha512_final_raw;
208         md_transform =
209             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
210         md_size = 384 / 8;
211         md_block_size = 128;
212         md_length_size = 16;
213     } else if (EVP_MD_is_a(md, "SHA2-512")) {
214         if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
215             return 0;
216         md_final_raw = tls1_sha512_final_raw;
217         md_transform =
218             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
219         md_size = 64;
220         md_block_size = 128;
221         md_length_size = 16;
222     } else {
223         /*
224          * ssl3_cbc_record_digest_supported should have been called first to
225          * check that the hash function is supported.
226          */
227         if (md_out_size != NULL)
228             *md_out_size = 0;
229         return ossl_assert(0);
230     }
231 
232     if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
233             || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
234             || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
235         return 0;
236 
237     header_length = 13;
238     if (is_sslv3) {
239         header_length = mac_secret_length
240                         + sslv3_pad_length
241                         + 8  /* sequence number */
242                         + 1  /* record type */
243                         + 2; /* record length */
244     }
245 
246     /*
247      * variance_blocks is the number of blocks of the hash that we have to
248      * calculate in constant time because they could be altered by the
249      * padding value. In SSLv3, the padding must be minimal so the end of
250      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
251      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
252      * of hash termination (0x80 + 64-bit length) don't fit in the final
253      * block, we say that the final two blocks can vary based on the padding.
254      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
255      * required to be minimal. Therefore we say that the final |variance_blocks|
256      * blocks can
257      * vary based on the padding. Later in the function, if the message is
258      * short and there obviously cannot be this many blocks then
259      * variance_blocks can be reduced.
260      */
261     variance_blocks = is_sslv3 ? 2
262                                : (((255 + 1 + md_size + md_block_size - 1)
263                                    / md_block_size) + 1);
264     /*
265      * From now on we're dealing with the MAC, which conceptually has 13
266      * bytes of `header' before the start of the data (TLS) or 71/75 bytes
267      * (SSLv3)
268      */
269     len = data_plus_mac_plus_padding_size + header_length;
270     /*
271      * max_mac_bytes contains the maximum bytes of bytes in the MAC,
272      * including * |header|, assuming that there's no padding.
273      */
274     max_mac_bytes = len - md_size - 1;
275     /* num_blocks is the maximum number of hash blocks. */
276     num_blocks =
277         (max_mac_bytes + 1 + md_length_size + md_block_size -
278          1) / md_block_size;
279     /*
280      * In order to calculate the MAC in constant time we have to handle the
281      * final blocks specially because the padding value could cause the end
282      * to appear somewhere in the final |variance_blocks| blocks and we can't
283      * leak where. However, |num_starting_blocks| worth of data can be hashed
284      * right away because no padding value can affect whether they are
285      * plaintext.
286      */
287     num_starting_blocks = 0;
288     /*
289      * k is the starting byte offset into the conceptual header||data where
290      * we start processing.
291      */
292     k = 0;
293     /*
294      * mac_end_offset is the index just past the end of the data to be MACed.
295      */
296     mac_end_offset = data_size + header_length;
297     /*
298      * c is the index of the 0x80 byte in the final hash block that contains
299      * application data.
300      */
301     c = mac_end_offset % md_block_size;
302     /*
303      * index_a is the hash block number that contains the 0x80 terminating
304      * value.
305      */
306     index_a = mac_end_offset / md_block_size;
307     /*
308      * index_b is the hash block number that contains the 64-bit hash length,
309      * in bits.
310      */
311     index_b = (mac_end_offset + md_length_size) / md_block_size;
312     /*
313      * bits is the hash-length in bits. It includes the additional hash block
314      * for the masked HMAC key, or whole of |header| in the case of SSLv3.
315      */
316 
317     /*
318      * For SSLv3, if we're going to have any starting blocks then we need at
319      * least two because the header is larger than a single block.
320      */
321     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
322         num_starting_blocks = num_blocks - variance_blocks;
323         k = md_block_size * num_starting_blocks;
324     }
325 
326     bits = 8 * mac_end_offset;
327     if (!is_sslv3) {
328         /*
329          * Compute the initial HMAC block. For SSLv3, the padding and secret
330          * bytes are included in |header| because they take more than a
331          * single block.
332          */
333         bits += 8 * md_block_size;
334         memset(hmac_pad, 0, md_block_size);
335         if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
336             return 0;
337         memcpy(hmac_pad, mac_secret, mac_secret_length);
338         for (i = 0; i < md_block_size; i++)
339             hmac_pad[i] ^= 0x36;
340 
341         md_transform(md_state.c, hmac_pad);
342     }
343 
344     if (length_is_big_endian) {
345         memset(length_bytes, 0, md_length_size - 4);
346         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
347         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
348         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
349         length_bytes[md_length_size - 1] = (unsigned char)bits;
350     } else {
351         memset(length_bytes, 0, md_length_size);
352         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
353         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
354         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
355         length_bytes[md_length_size - 8] = (unsigned char)bits;
356     }
357 
358     if (k > 0) {
359         if (is_sslv3) {
360             size_t overhang;
361 
362             /*
363              * The SSLv3 header is larger than a single block. overhang is
364              * the number of bytes beyond a single block that the header
365              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
366              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
367              * therefore we can be confident that the header_length will be
368              * greater than |md_block_size|. However we add a sanity check just
369              * in case
370              */
371             if (header_length <= md_block_size) {
372                 /* Should never happen */
373                 return 0;
374             }
375             overhang = header_length - md_block_size;
376             md_transform(md_state.c, header);
377             memcpy(first_block, header + md_block_size, overhang);
378             memcpy(first_block + overhang, data, md_block_size - overhang);
379             md_transform(md_state.c, first_block);
380             for (i = 1; i < k / md_block_size - 1; i++)
381                 md_transform(md_state.c, data + md_block_size * i - overhang);
382         } else {
383             /* k is a multiple of md_block_size. */
384             memcpy(first_block, header, 13);
385             memcpy(first_block + 13, data, md_block_size - 13);
386             md_transform(md_state.c, first_block);
387             for (i = 1; i < k / md_block_size; i++)
388                 md_transform(md_state.c, data + md_block_size * i - 13);
389         }
390     }
391 
392     memset(mac_out, 0, sizeof(mac_out));
393 
394     /*
395      * We now process the final hash blocks. For each block, we construct it
396      * in constant time. If the |i==index_a| then we'll include the 0x80
397      * bytes and zero pad etc. For each block we selectively copy it, in
398      * constant time, to |mac_out|.
399      */
400     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
401          i++) {
402         unsigned char block[MAX_HASH_BLOCK_SIZE];
403         unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
404         unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
405 
406         for (j = 0; j < md_block_size; j++) {
407             unsigned char b = 0, is_past_c, is_past_cp1;
408 
409             if (k < header_length)
410                 b = header[k];
411             else if (k < data_plus_mac_plus_padding_size + header_length)
412                 b = data[k - header_length];
413             k++;
414 
415             is_past_c = is_block_a & constant_time_ge_8_s(j, c);
416             is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
417             /*
418              * If this is the block containing the end of the application
419              * data, and we are at the offset for the 0x80 value, then
420              * overwrite b with 0x80.
421              */
422             b = constant_time_select_8(is_past_c, 0x80, b);
423             /*
424              * If this block contains the end of the application data
425              * and we're past the 0x80 value then just write zero.
426              */
427             b = b & ~is_past_cp1;
428             /*
429              * If this is index_b (the final block), but not index_a (the end
430              * of the data), then the 64-bit length didn't fit into index_a
431              * and we're having to add an extra block of zeros.
432              */
433             b &= ~is_block_b | is_block_a;
434 
435             /*
436              * The final bytes of one of the blocks contains the length.
437              */
438             if (j >= md_block_size - md_length_size) {
439                 /* If this is index_b, write a length byte. */
440                 b = constant_time_select_8(is_block_b,
441                                            length_bytes[j -
442                                                         (md_block_size -
443                                                          md_length_size)], b);
444             }
445             block[j] = b;
446         }
447 
448         md_transform(md_state.c, block);
449         md_final_raw(md_state.c, block);
450         /* If this is index_b, copy the hash value to |mac_out|. */
451         for (j = 0; j < md_size; j++)
452             mac_out[j] |= block[j] & is_block_b;
453     }
454 
455     md_ctx = EVP_MD_CTX_new();
456     if (md_ctx == NULL)
457         goto err;
458 
459     if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */) <= 0)
460         goto err;
461     if (is_sslv3) {
462         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
463         memset(hmac_pad, 0x5c, sslv3_pad_length);
464 
465         if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
466             || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
467             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
468             goto err;
469     } else {
470         /* Complete the HMAC in the standard manner. */
471         for (i = 0; i < md_block_size; i++)
472             hmac_pad[i] ^= 0x6a;
473 
474         if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
475             || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
476             goto err;
477     }
478     ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
479     if (ret && md_out_size)
480         *md_out_size = md_out_size_u;
481 
482     ret = 1;
483  err:
484     EVP_MD_CTX_free(md_ctx);
485     return ret;
486 }
487