1 /*
2 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /*
11 * All low level APIs are deprecated for public use, but still ok for internal
12 * use where we're using them to implement the higher level EVP interface, as is
13 * the case here.
14 */
15 #include "internal/deprecated.h"
16
17 #include "cipher_aes_cbc_hmac_sha.h"
18
19 #if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE)
ossl_cipher_capable_aes_cbc_hmac_sha1(void)20 int ossl_cipher_capable_aes_cbc_hmac_sha1(void)
21 {
22 return 0;
23 }
24
ossl_prov_cipher_hw_aes_cbc_hmac_sha1(void)25 const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha1(void)
26 {
27 return NULL;
28 }
29 #else
30
31 # include <openssl/rand.h>
32 # include "crypto/evp.h"
33 # include "internal/constant_time.h"
34
35 void sha1_block_data_order(void *c, const void *p, size_t len);
36 void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
37 const AES_KEY *key, unsigned char iv[16],
38 SHA_CTX *ctx, const void *in0);
39
ossl_cipher_capable_aes_cbc_hmac_sha1(void)40 int ossl_cipher_capable_aes_cbc_hmac_sha1(void)
41 {
42 return AESNI_CBC_HMAC_SHA_CAPABLE;
43 }
44
aesni_cbc_hmac_sha1_init_key(PROV_CIPHER_CTX * vctx,const unsigned char * key,size_t keylen)45 static int aesni_cbc_hmac_sha1_init_key(PROV_CIPHER_CTX *vctx,
46 const unsigned char *key, size_t keylen)
47 {
48 int ret;
49 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
50 PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
51
52 if (ctx->base.enc)
53 ret = aesni_set_encrypt_key(key, keylen * 8, &ctx->ks);
54 else
55 ret = aesni_set_decrypt_key(key, keylen * 8, &ctx->ks);
56
57 SHA1_Init(&sctx->head); /* handy when benchmarking */
58 sctx->tail = sctx->head;
59 sctx->md = sctx->head;
60
61 ctx->payload_length = NO_PAYLOAD_LENGTH;
62
63 vctx->removetlspad = 1;
64 vctx->removetlsfixed = SHA_DIGEST_LENGTH + AES_BLOCK_SIZE;
65
66 return ret < 0 ? 0 : 1;
67 }
68
sha1_update(SHA_CTX * c,const void * data,size_t len)69 static void sha1_update(SHA_CTX *c, const void *data, size_t len)
70 {
71 const unsigned char *ptr = data;
72 size_t res;
73
74 if ((res = c->num)) {
75 res = SHA_CBLOCK - res;
76 if (len < res)
77 res = len;
78 SHA1_Update(c, ptr, res);
79 ptr += res;
80 len -= res;
81 }
82
83 res = len % SHA_CBLOCK;
84 len -= res;
85
86 if (len) {
87 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
88
89 ptr += len;
90 c->Nh += len >> 29;
91 c->Nl += len <<= 3;
92 if (c->Nl < (unsigned int)len)
93 c->Nh++;
94 }
95
96 if (res)
97 SHA1_Update(c, ptr, res);
98 }
99
100 # if !defined(OPENSSL_NO_MULTIBLOCK)
101
102 typedef struct {
103 unsigned int A[8], B[8], C[8], D[8], E[8];
104 } SHA1_MB_CTX;
105
106 typedef struct {
107 const unsigned char *ptr;
108 int blocks;
109 } HASH_DESC;
110
111 typedef struct {
112 const unsigned char *inp;
113 unsigned char *out;
114 int blocks;
115 u64 iv[2];
116 } CIPH_DESC;
117
118 void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
119 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
120
tls1_multi_block_encrypt(void * vctx,unsigned char * out,const unsigned char * inp,size_t inp_len,int n4x)121 static size_t tls1_multi_block_encrypt(void *vctx,
122 unsigned char *out,
123 const unsigned char *inp,
124 size_t inp_len, int n4x)
125 { /* n4x is 1 or 2 */
126 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
127 PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
128 HASH_DESC hash_d[8], edges[8];
129 CIPH_DESC ciph_d[8];
130 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
131 union {
132 u64 q[16];
133 u32 d[32];
134 u8 c[128];
135 } blocks[8];
136 SHA1_MB_CTX *mctx;
137 unsigned int frag, last, packlen, i;
138 unsigned int x4 = 4 * n4x, minblocks, processed = 0;
139 size_t ret = 0;
140 u8 *IVs;
141 # if defined(BSWAP8)
142 u64 seqnum;
143 # endif
144
145 /* ask for IVs in bulk */
146 if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4, 0) <= 0)
147 return 0;
148
149 mctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
150
151 frag = (unsigned int)inp_len >> (1 + n4x);
152 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
153 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
154 frag++;
155 last -= x4 - 1;
156 }
157
158 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
159
160 /* populate descriptors with pointers and IVs */
161 hash_d[0].ptr = inp;
162 ciph_d[0].inp = inp;
163 /* 5+16 is place for header and explicit IV */
164 ciph_d[0].out = out + 5 + 16;
165 memcpy(ciph_d[0].out - 16, IVs, 16);
166 memcpy(ciph_d[0].iv, IVs, 16);
167 IVs += 16;
168
169 for (i = 1; i < x4; i++) {
170 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
171 ciph_d[i].out = ciph_d[i - 1].out + packlen;
172 memcpy(ciph_d[i].out - 16, IVs, 16);
173 memcpy(ciph_d[i].iv, IVs, 16);
174 IVs += 16;
175 }
176
177 # if defined(BSWAP8)
178 memcpy(blocks[0].c, sctx->md.data, 8);
179 seqnum = BSWAP8(blocks[0].q[0]);
180 # endif
181 for (i = 0; i < x4; i++) {
182 unsigned int len = (i == (x4 - 1) ? last : frag);
183 # if !defined(BSWAP8)
184 unsigned int carry, j;
185 # endif
186
187 mctx->A[i] = sctx->md.h0;
188 mctx->B[i] = sctx->md.h1;
189 mctx->C[i] = sctx->md.h2;
190 mctx->D[i] = sctx->md.h3;
191 mctx->E[i] = sctx->md.h4;
192
193 /* fix seqnum */
194 # if defined(BSWAP8)
195 blocks[i].q[0] = BSWAP8(seqnum + i);
196 # else
197 for (carry = i, j = 8; j--;) {
198 blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
199 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
200 }
201 # endif
202 blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
203 blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
204 blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
205 /* fix length */
206 blocks[i].c[11] = (u8)(len >> 8);
207 blocks[i].c[12] = (u8)(len);
208
209 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
210 hash_d[i].ptr += 64 - 13;
211 hash_d[i].blocks = (len - (64 - 13)) / 64;
212
213 edges[i].ptr = blocks[i].c;
214 edges[i].blocks = 1;
215 }
216
217 /* hash 13-byte headers and first 64-13 bytes of inputs */
218 sha1_multi_block(mctx, edges, n4x);
219 /* hash bulk inputs */
220 # define MAXCHUNKSIZE 2048
221 # if MAXCHUNKSIZE%64
222 # error "MAXCHUNKSIZE is not divisible by 64"
223 # elif MAXCHUNKSIZE
224 /*
225 * goal is to minimize pressure on L1 cache by moving in shorter steps,
226 * so that hashed data is still in the cache by the time we encrypt it
227 */
228 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
229 if (minblocks > MAXCHUNKSIZE / 64) {
230 for (i = 0; i < x4; i++) {
231 edges[i].ptr = hash_d[i].ptr;
232 edges[i].blocks = MAXCHUNKSIZE / 64;
233 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
234 }
235 do {
236 sha1_multi_block(mctx, edges, n4x);
237 aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
238
239 for (i = 0; i < x4; i++) {
240 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
241 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
242 edges[i].blocks = MAXCHUNKSIZE / 64;
243 ciph_d[i].inp += MAXCHUNKSIZE;
244 ciph_d[i].out += MAXCHUNKSIZE;
245 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
246 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
247 }
248 processed += MAXCHUNKSIZE;
249 minblocks -= MAXCHUNKSIZE / 64;
250 } while (minblocks > MAXCHUNKSIZE / 64);
251 }
252 # endif
253 # undef MAXCHUNKSIZE
254 sha1_multi_block(mctx, hash_d, n4x);
255
256 memset(blocks, 0, sizeof(blocks));
257 for (i = 0; i < x4; i++) {
258 unsigned int len = (i == (x4 - 1) ? last : frag),
259 off = hash_d[i].blocks * 64;
260 const unsigned char *ptr = hash_d[i].ptr + off;
261
262 off = (len - processed) - (64 - 13) - off; /* remainder actually */
263 memcpy(blocks[i].c, ptr, off);
264 blocks[i].c[off] = 0x80;
265 len += 64 + 13; /* 64 is HMAC header */
266 len *= 8; /* convert to bits */
267 if (off < (64 - 8)) {
268 # ifdef BSWAP4
269 blocks[i].d[15] = BSWAP4(len);
270 # else
271 PUTU32(blocks[i].c + 60, len);
272 # endif
273 edges[i].blocks = 1;
274 } else {
275 # ifdef BSWAP4
276 blocks[i].d[31] = BSWAP4(len);
277 # else
278 PUTU32(blocks[i].c + 124, len);
279 # endif
280 edges[i].blocks = 2;
281 }
282 edges[i].ptr = blocks[i].c;
283 }
284
285 /* hash input tails and finalize */
286 sha1_multi_block(mctx, edges, n4x);
287
288 memset(blocks, 0, sizeof(blocks));
289 for (i = 0; i < x4; i++) {
290 # ifdef BSWAP4
291 blocks[i].d[0] = BSWAP4(mctx->A[i]);
292 mctx->A[i] = sctx->tail.h0;
293 blocks[i].d[1] = BSWAP4(mctx->B[i]);
294 mctx->B[i] = sctx->tail.h1;
295 blocks[i].d[2] = BSWAP4(mctx->C[i]);
296 mctx->C[i] = sctx->tail.h2;
297 blocks[i].d[3] = BSWAP4(mctx->D[i]);
298 mctx->D[i] = sctx->tail.h3;
299 blocks[i].d[4] = BSWAP4(mctx->E[i]);
300 mctx->E[i] = sctx->tail.h4;
301 blocks[i].c[20] = 0x80;
302 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
303 # else
304 PUTU32(blocks[i].c + 0, mctx->A[i]);
305 mctx->A[i] = sctx->tail.h0;
306 PUTU32(blocks[i].c + 4, mctx->B[i]);
307 mctx->B[i] = sctx->tail.h1;
308 PUTU32(blocks[i].c + 8, mctx->C[i]);
309 mctx->C[i] = sctx->tail.h2;
310 PUTU32(blocks[i].c + 12, mctx->D[i]);
311 mctx->D[i] = sctx->tail.h3;
312 PUTU32(blocks[i].c + 16, mctx->E[i]);
313 mctx->E[i] = sctx->tail.h4;
314 blocks[i].c[20] = 0x80;
315 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
316 # endif /* BSWAP */
317 edges[i].ptr = blocks[i].c;
318 edges[i].blocks = 1;
319 }
320
321 /* finalize MACs */
322 sha1_multi_block(mctx, edges, n4x);
323
324 for (i = 0; i < x4; i++) {
325 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
326 unsigned char *out0 = out;
327
328 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
329 ciph_d[i].inp = ciph_d[i].out;
330
331 out += 5 + 16 + len;
332
333 /* write MAC */
334 PUTU32(out + 0, mctx->A[i]);
335 PUTU32(out + 4, mctx->B[i]);
336 PUTU32(out + 8, mctx->C[i]);
337 PUTU32(out + 12, mctx->D[i]);
338 PUTU32(out + 16, mctx->E[i]);
339 out += 20;
340 len += 20;
341
342 /* pad */
343 pad = 15 - len % 16;
344 for (j = 0; j <= pad; j++)
345 *(out++) = pad;
346 len += pad + 1;
347
348 ciph_d[i].blocks = (len - processed) / 16;
349 len += 16; /* account for explicit iv */
350
351 /* arrange header */
352 out0[0] = ((u8 *)sctx->md.data)[8];
353 out0[1] = ((u8 *)sctx->md.data)[9];
354 out0[2] = ((u8 *)sctx->md.data)[10];
355 out0[3] = (u8)(len >> 8);
356 out0[4] = (u8)(len);
357
358 ret += len + 5;
359 inp += frag;
360 }
361
362 aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);
363
364 OPENSSL_cleanse(blocks, sizeof(blocks));
365 OPENSSL_cleanse(mctx, sizeof(*mctx));
366
367 ctx->multiblock_encrypt_len = ret;
368 return ret;
369 }
370 # endif /* OPENSSL_NO_MULTIBLOCK */
371
aesni_cbc_hmac_sha1_cipher(PROV_CIPHER_CTX * vctx,unsigned char * out,const unsigned char * in,size_t len)372 static int aesni_cbc_hmac_sha1_cipher(PROV_CIPHER_CTX *vctx,
373 unsigned char *out,
374 const unsigned char *in, size_t len)
375 {
376 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
377 PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
378 unsigned int l;
379 size_t plen = ctx->payload_length;
380 size_t iv = 0; /* explicit IV in TLS 1.1 and later */
381 size_t aes_off = 0, blocks;
382 size_t sha_off = SHA_CBLOCK - sctx->md.num;
383
384 ctx->payload_length = NO_PAYLOAD_LENGTH;
385
386 if (len % AES_BLOCK_SIZE)
387 return 0;
388
389 if (ctx->base.enc) {
390 if (plen == NO_PAYLOAD_LENGTH)
391 plen = len;
392 else if (len !=
393 ((plen + SHA_DIGEST_LENGTH +
394 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
395 return 0;
396 else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
397 iv = AES_BLOCK_SIZE;
398
399 if (plen > (sha_off + iv)
400 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
401 sha1_update(&sctx->md, in + iv, sha_off);
402
403 aesni_cbc_sha1_enc(in, out, blocks, &ctx->ks, ctx->base.iv,
404 &sctx->md, in + iv + sha_off);
405 blocks *= SHA_CBLOCK;
406 aes_off += blocks;
407 sha_off += blocks;
408 sctx->md.Nh += blocks >> 29;
409 sctx->md.Nl += blocks <<= 3;
410 if (sctx->md.Nl < (unsigned int)blocks)
411 sctx->md.Nh++;
412 } else {
413 sha_off = 0;
414 }
415 sha_off += iv;
416 sha1_update(&sctx->md, in + sha_off, plen - sha_off);
417
418 if (plen != len) { /* "TLS" mode of operation */
419 if (in != out)
420 memcpy(out + aes_off, in + aes_off, plen - aes_off);
421
422 /* calculate HMAC and append it to payload */
423 SHA1_Final(out + plen, &sctx->md);
424 sctx->md = sctx->tail;
425 sha1_update(&sctx->md, out + plen, SHA_DIGEST_LENGTH);
426 SHA1_Final(out + plen, &sctx->md);
427
428 /* pad the payload|hmac */
429 plen += SHA_DIGEST_LENGTH;
430 for (l = len - plen - 1; plen < len; plen++)
431 out[plen] = l;
432 /* encrypt HMAC|padding at once */
433 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
434 &ctx->ks, ctx->base.iv, 1);
435 } else {
436 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
437 &ctx->ks, ctx->base.iv, 1);
438 }
439 } else {
440 union {
441 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
442 unsigned char c[32 + SHA_DIGEST_LENGTH];
443 } mac, *pmac;
444
445 /* arrange cache line alignment */
446 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
447
448 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
449 size_t inp_len, mask, j, i;
450 unsigned int res, maxpad, pad, bitlen;
451 int ret = 1;
452 union {
453 unsigned int u[SHA_LBLOCK];
454 unsigned char c[SHA_CBLOCK];
455 } *data = (void *)sctx->md.data;
456
457 if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
458 >= TLS1_1_VERSION) {
459 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
460 return 0;
461
462 /* omit explicit iv */
463 memcpy(ctx->base.iv, in, AES_BLOCK_SIZE);
464
465 in += AES_BLOCK_SIZE;
466 out += AES_BLOCK_SIZE;
467 len -= AES_BLOCK_SIZE;
468 } else if (len < (SHA_DIGEST_LENGTH + 1))
469 return 0;
470
471 /* decrypt HMAC|padding at once */
472 aesni_cbc_encrypt(in, out, len, &ctx->ks, ctx->base.iv, 0);
473
474 /* figure out payload length */
475 pad = out[len - 1];
476 maxpad = len - (SHA_DIGEST_LENGTH + 1);
477 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
478 maxpad &= 255;
479
480 mask = constant_time_ge(maxpad, pad);
481 ret &= mask;
482 /*
483 * If pad is invalid then we will fail the above test but we must
484 * continue anyway because we are in constant time code. However,
485 * we'll use the maxpad value instead of the supplied pad to make
486 * sure we perform well defined pointer arithmetic.
487 */
488 pad = constant_time_select(mask, pad, maxpad);
489
490 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
491
492 ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
493 ctx->aux.tls_aad[plen - 1] = inp_len;
494
495 /* calculate HMAC */
496 sctx->md = sctx->head;
497 sha1_update(&sctx->md, ctx->aux.tls_aad, plen);
498
499 /* code containing lucky-13 fix */
500 len -= SHA_DIGEST_LENGTH; /* amend mac */
501 if (len >= (256 + SHA_CBLOCK)) {
502 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
503 j += SHA_CBLOCK - sctx->md.num;
504 sha1_update(&sctx->md, out, j);
505 out += j;
506 len -= j;
507 inp_len -= j;
508 }
509
510 /* but pretend as if we hashed padded payload */
511 bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
512 # ifdef BSWAP4
513 bitlen = BSWAP4(bitlen);
514 # else
515 mac.c[0] = 0;
516 mac.c[1] = (unsigned char)(bitlen >> 16);
517 mac.c[2] = (unsigned char)(bitlen >> 8);
518 mac.c[3] = (unsigned char)bitlen;
519 bitlen = mac.u[0];
520 # endif /* BSWAP */
521
522 pmac->u[0] = 0;
523 pmac->u[1] = 0;
524 pmac->u[2] = 0;
525 pmac->u[3] = 0;
526 pmac->u[4] = 0;
527
528 for (res = sctx->md.num, j = 0; j < len; j++) {
529 size_t c = out[j];
530 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
531 c &= mask;
532 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
533 data->c[res++] = (unsigned char)c;
534
535 if (res != SHA_CBLOCK)
536 continue;
537
538 /* j is not incremented yet */
539 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
540 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
541 sha1_block_data_order(&sctx->md, data, 1);
542 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
543 pmac->u[0] |= sctx->md.h0 & mask;
544 pmac->u[1] |= sctx->md.h1 & mask;
545 pmac->u[2] |= sctx->md.h2 & mask;
546 pmac->u[3] |= sctx->md.h3 & mask;
547 pmac->u[4] |= sctx->md.h4 & mask;
548 res = 0;
549 }
550
551 for (i = res; i < SHA_CBLOCK; i++, j++)
552 data->c[i] = 0;
553
554 if (res > SHA_CBLOCK - 8) {
555 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
556 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
557 sha1_block_data_order(&sctx->md, data, 1);
558 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
559 pmac->u[0] |= sctx->md.h0 & mask;
560 pmac->u[1] |= sctx->md.h1 & mask;
561 pmac->u[2] |= sctx->md.h2 & mask;
562 pmac->u[3] |= sctx->md.h3 & mask;
563 pmac->u[4] |= sctx->md.h4 & mask;
564
565 memset(data, 0, SHA_CBLOCK);
566 j += 64;
567 }
568 data->u[SHA_LBLOCK - 1] = bitlen;
569 sha1_block_data_order(&sctx->md, data, 1);
570 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
571 pmac->u[0] |= sctx->md.h0 & mask;
572 pmac->u[1] |= sctx->md.h1 & mask;
573 pmac->u[2] |= sctx->md.h2 & mask;
574 pmac->u[3] |= sctx->md.h3 & mask;
575 pmac->u[4] |= sctx->md.h4 & mask;
576
577 # ifdef BSWAP4
578 pmac->u[0] = BSWAP4(pmac->u[0]);
579 pmac->u[1] = BSWAP4(pmac->u[1]);
580 pmac->u[2] = BSWAP4(pmac->u[2]);
581 pmac->u[3] = BSWAP4(pmac->u[3]);
582 pmac->u[4] = BSWAP4(pmac->u[4]);
583 # else
584 for (i = 0; i < 5; i++) {
585 res = pmac->u[i];
586 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
587 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
588 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
589 pmac->c[4 * i + 3] = (unsigned char)res;
590 }
591 # endif /* BSWAP4 */
592 len += SHA_DIGEST_LENGTH;
593 sctx->md = sctx->tail;
594 sha1_update(&sctx->md, pmac->c, SHA_DIGEST_LENGTH);
595 SHA1_Final(pmac->c, &sctx->md);
596
597 /* verify HMAC */
598 out += inp_len;
599 len -= inp_len;
600 /* version of code with lucky-13 fix */
601 {
602 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
603 size_t off = out - p;
604 unsigned int c, cmask;
605
606 for (res = 0, i = 0, j = 0; j < maxpad + SHA_DIGEST_LENGTH; j++) {
607 c = p[j];
608 cmask =
609 ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
610 8 - 1);
611 res |= (c ^ pad) & ~cmask; /* ... and padding */
612 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
613 res |= (c ^ pmac->c[i]) & cmask;
614 i += 1 & cmask;
615 }
616
617 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
618 ret &= (int)~res;
619 }
620 return ret;
621 } else {
622 /* decrypt HMAC|padding at once */
623 aesni_cbc_encrypt(in, out, len, &ctx->ks, ctx->base.iv, 0);
624 sha1_update(&sctx->md, out, len);
625 }
626 }
627
628 return 1;
629 }
630
631 /* EVP_CTRL_AEAD_SET_MAC_KEY */
aesni_cbc_hmac_sha1_set_mac_key(void * vctx,const unsigned char * mac,size_t len)632 static void aesni_cbc_hmac_sha1_set_mac_key(void *vctx,
633 const unsigned char *mac, size_t len)
634 {
635 PROV_AES_HMAC_SHA1_CTX *ctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
636 unsigned int i;
637 unsigned char hmac_key[64];
638
639 memset(hmac_key, 0, sizeof(hmac_key));
640
641 if (len > (int)sizeof(hmac_key)) {
642 SHA1_Init(&ctx->head);
643 sha1_update(&ctx->head, mac, len);
644 SHA1_Final(hmac_key, &ctx->head);
645 } else {
646 memcpy(hmac_key, mac, len);
647 }
648
649 for (i = 0; i < sizeof(hmac_key); i++)
650 hmac_key[i] ^= 0x36; /* ipad */
651 SHA1_Init(&ctx->head);
652 sha1_update(&ctx->head, hmac_key, sizeof(hmac_key));
653
654 for (i = 0; i < sizeof(hmac_key); i++)
655 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
656 SHA1_Init(&ctx->tail);
657 sha1_update(&ctx->tail, hmac_key, sizeof(hmac_key));
658
659 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
660 }
661
662 /* EVP_CTRL_AEAD_TLS1_AAD */
aesni_cbc_hmac_sha1_set_tls1_aad(void * vctx,unsigned char * aad_rec,int aad_len)663 static int aesni_cbc_hmac_sha1_set_tls1_aad(void *vctx,
664 unsigned char *aad_rec, int aad_len)
665 {
666 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
667 PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
668 unsigned char *p = aad_rec;
669 unsigned int len;
670
671 if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
672 return -1;
673
674 len = p[aad_len - 2] << 8 | p[aad_len - 1];
675
676 if (ctx->base.enc) {
677 ctx->payload_length = len;
678 if ((ctx->aux.tls_ver =
679 p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
680 if (len < AES_BLOCK_SIZE)
681 return 0;
682 len -= AES_BLOCK_SIZE;
683 p[aad_len - 2] = len >> 8;
684 p[aad_len - 1] = len;
685 }
686 sctx->md = sctx->head;
687 sha1_update(&sctx->md, p, aad_len);
688 ctx->tls_aad_pad = (int)(((len + SHA_DIGEST_LENGTH +
689 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
690 - len);
691 return 1;
692 } else {
693 memcpy(ctx->aux.tls_aad, aad_rec, aad_len);
694 ctx->payload_length = aad_len;
695 ctx->tls_aad_pad = SHA_DIGEST_LENGTH;
696 return 1;
697 }
698 }
699
700 # if !defined(OPENSSL_NO_MULTIBLOCK)
701
702 /* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
aesni_cbc_hmac_sha1_tls1_multiblock_max_bufsize(void * vctx)703 static int aesni_cbc_hmac_sha1_tls1_multiblock_max_bufsize(void *vctx)
704 {
705 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
706
707 OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
708 return (int)(5 + 16
709 + (((int)ctx->multiblock_max_send_fragment + 20 + 16) & -16));
710 }
711
712 /* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
aesni_cbc_hmac_sha1_tls1_multiblock_aad(void * vctx,EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM * param)713 static int aesni_cbc_hmac_sha1_tls1_multiblock_aad(
714 void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
715 {
716 PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
717 PROV_AES_HMAC_SHA1_CTX *sctx = (PROV_AES_HMAC_SHA1_CTX *)vctx;
718 unsigned int n4x = 1, x4;
719 unsigned int frag, last, packlen, inp_len;
720
721 inp_len = param->inp[11] << 8 | param->inp[12];
722 ctx->multiblock_interleave = param->interleave;
723
724 if (ctx->base.enc) {
725 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
726 return -1;
727
728 if (inp_len) {
729 if (inp_len < 4096)
730 return 0; /* too short */
731
732 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
733 n4x = 2; /* AVX2 */
734 } else if ((n4x = param->interleave / 4) && n4x <= 2)
735 inp_len = param->len;
736 else
737 return -1;
738
739 sctx->md = sctx->head;
740 sha1_update(&sctx->md, param->inp, 13);
741
742 x4 = 4 * n4x;
743 n4x += 1;
744
745 frag = inp_len >> n4x;
746 last = inp_len + frag - (frag << n4x);
747 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
748 frag++;
749 last -= x4 - 1;
750 }
751
752 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
753 packlen = (packlen << n4x) - packlen;
754 packlen += 5 + 16 + ((last + 20 + 16) & -16);
755
756 param->interleave = x4;
757 /* The returned values used by get need to be stored */
758 ctx->multiblock_interleave = x4;
759 ctx->multiblock_aad_packlen = packlen;
760 return 1;
761 }
762 return -1; /* not yet */
763 }
764
765 /* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
aesni_cbc_hmac_sha1_tls1_multiblock_encrypt(void * ctx,EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM * param)766 static int aesni_cbc_hmac_sha1_tls1_multiblock_encrypt(
767 void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
768 {
769 return (int)tls1_multi_block_encrypt(ctx, param->out,
770 param->inp, param->len,
771 param->interleave / 4);
772 }
773
774 # endif /* OPENSSL_NO_MULTIBLOCK */
775
776 static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha1 = {
777 {
778 aesni_cbc_hmac_sha1_init_key,
779 aesni_cbc_hmac_sha1_cipher
780 },
781 aesni_cbc_hmac_sha1_set_mac_key,
782 aesni_cbc_hmac_sha1_set_tls1_aad,
783 # if !defined(OPENSSL_NO_MULTIBLOCK)
784 aesni_cbc_hmac_sha1_tls1_multiblock_max_bufsize,
785 aesni_cbc_hmac_sha1_tls1_multiblock_aad,
786 aesni_cbc_hmac_sha1_tls1_multiblock_encrypt
787 # endif
788 };
789
ossl_prov_cipher_hw_aes_cbc_hmac_sha1(void)790 const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha1(void)
791 {
792 return &cipher_hw_aes_hmac_sha1;
793 }
794
795 #endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */
796