1=pod 2 3=head1 NAME 4 5pem_password_cb, 6PEM_read_bio_PrivateKey_ex, PEM_read_bio_PrivateKey, 7PEM_read_PrivateKey_ex, PEM_read_PrivateKey, 8PEM_write_bio_PrivateKey_ex, PEM_write_bio_PrivateKey, 9PEM_write_bio_PrivateKey_traditional, 10PEM_write_PrivateKey_ex, PEM_write_PrivateKey, 11PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, 12PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid, 13PEM_read_bio_PUBKEY_ex, PEM_read_bio_PUBKEY, 14PEM_read_PUBKEY_ex, PEM_read_PUBKEY, 15PEM_write_bio_PUBKEY_ex, PEM_write_bio_PUBKEY, 16PEM_write_PUBKEY_ex, PEM_write_PUBKEY, 17PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, 18PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey, 19PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey, 20PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, 21PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey, 22PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey, 23PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY, 24PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters_ex, PEM_read_bio_Parameters, 25PEM_write_bio_Parameters, PEM_read_bio_DSAparams, PEM_read_DSAparams, 26PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams, 27PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams, 28PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509, 29PEM_read_bio_X509_ACERT, PEM_read_X509_ACERT, 30PEM_write_bio_X509_ACERT, PEM_write_X509_ACERT, 31PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, 32PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ, 33PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, 34PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL, 35PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7, 36PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines 37 38=head1 SYNOPSIS 39 40 #include <openssl/pem.h> 41 42 typedef int pem_password_cb(char *buf, int size, int rwflag, void *u); 43 44 EVP_PKEY *PEM_read_bio_PrivateKey_ex(BIO *bp, EVP_PKEY **x, 45 pem_password_cb *cb, void *u, 46 OSSL_LIB_CTX *libctx, const char *propq); 47 EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, 48 pem_password_cb *cb, void *u); 49 EVP_PKEY *PEM_read_PrivateKey_ex(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, 50 void *u, OSSL_LIB_CTX *libctx, 51 const char *propq); 52 EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, 53 pem_password_cb *cb, void *u); 54 int PEM_write_bio_PrivateKey_ex(BIO *bp, const EVP_PKEY *x, 55 const EVP_CIPHER *enc, 56 unsigned char *kstr, int klen, 57 pem_password_cb *cb, void *u, 58 OSSL_LIB_CTX *libctx, const char *propq); 59 int PEM_write_bio_PrivateKey(BIO *bp, const EVP_PKEY *x, const EVP_CIPHER *enc, 60 unsigned char *kstr, int klen, 61 pem_password_cb *cb, void *u); 62 int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x, 63 const EVP_CIPHER *enc, 64 unsigned char *kstr, int klen, 65 pem_password_cb *cb, void *u); 66 int PEM_write_PrivateKey_ex(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, 67 unsigned char *kstr, int klen, 68 pem_password_cb *cb, void *u, 69 OSSL_LIB_CTX *libctx, const char *propq); 70 int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, 71 unsigned char *kstr, int klen, 72 pem_password_cb *cb, void *u); 73 int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, 74 char *kstr, int klen, 75 pem_password_cb *cb, void *u); 76 int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, 77 char *kstr, int klen, 78 pem_password_cb *cb, void *u); 79 int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, const EVP_PKEY *x, int nid, 80 char *kstr, int klen, 81 pem_password_cb *cb, void *u); 82 int PEM_write_PKCS8PrivateKey_nid(FILE *fp, const EVP_PKEY *x, int nid, 83 char *kstr, int klen, 84 pem_password_cb *cb, void *u); 85 86 EVP_PKEY *PEM_read_bio_PUBKEY_ex(BIO *bp, EVP_PKEY **x, 87 pem_password_cb *cb, void *u, 88 OSSL_LIB_CTX *libctx, const char *propq); 89 EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x, 90 pem_password_cb *cb, void *u); 91 EVP_PKEY *PEM_read_PUBKEY_ex(FILE *fp, EVP_PKEY **x, 92 pem_password_cb *cb, void *u, 93 OSSL_LIB_CTX *libctx, const char *propq); 94 EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x, 95 pem_password_cb *cb, void *u); 96 int PEM_write_bio_PUBKEY_ex(BIO *bp, EVP_PKEY *x, 97 OSSL_LIB_CTX *libctx, const char *propq); 98 int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); 99 int PEM_write_PUBKEY_ex(FILE *fp, EVP_PKEY *x, 100 OSSL_LIB_CTX *libctx, const char *propq); 101 int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x); 102 103 EVP_PKEY *PEM_read_bio_Parameters_ex(BIO *bp, EVP_PKEY **x, 104 OSSL_LIB_CTX *libctx, const char *propq); 105 EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x); 106 int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x); 107 108 X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u); 109 X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u); 110 int PEM_write_bio_X509(BIO *bp, X509 *x); 111 int PEM_write_X509(FILE *fp, X509 *x); 112 113 X509_ACERT *PEM_read_bio_X509_ACERT(BIO *bp, X509_ACERT **x, 114 pem_password_cb *cb, void *u); 115 X509_ACERT *PEM_read_X509_ACERT(FILE *fp, X509_ACERT **x, 116 pem_password_cb *cb, void *u); 117 int PEM_write_bio_X509_ACERT(BIO *bp, X509_ACERT *x); 118 int PEM_write_X509_ACERT(FILE *fp, X509_ACERT *x); 119 120 X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u); 121 X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u); 122 int PEM_write_bio_X509_AUX(BIO *bp, X509 *x); 123 int PEM_write_X509_AUX(FILE *fp, X509 *x); 124 125 X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, 126 pem_password_cb *cb, void *u); 127 X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, 128 pem_password_cb *cb, void *u); 129 int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x); 130 int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); 131 int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); 132 int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); 133 134 X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, 135 pem_password_cb *cb, void *u); 136 X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, 137 pem_password_cb *cb, void *u); 138 int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); 139 int PEM_write_X509_CRL(FILE *fp, X509_CRL *x); 140 141 PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u); 142 PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u); 143 int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x); 144 int PEM_write_PKCS7(FILE *fp, PKCS7 *x); 145 146The following functions have been deprecated since OpenSSL 3.0, and can be 147hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value, 148see L<openssl_user_macros(7)>: 149 150 RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x, 151 pem_password_cb *cb, void *u); 152 RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x, 153 pem_password_cb *cb, void *u); 154 int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc, 155 unsigned char *kstr, int klen, 156 pem_password_cb *cb, void *u); 157 int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc, 158 unsigned char *kstr, int klen, 159 pem_password_cb *cb, void *u); 160 161 RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x, 162 pem_password_cb *cb, void *u); 163 RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x, 164 pem_password_cb *cb, void *u); 165 int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x); 166 int PEM_write_RSAPublicKey(FILE *fp, RSA *x); 167 168 RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, 169 pem_password_cb *cb, void *u); 170 RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x, 171 pem_password_cb *cb, void *u); 172 int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x); 173 int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x); 174 175 DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, 176 pem_password_cb *cb, void *u); 177 DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x, 178 pem_password_cb *cb, void *u); 179 int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc, 180 unsigned char *kstr, int klen, 181 pem_password_cb *cb, void *u); 182 int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc, 183 unsigned char *kstr, int klen, 184 pem_password_cb *cb, void *u); 185 186 DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x, 187 pem_password_cb *cb, void *u); 188 DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x, 189 pem_password_cb *cb, void *u); 190 int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x); 191 int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); 192 DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u); 193 DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u); 194 int PEM_write_bio_DSAparams(BIO *bp, DSA *x); 195 int PEM_write_DSAparams(FILE *fp, DSA *x); 196 197 DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u); 198 DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u); 199 int PEM_write_bio_DHparams(BIO *bp, DH *x); 200 int PEM_write_DHparams(FILE *fp, DH *x); 201 202=head1 DESCRIPTION 203 204All of the functions described on this page that have a I<TYPE> of B<DH>, B<DSA> 205and B<RSA> are deprecated. Applications should use L<OSSL_ENCODER_to_bio(3)> and 206L<OSSL_DECODER_from_bio(3)> instead. 207 208The PEM functions read or write structures in PEM format. In 209this sense PEM format is simply base64 encoded data surrounded 210by header lines. 211 212For more details about the meaning of arguments see the 213B<PEM FUNCTION ARGUMENTS> section. 214 215Each operation has four functions associated with it. For 216brevity the term "B<I<TYPE>> functions" will be used below to collectively 217refer to the B<PEM_read_bio_I<TYPE>>(), B<PEM_read_I<TYPE>>(), 218B<PEM_write_bio_I<TYPE>>(), and B<PEM_write_I<TYPE>>() functions. 219 220Some operations have additional variants that take a library context I<libctx> 221and a property query string I<propq>. The B<X509>, B<X509_REQ> and B<X509_CRL> 222objects may have an associated library context or property query string but 223there are no variants of these functions that take a library context or property 224query string parameter. In this case it is possible to set the appropriate 225library context or property query string by creating an empty B<X509>, 226B<X509_REQ> or B<X509_CRL> object using L<X509_new_ex(3)>, L<X509_REQ_new_ex(3)> 227or L<X509_CRL_new_ex(3)> respectively. Then pass the empty object as a parameter 228to the relevant PEM function. See the L</EXAMPLES> section below. 229 230The B<PrivateKey> functions read or write a private key in PEM format using 231an EVP_PKEY structure. The write routines use PKCS#8 private key format and are 232equivalent to PEM_write_bio_PKCS8PrivateKey(). The read functions transparently 233handle traditional and PKCS#8 format encrypted and unencrypted keys. 234 235PEM_write_bio_PrivateKey_traditional() writes out a private key in the 236"traditional" format with a simple private key marker and should only 237be used for compatibility with legacy programs. 238 239PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private 240key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using 241PKCS#5 v2.0 password based encryption algorithms. The I<cipher> argument 242specifies the encryption algorithm to use: unlike some other PEM routines the 243encryption is applied at the PKCS#8 level and not in the PEM headers. If 244I<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo 245structure is used instead. 246 247PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() 248also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however 249it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm 250to use is specified in the I<nid> parameter and should be the NID of the 251corresponding OBJECT IDENTIFIER (see NOTES section). 252 253The B<PUBKEY> functions process a public key using an EVP_PKEY 254structure. The public key is encoded as a SubjectPublicKeyInfo 255structure. 256 257The B<RSAPrivateKey> functions process an RSA private key using an 258RSA structure. The write routines uses traditional format. The read 259routines handles the same formats as the B<PrivateKey> 260functions but an error occurs if the private key is not RSA. 261 262The B<RSAPublicKey> functions process an RSA public key using an 263RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey 264structure. 265 266The B<RSA_PUBKEY> functions also process an RSA public key using 267an RSA structure. However, the public key is encoded using a 268SubjectPublicKeyInfo structure and an error occurs if the public 269key is not RSA. 270 271The B<DSAPrivateKey> functions process a DSA private key using a 272DSA structure. The write routines uses traditional format. The read 273routines handles the same formats as the B<PrivateKey> 274functions but an error occurs if the private key is not DSA. 275 276The B<DSA_PUBKEY> functions process a DSA public key using 277a DSA structure. The public key is encoded using a 278SubjectPublicKeyInfo structure and an error occurs if the public 279key is not DSA. 280 281The B<Parameters> functions read or write key parameters in PEM format using 282an EVP_PKEY structure. The encoding depends on the type of key; for DSA key 283parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH 284key parameters, it will be a PKCS#3 DHparameter structure. I<These functions 285only exist for the B<BIO> type>. 286 287The B<DSAparams> functions process DSA parameters using a DSA 288structure. The parameters are encoded using a Dss-Parms structure 289as defined in RFC2459. 290 291The B<DHparams> functions process DH parameters using a DH 292structure. The parameters are encoded using a PKCS#3 DHparameter 293structure. 294 295The B<X509> functions process an X509 certificate using an X509 296structure. They will also process a trusted X509 certificate but 297any trust settings are discarded. 298 299The B<X509_ACERT> functions process an X509 attribute certificate using 300an X509_ACERT structure. 301 302The B<X509_AUX> functions process a trusted X509 certificate using 303an X509 structure. 304 305The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10 306certificate request using an X509_REQ structure. The B<X509_REQ> 307write functions use B<CERTIFICATE REQUEST> in the header whereas 308the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST> 309(as required by some CAs). The B<X509_REQ> read functions will 310handle either form so there are no B<X509_REQ_NEW> read functions. 311 312The B<X509_CRL> functions process an X509 CRL using an X509_CRL 313structure. 314 315The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7 316structure. 317 318=head1 PEM FUNCTION ARGUMENTS 319 320The PEM functions have many common arguments. 321 322The I<bp> BIO parameter (if present) specifies the BIO to read from 323or write to. The I<bp> BIO parameter B<MUST NOT> be NULL. 324 325The I<fp> FILE parameter (if present) specifies the FILE pointer to 326read from or write to. 327 328The PEM read functions all take an argument I<B<TYPE> **x> and return 329a I<B<TYPE> *> pointer. Where I<B<TYPE>> is whatever structure the function 330uses. If I<x> is NULL then the parameter is ignored. If I<x> is not 331NULL but I<*x> is NULL then the structure returned will be written 332to I<*x>. If neither I<x> nor I<*x> is NULL then an attempt is made 333to reuse the structure at I<*x> (but see BUGS and EXAMPLES sections). 334Irrespective of the value of I<x> a pointer to the structure is always 335returned (or NULL if an error occurred). The caller retains ownership of the 336returned object and needs to free it when it is no longer needed, e.g. 337using X509_free() for X509 objects or EVP_PKEY_free() for EVP_PKEY objects. 338 339The PEM functions which write private keys take an I<enc> parameter 340which specifies the encryption algorithm to use, encryption is done 341at the PEM level. If this parameter is set to NULL then the private 342key is written in unencrypted form. 343 344The I<cb> argument is the callback to use when querying for the pass 345phrase used for encrypted PEM structures (normally only private keys). 346 347For the PEM write routines if the I<kstr> parameter is not NULL then 348I<klen> bytes at I<kstr> are used as the passphrase and I<cb> is 349ignored. 350 351If the I<cb> parameters is set to NULL and the I<u> parameter is not 352NULL then the I<u> parameter is interpreted as a NUL terminated string 353to use as the passphrase. If both I<cb> and I<u> are NULL then the 354default callback routine is used which will typically prompt for the 355passphrase on the current terminal with echoing turned off. 356 357The default passphrase callback is sometimes inappropriate (for example 358in a GUI application) so an alternative can be supplied. The callback 359routine has the following form: 360 361 int cb(char *buf, int size, int rwflag, void *u); 362 363I<buf> is the buffer to write the passphrase to. I<size> is the maximum 364length of the passphrase (i.e. the size of buf). I<rwflag> is a flag 365which is set to 0 when reading and 1 when writing. A typical routine 366will ask the user to verify the passphrase (for example by prompting 367for it twice) if I<rwflag> is 1. The I<u> parameter has the same 368value as the I<u> parameter passed to the PEM routine. It allows 369arbitrary data to be passed to the callback by the application 370(for example a window handle in a GUI application). The callback 371I<must> return the number of characters in the passphrase or -1 if 372an error occurred. The passphrase can be arbitrary data; in the case where it 373is a string, it is not NUL terminated. See the L</EXAMPLES> section below. 374 375Some implementations may need to use cryptographic algorithms during their 376operation. If this is the case and I<libctx> and I<propq> parameters have been 377passed then any algorithm fetches will use that library context and property 378query string. Otherwise the default library context and property query string 379will be used. 380 381=head1 NOTES 382 383The PEM reading functions will skip any extraneous content or PEM data of 384a different type than they expect. This allows for example having a certificate 385(or multiple certificates) and a key in the PEM format in a single file. 386 387The old B<PrivateKey> write routines are retained for compatibility. 388New applications should write private keys using the 389PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines 390because they are more secure (they use an iteration count of 2048 whereas 391the traditional routines use a count of 1) unless compatibility with older 392versions of OpenSSL is important. 393 394The B<PrivateKey> read routines can be used in all applications because 395they handle all formats transparently. 396 397A frequent cause of problems is attempting to use the PEM routines like 398this: 399 400 X509 *x; 401 402 PEM_read_bio_X509(bp, &x, 0, NULL); 403 404this is a bug because an attempt will be made to reuse the data at I<x> 405which is an uninitialised pointer. 406 407These functions make no assumption regarding the pass phrase received from the 408password callback. 409It will simply be treated as a byte sequence. 410 411=head1 PEM ENCRYPTION FORMAT 412 413These old B<PrivateKey> routines use a non standard technique for encryption. 414 415The private key (or other data) takes the following form: 416 417 -----BEGIN RSA PRIVATE KEY----- 418 Proc-Type: 4,ENCRYPTED 419 DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 420 421 ...base64 encoded data... 422 -----END RSA PRIVATE KEY----- 423 424The line beginning with I<Proc-Type> contains the version and the 425protection on the encapsulated data. The line beginning I<DEK-Info> 426contains two comma separated values: the encryption algorithm name as 427used by EVP_get_cipherbyname() and an initialization vector used by the 428cipher encoded as a set of hexadecimal digits. After those two lines is 429the base64-encoded encrypted data. 430 431The encryption key is derived using EVP_BytesToKey(). The cipher's 432initialization vector is passed to EVP_BytesToKey() as the I<salt> 433parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used 434(regardless of the size of the initialization vector). The user's 435password is passed to EVP_BytesToKey() using the I<data> and I<datal> 436parameters. Finally, the library uses an iteration count of 1 for 437EVP_BytesToKey(). 438 439The I<key> derived by EVP_BytesToKey() along with the original initialization 440vector is then used to decrypt the encrypted data. The I<iv> produced by 441EVP_BytesToKey() is not utilized or needed, and NULL should be passed to 442the function. 443 444The pseudo code to derive the key would look similar to: 445 446 EVP_CIPHER* cipher = EVP_des_ede3_cbc(); 447 EVP_MD* md = EVP_md5(); 448 449 unsigned int nkey = EVP_CIPHER_get_key_length(cipher); 450 unsigned int niv = EVP_CIPHER_get_iv_length(cipher); 451 unsigned char key[nkey]; 452 unsigned char iv[niv]; 453 454 memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv); 455 rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/); 456 if (rc != nkey) 457 /* Error */ 458 459 /* On success, use key and iv to initialize the cipher */ 460 461=head1 BUGS 462 463The PEM read routines in some versions of OpenSSL will not correctly reuse 464an existing structure. Therefore, the following: 465 466 PEM_read_bio_X509(bp, &x, 0, NULL); 467 468where I<x> already contains a valid certificate, may not work, whereas: 469 470 X509_free(x); 471 x = PEM_read_bio_X509(bp, NULL, 0, NULL); 472 473is guaranteed to work. It is always acceptable for I<x> to contain a newly 474allocated, empty B<X509> object (for example allocated via L<X509_new_ex(3)>). 475 476=head1 RETURN VALUES 477 478The read routines return either a pointer to the structure read or NULL 479if an error occurred. 480 481The write routines return 1 for success or 0 for failure. 482 483=head1 EXAMPLES 484 485Although the PEM routines take several arguments in almost all applications 486most of them are set to 0 or NULL. 487 488To read a certificate with a library context in PEM format from a BIO: 489 490 X509 *x = X509_new_ex(libctx, NULL); 491 492 if (x == NULL) 493 /* Error */ 494 495 if (PEM_read_bio_X509(bp, &x, 0, NULL) == NULL) 496 /* Error */ 497 498Read a certificate in PEM format from a BIO: 499 500 X509 *x; 501 502 x = PEM_read_bio_X509(bp, NULL, 0, NULL); 503 if (x == NULL) 504 /* Error */ 505 506Alternative method: 507 508 X509 *x = NULL; 509 510 if (!PEM_read_bio_X509(bp, &x, 0, NULL)) 511 /* Error */ 512 513Write a certificate to a BIO: 514 515 if (!PEM_write_bio_X509(bp, x)) 516 /* Error */ 517 518Write a private key (using traditional format) to a BIO using 519triple DES encryption, the pass phrase is prompted for: 520 521 if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) 522 /* Error */ 523 524Write a private key (using PKCS#8 format) to a BIO using triple 525DES encryption, using the pass phrase "hello": 526 527 if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), 528 NULL, 0, 0, "hello")) 529 /* Error */ 530 531Read a private key from a BIO using a pass phrase callback: 532 533 key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); 534 if (key == NULL) 535 /* Error */ 536 537Skeleton pass phrase callback: 538 539 int pass_cb(char *buf, int size, int rwflag, void *u) 540 { 541 542 /* We'd probably do something else if 'rwflag' is 1 */ 543 printf("Enter pass phrase for \"%s\"\n", (char *)u); 544 545 /* get pass phrase, length 'len' into 'tmp' */ 546 char *tmp = "hello"; 547 if (tmp == NULL) /* An error occurred */ 548 return -1; 549 550 size_t len = strlen(tmp); 551 552 if (len > size) 553 len = size; 554 memcpy(buf, tmp, len); 555 return len; 556 } 557 558=head1 SEE ALSO 559 560L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>, 561L<passphrase-encoding(7)> 562 563=head1 HISTORY 564 565The old Netscape certificate sequences were no longer documented 566in OpenSSL 1.1.0; applications should use the PKCS7 standard instead 567as they will be formally deprecated in a future releases. 568 569PEM_read_bio_PrivateKey_ex(), PEM_read_PrivateKey_ex(), 570PEM_read_bio_PUBKEY_ex(), PEM_read_PUBKEY_ex() and 571PEM_read_bio_Parameters_ex() were introduced in OpenSSL 3.0. 572 573The functions PEM_read_bio_RSAPrivateKey(), PEM_read_RSAPrivateKey(), 574PEM_write_bio_RSAPrivateKey(), PEM_write_RSAPrivateKey(), 575PEM_read_bio_RSAPublicKey(), PEM_read_RSAPublicKey(), 576PEM_write_bio_RSAPublicKey(), PEM_write_RSAPublicKey(), 577PEM_read_bio_RSA_PUBKEY(), PEM_read_RSA_PUBKEY(), 578PEM_write_bio_RSA_PUBKEY(), PEM_write_RSA_PUBKEY(), 579PEM_read_bio_DSAPrivateKey(), PEM_read_DSAPrivateKey(), 580PEM_write_bio_DSAPrivateKey(), PEM_write_DSAPrivateKey(), 581PEM_read_bio_DSA_PUBKEY(), PEM_read_DSA_PUBKEY(), 582PEM_write_bio_DSA_PUBKEY(), PEM_write_DSA_PUBKEY(); 583PEM_read_bio_DSAparams(), PEM_read_DSAparams(), 584PEM_write_bio_DSAparams(), PEM_write_DSAparams(), 585PEM_read_bio_DHparams(), PEM_read_DHparams(), 586PEM_write_bio_DHparams() and PEM_write_DHparams() were deprecated in 3.0. 587 588 589=head1 COPYRIGHT 590 591Copyright 2001-2024 The OpenSSL Project Authors. All Rights Reserved. 592 593Licensed under the Apache License 2.0 (the "License"). You may not use 594this file except in compliance with the License. You can obtain a copy 595in the file LICENSE in the source distribution or at 596L<https://www.openssl.org/source/license.html>. 597 598=cut 599