xref: /openssl/doc/man3/OPENSSL_ia32cap.pod (revision ec768918)
1=pod
2
3=head1 NAME
4
5OPENSSL_ia32cap - the x86[_64] processor capabilities vector
6
7=head1 SYNOPSIS
8
9 env OPENSSL_ia32cap=... <application>
10
11=head1 DESCRIPTION
12
13OpenSSL supports a range of x86[_64] instruction set extensions. These
14extensions are denoted by individual bits in capability vector returned
15by processor in EDX:ECX register pair after executing CPUID instruction
16with EAX=1 input value (see Intel Application Note #241618). This vector
17is copied to memory upon toolkit initialization and used to choose
18between different code paths to provide optimal performance across wide
19range of processors. For the moment of this writing following bits are
20significant:
21
22=over 4
23
24=item bit #4 denoting presence of Time-Stamp Counter.
25
26=item bit #19 denoting availability of CLFLUSH instruction;
27
28=item bit #20, reserved by Intel, is used to choose among RC4 code paths;
29
30=item bit #23 denoting MMX support;
31
32=item bit #24, FXSR bit, denoting availability of XMM registers;
33
34=item bit #25 denoting SSE support;
35
36=item bit #26 denoting SSE2 support;
37
38=item bit #28 denoting Hyperthreading, which is used to distinguish
39cores with shared cache;
40
41=item bit #30, reserved by Intel, denotes specifically Intel CPUs;
42
43=item bit #33 denoting availability of PCLMULQDQ instruction;
44
45=item bit #41 denoting SSSE3, Supplemental SSE3, support;
46
47=item bit #43 denoting AMD XOP support (forced to zero on non-AMD CPUs);
48
49=item bit #54 denoting availability of MOVBE instruction;
50
51=item bit #57 denoting AES-NI instruction set extension;
52
53=item bit #58, XSAVE bit, lack of which in combination with MOVBE is used
54to identify Atom Silvermont core;
55
56=item bit #59, OSXSAVE bit, denoting availability of YMM registers;
57
58=item bit #60 denoting AVX extension;
59
60=item bit #62 denoting availability of RDRAND instruction;
61
62=back
63
64For example, in 32-bit application context clearing bit #26 at run-time
65disables high-performance SSE2 code present in the crypto library, while
66clearing bit #24 disables SSE2 code operating on 128-bit XMM register
67bank. You might have to do the latter if target OpenSSL application is
68executed on SSE2 capable CPU, but under control of OS that does not
69enable XMM registers. Historically address of the capability vector copy
70was exposed to application through OPENSSL_ia32cap_loc(), but not
71anymore. Now the only way to affect the capability detection is to set
72B<OPENSSL_ia32cap> environment variable prior target application start. To
73give a specific example, on Intel P4 processor
74C<env OPENSSL_ia32cap=0x16980010 apps/openssl>, or better yet
75C<env OPENSSL_ia32cap=~0x1000000 apps/openssl> would achieve the desired
76effect. Alternatively you can reconfigure the toolkit with no-sse2
77option and recompile.
78
79Less intuitive is clearing bit #28, or ~0x10000000 in the "environment
80variable" terms. The truth is that it's not copied from CPUID output
81verbatim, but is adjusted to reflect whether or not the data cache is
82actually shared between logical cores. This in turn affects the decision
83on whether or not expensive countermeasures against cache-timing attacks
84are applied, most notably in AES assembler module.
85
86The capability vector is further extended with EBX value returned by
87CPUID with EAX=7 and ECX=0 as input. Following bits are significant:
88
89=over 4
90
91=item bit #64+3 denoting availability of BMI1 instructions, e.g. ANDN;
92
93=item bit #64+5 denoting availability of AVX2 instructions;
94
95=item bit #64+8 denoting availability of BMI2 instructions, e.g. MULX
96and RORX;
97
98=item bit #64+16 denoting availability of AVX512F extension;
99
100=item bit #64+17 denoting availability of AVX512DQ extension;
101
102=item bit #64+18 denoting availability of RDSEED instruction;
103
104=item bit #64+19 denoting availability of ADCX and ADOX instructions;
105
106=item bit #64+21 denoting availability of VPMADD52[LH]UQ instructions,
107aka AVX512IFMA extension;
108
109=item bit #64+29 denoting availability of SHA extension;
110
111=item bit #64+30 denoting availability of AVX512BW extension;
112
113=item bit #64+31 denoting availability of AVX512VL extension;
114
115=item bit #64+41 denoting availability of VAES extension;
116
117=item bit #64+42 denoting availability of VPCLMULQDQ extension;
118
119=back
120
121To control this extended capability word use C<:> as delimiter when
122setting up B<OPENSSL_ia32cap> environment variable. For example assigning
123C<:~0x20> would disable AVX2 code paths, and C<:0> - all post-AVX
124extensions.
125
126=head1 RETURN VALUES
127
128Not available.
129
130=head1 COPYRIGHT
131
132Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved.
133
134Licensed under the Apache License 2.0 (the "License").  You may not use
135this file except in compliance with the License.  You can obtain a copy
136in the file LICENSE in the source distribution or at
137L<https://www.openssl.org/source/license.html>.
138
139=cut
140