1 /*
2 * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #if defined(_WIN32)
11 # include <windows.h>
12 # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
13 # define USE_RWLOCK
14 # endif
15 #endif
16 #include <assert.h>
17
18 /*
19 * VC++ 2008 or earlier x86 compilers do not have an inline implementation
20 * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
21 * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
22 * To work around this problem, we implement a manual locking mechanism for
23 * only VC++ 2008 or earlier x86 compilers.
24 */
25
26 #if ((defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600) || (defined(__MINGW32__) && !defined(__MINGW64__)))
27 # define NO_INTERLOCKEDOR64
28 #endif
29
30 #include <openssl/crypto.h>
31 #include <crypto/cryptlib.h>
32 #include "internal/common.h"
33 #include "internal/thread_arch.h"
34 #include "internal/rcu.h"
35 #include "rcu_internal.h"
36
37 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
38
39 # ifdef USE_RWLOCK
40 typedef struct {
41 SRWLOCK lock;
42 int exclusive;
43 } CRYPTO_win_rwlock;
44 # endif
45
46 /*
47 * users is broken up into 2 parts
48 * bits 0-31 current readers
49 * bit 32-63 ID
50 */
51 # define READER_SHIFT 0
52 # define ID_SHIFT 32
53 /* TODO: READER_SIZE 16 in threads_pthread.c */
54 # define READER_SIZE 32
55 # define ID_SIZE 32
56
57 # define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
58 # define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
59 # define READER_COUNT(x) ((uint32_t)(((uint64_t)(x) >> READER_SHIFT) & \
60 READER_MASK))
61 # define ID_VAL(x) ((uint32_t)(((uint64_t)(x) >> ID_SHIFT) & ID_MASK))
62 # define VAL_READER ((int64_t)1 << READER_SHIFT)
63 # define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
64
65 /*
66 * This defines a quescent point (qp)
67 * This is the barrier beyond which a writer
68 * must wait before freeing data that was
69 * atomically updated
70 */
71 struct rcu_qp {
72 volatile uint64_t users;
73 };
74
75 struct thread_qp {
76 struct rcu_qp *qp;
77 unsigned int depth;
78 CRYPTO_RCU_LOCK *lock;
79 };
80
81 # define MAX_QPS 10
82 /*
83 * This is the per thread tracking data
84 * that is assigned to each thread participating
85 * in an rcu qp
86 *
87 * qp points to the qp that it last acquired
88 *
89 */
90 struct rcu_thr_data {
91 struct thread_qp thread_qps[MAX_QPS];
92 };
93
94 /*
95 * This is the internal version of a CRYPTO_RCU_LOCK
96 * it is cast from CRYPTO_RCU_LOCK
97 */
98 struct rcu_lock_st {
99 /* Callbacks to call for next ossl_synchronize_rcu */
100 struct rcu_cb_item *cb_items;
101
102 /* The context we are being created against */
103 OSSL_LIB_CTX *ctx;
104
105 /* rcu generation counter for in-order retirement */
106 uint32_t id_ctr;
107
108 /* TODO: can be moved before id_ctr for better alignment */
109 /* Array of quiescent points for synchronization */
110 struct rcu_qp *qp_group;
111
112 /* Number of elements in qp_group array */
113 uint32_t group_count;
114
115 /* Index of the current qp in the qp_group array */
116 uint32_t reader_idx;
117
118 /* value of the next id_ctr value to be retired */
119 uint32_t next_to_retire;
120
121 /* index of the next free rcu_qp in the qp_group */
122 uint32_t current_alloc_idx;
123
124 /* number of qp's in qp_group array currently being retired */
125 uint32_t writers_alloced;
126
127 /* lock protecting write side operations */
128 CRYPTO_MUTEX *write_lock;
129
130 /* lock protecting updates to writers_alloced/current_alloc_idx */
131 CRYPTO_MUTEX *alloc_lock;
132
133 /* signal to wake threads waiting on alloc_lock */
134 CRYPTO_CONDVAR *alloc_signal;
135
136 /* lock to enforce in-order retirement */
137 CRYPTO_MUTEX *prior_lock;
138
139 /* signal to wake threads waiting on prior_lock */
140 CRYPTO_CONDVAR *prior_signal;
141
142 /* lock used with NO_INTERLOCKEDOR64: VS2010 x86 */
143 CRYPTO_RWLOCK *rw_lock;
144 };
145
146 /* TODO: count should be unsigned, e.g uint32_t */
147 /* a negative value could result in unexpected behaviour */
allocate_new_qp_group(struct rcu_lock_st * lock,int count)148 static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
149 int count)
150 {
151 struct rcu_qp *new =
152 OPENSSL_zalloc(sizeof(*new) * count);
153
154 lock->group_count = count;
155 return new;
156 }
157
ossl_rcu_lock_new(int num_writers,OSSL_LIB_CTX * ctx)158 CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
159 {
160 struct rcu_lock_st *new;
161
162 if (num_writers < 1)
163 num_writers = 1;
164
165 ctx = ossl_lib_ctx_get_concrete(ctx);
166 if (ctx == NULL)
167 return 0;
168
169 new = OPENSSL_zalloc(sizeof(*new));
170
171 if (new == NULL)
172 return NULL;
173
174 new->ctx = ctx;
175 new->rw_lock = CRYPTO_THREAD_lock_new();
176 new->write_lock = ossl_crypto_mutex_new();
177 new->alloc_signal = ossl_crypto_condvar_new();
178 new->prior_signal = ossl_crypto_condvar_new();
179 new->alloc_lock = ossl_crypto_mutex_new();
180 new->prior_lock = ossl_crypto_mutex_new();
181 new->qp_group = allocate_new_qp_group(new, num_writers + 1);
182 if (new->qp_group == NULL
183 || new->alloc_signal == NULL
184 || new->prior_signal == NULL
185 || new->write_lock == NULL
186 || new->alloc_lock == NULL
187 || new->prior_lock == NULL
188 || new->rw_lock == NULL) {
189 CRYPTO_THREAD_lock_free(new->rw_lock);
190 OPENSSL_free(new->qp_group);
191 ossl_crypto_condvar_free(&new->alloc_signal);
192 ossl_crypto_condvar_free(&new->prior_signal);
193 ossl_crypto_mutex_free(&new->alloc_lock);
194 ossl_crypto_mutex_free(&new->prior_lock);
195 ossl_crypto_mutex_free(&new->write_lock);
196 OPENSSL_free(new);
197 new = NULL;
198 }
199 return new;
200
201 }
202
ossl_rcu_lock_free(CRYPTO_RCU_LOCK * lock)203 void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
204 {
205 CRYPTO_THREAD_lock_free(lock->rw_lock);
206 OPENSSL_free(lock->qp_group);
207 ossl_crypto_condvar_free(&lock->alloc_signal);
208 ossl_crypto_condvar_free(&lock->prior_signal);
209 ossl_crypto_mutex_free(&lock->alloc_lock);
210 ossl_crypto_mutex_free(&lock->prior_lock);
211 ossl_crypto_mutex_free(&lock->write_lock);
212 OPENSSL_free(lock);
213 }
214
215 /* Read side acquisition of the current qp */
get_hold_current_qp(CRYPTO_RCU_LOCK * lock)216 static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
217 {
218 uint32_t qp_idx;
219 uint32_t tmp;
220 uint64_t tmp64;
221
222 /* get the current qp index */
223 for (;;) {
224 CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&qp_idx,
225 lock->rw_lock);
226 CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, VAL_READER, &tmp64,
227 lock->rw_lock);
228 CRYPTO_atomic_load_int((int *)&lock->reader_idx, (int *)&tmp,
229 lock->rw_lock);
230 if (qp_idx == tmp)
231 break;
232 CRYPTO_atomic_add64(&lock->qp_group[qp_idx].users, -VAL_READER, &tmp64,
233 lock->rw_lock);
234 }
235
236 return &lock->qp_group[qp_idx];
237 }
238
ossl_rcu_free_local_data(void * arg)239 static void ossl_rcu_free_local_data(void *arg)
240 {
241 OSSL_LIB_CTX *ctx = arg;
242 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
243 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
244 OPENSSL_free(data);
245 CRYPTO_THREAD_set_local(lkey, NULL);
246 }
247
ossl_rcu_read_lock(CRYPTO_RCU_LOCK * lock)248 void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
249 {
250 struct rcu_thr_data *data;
251 int i;
252 int available_qp = -1;
253 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
254
255 /*
256 * we're going to access current_qp here so ask the
257 * processor to fetch it
258 */
259 data = CRYPTO_THREAD_get_local(lkey);
260
261 if (data == NULL) {
262 data = OPENSSL_zalloc(sizeof(*data));
263 OPENSSL_assert(data != NULL);
264 CRYPTO_THREAD_set_local(lkey, data);
265 ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
266 }
267
268 for (i = 0; i < MAX_QPS; i++) {
269 if (data->thread_qps[i].qp == NULL && available_qp == -1)
270 available_qp = i;
271 /* If we have a hold on this lock already, we're good */
272 if (data->thread_qps[i].lock == lock)
273 return;
274 }
275
276 /*
277 * if we get here, then we don't have a hold on this lock yet
278 */
279 assert(available_qp != -1);
280
281 data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
282 data->thread_qps[available_qp].depth = 1;
283 data->thread_qps[available_qp].lock = lock;
284 }
285
ossl_rcu_write_lock(CRYPTO_RCU_LOCK * lock)286 void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
287 {
288 ossl_crypto_mutex_lock(lock->write_lock);
289 }
290
ossl_rcu_write_unlock(CRYPTO_RCU_LOCK * lock)291 void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
292 {
293 ossl_crypto_mutex_unlock(lock->write_lock);
294 }
295
ossl_rcu_read_unlock(CRYPTO_RCU_LOCK * lock)296 void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
297 {
298 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
299 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
300 int i;
301 LONG64 ret;
302
303 assert(data != NULL);
304
305 for (i = 0; i < MAX_QPS; i++) {
306 if (data->thread_qps[i].lock == lock) {
307 data->thread_qps[i].depth--;
308 if (data->thread_qps[i].depth == 0) {
309 CRYPTO_atomic_add64(&data->thread_qps[i].qp->users,
310 -VAL_READER, (uint64_t *)&ret,
311 lock->rw_lock);
312 OPENSSL_assert(ret >= 0);
313 data->thread_qps[i].qp = NULL;
314 data->thread_qps[i].lock = NULL;
315 }
316 return;
317 }
318 }
319 }
320
321 /*
322 * Write side allocation routine to get the current qp
323 * and replace it with a new one
324 */
update_qp(CRYPTO_RCU_LOCK * lock)325 static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
326 {
327 uint64_t new_id;
328 uint32_t current_idx;
329 uint32_t tmp;
330 uint64_t tmp64;
331
332 ossl_crypto_mutex_lock(lock->alloc_lock);
333 /*
334 * we need at least one qp to be available with one
335 * left over, so that readers can start working on
336 * one that isn't yet being waited on
337 */
338 while (lock->group_count - lock->writers_alloced < 2)
339 /* we have to wait for one to be free */
340 ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
341
342 current_idx = lock->current_alloc_idx;
343
344 /* Allocate the qp */
345 lock->writers_alloced++;
346
347 /* increment the allocation index */
348 lock->current_alloc_idx =
349 (lock->current_alloc_idx + 1) % lock->group_count;
350
351 /* get and insert a new id */
352 new_id = VAL_ID(lock->id_ctr);
353 lock->id_ctr++;
354
355 /*
356 * Even though we are under a write side lock here
357 * We need to use atomic instructions to ensure that the results
358 * of this update are published to the read side prior to updating the
359 * reader idx below
360 */
361 CRYPTO_atomic_and(&lock->qp_group[current_idx].users, ID_MASK, &tmp64,
362 lock->rw_lock);
363 CRYPTO_atomic_add64(&lock->qp_group[current_idx].users, new_id, &tmp64,
364 lock->rw_lock);
365
366 /* update the reader index to be the prior qp */
367 tmp = lock->current_alloc_idx;
368 InterlockedExchange((LONG volatile *)&lock->reader_idx, tmp);
369
370 /* wake up any waiters */
371 ossl_crypto_condvar_broadcast(lock->alloc_signal);
372 ossl_crypto_mutex_unlock(lock->alloc_lock);
373 return &lock->qp_group[current_idx];
374 }
375
retire_qp(CRYPTO_RCU_LOCK * lock,struct rcu_qp * qp)376 static void retire_qp(CRYPTO_RCU_LOCK *lock,
377 struct rcu_qp *qp)
378 {
379 ossl_crypto_mutex_lock(lock->alloc_lock);
380 lock->writers_alloced--;
381 ossl_crypto_condvar_broadcast(lock->alloc_signal);
382 ossl_crypto_mutex_unlock(lock->alloc_lock);
383 }
384
385
ossl_synchronize_rcu(CRYPTO_RCU_LOCK * lock)386 void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
387 {
388 struct rcu_qp *qp;
389 uint64_t count;
390 struct rcu_cb_item *cb_items, *tmpcb;
391
392 /* before we do anything else, lets grab the cb list */
393 cb_items = InterlockedExchangePointer((void * volatile *)&lock->cb_items,
394 NULL);
395
396 qp = update_qp(lock);
397
398 /* wait for the reader count to reach zero */
399 do {
400 CRYPTO_atomic_load(&qp->users, &count, lock->rw_lock);
401 } while (READER_COUNT(count) != 0);
402
403 /* retire in order */
404 ossl_crypto_mutex_lock(lock->prior_lock);
405 while (lock->next_to_retire != ID_VAL(count))
406 ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
407
408 lock->next_to_retire++;
409 ossl_crypto_condvar_broadcast(lock->prior_signal);
410 ossl_crypto_mutex_unlock(lock->prior_lock);
411
412 retire_qp(lock, qp);
413
414 /* handle any callbacks that we have */
415 while (cb_items != NULL) {
416 tmpcb = cb_items;
417 cb_items = cb_items->next;
418 tmpcb->fn(tmpcb->data);
419 OPENSSL_free(tmpcb);
420 }
421
422 /* and we're done */
423 return;
424
425 }
426
ossl_rcu_call(CRYPTO_RCU_LOCK * lock,rcu_cb_fn cb,void * data)427 int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
428 {
429 struct rcu_cb_item *new;
430
431 new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
432 if (new == NULL)
433 return 0;
434 new->data = data;
435 new->fn = cb;
436
437 new->next = InterlockedExchangePointer((void * volatile *)&lock->cb_items,
438 new);
439 return 1;
440 }
441
ossl_rcu_uptr_deref(void ** p)442 void *ossl_rcu_uptr_deref(void **p)
443 {
444 return (void *)*p;
445 }
446
ossl_rcu_assign_uptr(void ** p,void ** v)447 void ossl_rcu_assign_uptr(void **p, void **v)
448 {
449 InterlockedExchangePointer((void * volatile *)p, (void *)*v);
450 }
451
452
CRYPTO_THREAD_lock_new(void)453 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
454 {
455 CRYPTO_RWLOCK *lock;
456 # ifdef USE_RWLOCK
457 CRYPTO_win_rwlock *rwlock;
458
459 if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
460 /* Don't set error, to avoid recursion blowup. */
461 return NULL;
462 rwlock = lock;
463 InitializeSRWLock(&rwlock->lock);
464 # else
465
466 if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
467 /* Don't set error, to avoid recursion blowup. */
468 return NULL;
469
470 # if !defined(_WIN32_WCE)
471 /* 0x400 is the spin count value suggested in the documentation */
472 if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
473 OPENSSL_free(lock);
474 return NULL;
475 }
476 # else
477 InitializeCriticalSection(lock);
478 # endif
479 # endif
480
481 return lock;
482 }
483
CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK * lock)484 __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
485 {
486 # ifdef USE_RWLOCK
487 CRYPTO_win_rwlock *rwlock = lock;
488
489 AcquireSRWLockShared(&rwlock->lock);
490 # else
491 EnterCriticalSection(lock);
492 # endif
493 return 1;
494 }
495
CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK * lock)496 __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
497 {
498 # ifdef USE_RWLOCK
499 CRYPTO_win_rwlock *rwlock = lock;
500
501 AcquireSRWLockExclusive(&rwlock->lock);
502 rwlock->exclusive = 1;
503 # else
504 EnterCriticalSection(lock);
505 # endif
506 return 1;
507 }
508
CRYPTO_THREAD_unlock(CRYPTO_RWLOCK * lock)509 int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
510 {
511 # ifdef USE_RWLOCK
512 CRYPTO_win_rwlock *rwlock = lock;
513
514 if (rwlock->exclusive) {
515 rwlock->exclusive = 0;
516 ReleaseSRWLockExclusive(&rwlock->lock);
517 } else {
518 ReleaseSRWLockShared(&rwlock->lock);
519 }
520 # else
521 LeaveCriticalSection(lock);
522 # endif
523 return 1;
524 }
525
CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK * lock)526 void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
527 {
528 if (lock == NULL)
529 return;
530
531 # ifndef USE_RWLOCK
532 DeleteCriticalSection(lock);
533 # endif
534 OPENSSL_free(lock);
535
536 return;
537 }
538
539 # define ONCE_UNINITED 0
540 # define ONCE_ININIT 1
541 # define ONCE_DONE 2
542
543 /*
544 * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
545 * we still have to support.
546 */
CRYPTO_THREAD_run_once(CRYPTO_ONCE * once,void (* init)(void))547 int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
548 {
549 LONG volatile *lock = (LONG *)once;
550 LONG result;
551
552 if (*lock == ONCE_DONE)
553 return 1;
554
555 do {
556 result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
557 if (result == ONCE_UNINITED) {
558 init();
559 *lock = ONCE_DONE;
560 return 1;
561 }
562 } while (result == ONCE_ININIT);
563
564 return (*lock == ONCE_DONE);
565 }
566
CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL * key,void (* cleanup)(void *))567 int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
568 {
569 *key = TlsAlloc();
570 if (*key == TLS_OUT_OF_INDEXES)
571 return 0;
572
573 return 1;
574 }
575
CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL * key)576 void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
577 {
578 DWORD last_error;
579 void *ret;
580
581 /*
582 * TlsGetValue clears the last error even on success, so that callers may
583 * distinguish it successfully returning NULL or failing. It is documented
584 * to never fail if the argument is a valid index from TlsAlloc, so we do
585 * not need to handle this.
586 *
587 * However, this error-mangling behavior interferes with the caller's use of
588 * GetLastError. In particular SSL_get_error queries the error queue to
589 * determine whether the caller should look at the OS's errors. To avoid
590 * destroying state, save and restore the Windows error.
591 *
592 * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
593 */
594 last_error = GetLastError();
595 ret = TlsGetValue(*key);
596 SetLastError(last_error);
597 return ret;
598 }
599
CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL * key,void * val)600 int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
601 {
602 if (TlsSetValue(*key, val) == 0)
603 return 0;
604
605 return 1;
606 }
607
CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL * key)608 int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
609 {
610 if (TlsFree(*key) == 0)
611 return 0;
612
613 return 1;
614 }
615
CRYPTO_THREAD_get_current_id(void)616 CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
617 {
618 return GetCurrentThreadId();
619 }
620
CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a,CRYPTO_THREAD_ID b)621 int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
622 {
623 return (a == b);
624 }
625
CRYPTO_atomic_add(int * val,int amount,int * ret,CRYPTO_RWLOCK * lock)626 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
627 {
628 *ret = (int)InterlockedExchangeAdd((LONG volatile *)val, (LONG)amount)
629 + amount;
630 return 1;
631 }
632
CRYPTO_atomic_add64(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)633 int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
634 CRYPTO_RWLOCK *lock)
635 {
636 # if (defined(NO_INTERLOCKEDOR64))
637 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
638 return 0;
639 *val += op;
640 *ret = *val;
641
642 if (!CRYPTO_THREAD_unlock(lock))
643 return 0;
644
645 return 1;
646 # else
647 *ret = (uint64_t)InterlockedAdd64((LONG64 volatile *)val, (LONG64)op);
648 return 1;
649 # endif
650 }
651
CRYPTO_atomic_and(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)652 int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
653 CRYPTO_RWLOCK *lock)
654 {
655 # if (defined(NO_INTERLOCKEDOR64))
656 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
657 return 0;
658 *val &= op;
659 *ret = *val;
660
661 if (!CRYPTO_THREAD_unlock(lock))
662 return 0;
663
664 return 1;
665 # else
666 *ret = (uint64_t)InterlockedAnd64((LONG64 volatile *)val, (LONG64)op) & op;
667 return 1;
668 # endif
669 }
670
CRYPTO_atomic_or(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)671 int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
672 CRYPTO_RWLOCK *lock)
673 {
674 # if (defined(NO_INTERLOCKEDOR64))
675 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
676 return 0;
677 *val |= op;
678 *ret = *val;
679
680 if (!CRYPTO_THREAD_unlock(lock))
681 return 0;
682
683 return 1;
684 # else
685 *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
686 return 1;
687 # endif
688 }
689
CRYPTO_atomic_load(uint64_t * val,uint64_t * ret,CRYPTO_RWLOCK * lock)690 int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
691 {
692 # if (defined(NO_INTERLOCKEDOR64))
693 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
694 return 0;
695 *ret = *val;
696 if (!CRYPTO_THREAD_unlock(lock))
697 return 0;
698
699 return 1;
700 # else
701 *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
702 return 1;
703 # endif
704 }
705
CRYPTO_atomic_store(uint64_t * dst,uint64_t val,CRYPTO_RWLOCK * lock)706 int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
707 {
708 # if (defined(NO_INTERLOCKEDOR64))
709 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
710 return 0;
711 *dst = val;
712 if (!CRYPTO_THREAD_unlock(lock))
713 return 0;
714
715 return 1;
716 # else
717 InterlockedExchange64(dst, val);
718 return 1;
719 # endif
720 }
721
CRYPTO_atomic_load_int(int * val,int * ret,CRYPTO_RWLOCK * lock)722 int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
723 {
724 # if (defined(NO_INTERLOCKEDOR64))
725 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
726 return 0;
727 *ret = *val;
728 if (!CRYPTO_THREAD_unlock(lock))
729 return 0;
730
731 return 1;
732 # else
733 /* On Windows, LONG (but not long) is always the same size as int. */
734 *ret = (int)InterlockedOr((LONG volatile *)val, 0);
735 return 1;
736 # endif
737 }
738
openssl_init_fork_handlers(void)739 int openssl_init_fork_handlers(void)
740 {
741 return 0;
742 }
743
openssl_get_fork_id(void)744 int openssl_get_fork_id(void)
745 {
746 return 0;
747 }
748 #endif
749