1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <time.h>
12 #include "internal/cryptlib.h"
13 #include "bn_local.h"
14
15 /*
16 * The quick sieve algorithm approach to weeding out primes is Philip
17 * Zimmermann's, as implemented in PGP. I have had a read of his comments
18 * and implemented my own version.
19 */
20 #include "bn_prime.h"
21
22 static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
23 BN_CTX *ctx);
24 static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
25 const BIGNUM *add, const BIGNUM *rem,
26 BN_CTX *ctx);
27 static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
28 int do_trial_division, BN_GENCB *cb);
29
30 #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
31
32 #if BN_BITS2 == 64
33 # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
34 #else
35 # define BN_DEF(lo, hi) lo, hi
36 #endif
37
38 /*
39 * See SP800 89 5.3.3 (Step f)
40 * The product of the set of primes ranging from 3 to 751
41 * Generated using process in test/bn_internal_test.c test_bn_small_factors().
42 * This includes 751 (which is not currently included in SP 800-89).
43 */
44 static const BN_ULONG small_prime_factors[] = {
45 BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
46 BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
47 BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
48 BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
49 BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
50 BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
51 BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
52 BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
53 (BN_ULONG)0x000017b1
54 };
55
56 #define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
57 static const BIGNUM _bignum_small_prime_factors = {
58 (BN_ULONG *)small_prime_factors,
59 BN_SMALL_PRIME_FACTORS_TOP,
60 BN_SMALL_PRIME_FACTORS_TOP,
61 0,
62 BN_FLG_STATIC_DATA
63 };
64
ossl_bn_get0_small_factors(void)65 const BIGNUM *ossl_bn_get0_small_factors(void)
66 {
67 return &_bignum_small_prime_factors;
68 }
69
70 /*
71 * Calculate the number of trial divisions that gives the best speed in
72 * combination with Miller-Rabin prime test, based on the sized of the prime.
73 */
calc_trial_divisions(int bits)74 static int calc_trial_divisions(int bits)
75 {
76 if (bits <= 512)
77 return 64;
78 else if (bits <= 1024)
79 return 128;
80 else if (bits <= 2048)
81 return 384;
82 else if (bits <= 4096)
83 return 1024;
84 return NUMPRIMES;
85 }
86
87 /*
88 * Use a minimum of 64 rounds of Miller-Rabin, which should give a false
89 * positive rate of 2^-128. If the size of the prime is larger than 2048
90 * the user probably wants a higher security level than 128, so switch
91 * to 128 rounds giving a false positive rate of 2^-256.
92 * Returns the number of rounds.
93 */
bn_mr_min_checks(int bits)94 static int bn_mr_min_checks(int bits)
95 {
96 if (bits > 2048)
97 return 128;
98 return 64;
99 }
100
BN_GENCB_call(BN_GENCB * cb,int a,int b)101 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
102 {
103 /* No callback means continue */
104 if (!cb)
105 return 1;
106 switch (cb->ver) {
107 case 1:
108 /* Deprecated-style callbacks */
109 if (!cb->cb.cb_1)
110 return 1;
111 cb->cb.cb_1(a, b, cb->arg);
112 return 1;
113 case 2:
114 /* New-style callbacks */
115 return cb->cb.cb_2(a, b, cb);
116 default:
117 break;
118 }
119 /* Unrecognised callback type */
120 return 0;
121 }
122
BN_generate_prime_ex2(BIGNUM * ret,int bits,int safe,const BIGNUM * add,const BIGNUM * rem,BN_GENCB * cb,BN_CTX * ctx)123 int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
124 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
125 BN_CTX *ctx)
126 {
127 BIGNUM *t;
128 int found = 0;
129 int i, j, c1 = 0;
130 prime_t *mods = NULL;
131 int checks = bn_mr_min_checks(bits);
132
133 if (bits < 2) {
134 /* There are no prime numbers this small. */
135 ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
136 return 0;
137 } else if (add == NULL && safe && bits < 6 && bits != 3) {
138 /*
139 * The smallest safe prime (7) is three bits.
140 * But the following two safe primes with less than 6 bits (11, 23)
141 * are unreachable for BN_rand with BN_RAND_TOP_TWO.
142 */
143 ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
144 return 0;
145 }
146
147 mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
148 if (mods == NULL)
149 return 0;
150
151 BN_CTX_start(ctx);
152 t = BN_CTX_get(ctx);
153 if (t == NULL)
154 goto err;
155 loop:
156 /* make a random number and set the top and bottom bits */
157 if (add == NULL) {
158 if (!probable_prime(ret, bits, safe, mods, ctx))
159 goto err;
160 } else {
161 if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
162 goto err;
163 }
164
165 if (!BN_GENCB_call(cb, 0, c1++))
166 /* aborted */
167 goto err;
168
169 if (!safe) {
170 i = bn_is_prime_int(ret, checks, ctx, 0, cb);
171 if (i == -1)
172 goto err;
173 if (i == 0)
174 goto loop;
175 } else {
176 /*
177 * for "safe prime" generation, check that (p-1)/2 is prime. Since a
178 * prime is odd, We just need to divide by 2
179 */
180 if (!BN_rshift1(t, ret))
181 goto err;
182
183 for (i = 0; i < checks; i++) {
184 j = bn_is_prime_int(ret, 1, ctx, 0, cb);
185 if (j == -1)
186 goto err;
187 if (j == 0)
188 goto loop;
189
190 j = bn_is_prime_int(t, 1, ctx, 0, cb);
191 if (j == -1)
192 goto err;
193 if (j == 0)
194 goto loop;
195
196 if (!BN_GENCB_call(cb, 2, c1 - 1))
197 goto err;
198 /* We have a safe prime test pass */
199 }
200 }
201 /* we have a prime :-) */
202 found = 1;
203 err:
204 OPENSSL_free(mods);
205 BN_CTX_end(ctx);
206 bn_check_top(ret);
207 return found;
208 }
209
210 #ifndef FIPS_MODULE
BN_generate_prime_ex(BIGNUM * ret,int bits,int safe,const BIGNUM * add,const BIGNUM * rem,BN_GENCB * cb)211 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
212 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
213 {
214 BN_CTX *ctx = BN_CTX_new();
215 int retval;
216
217 if (ctx == NULL)
218 return 0;
219
220 retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx);
221
222 BN_CTX_free(ctx);
223 return retval;
224 }
225 #endif
226
227 #ifndef OPENSSL_NO_DEPRECATED_3_0
BN_is_prime_ex(const BIGNUM * a,int checks,BN_CTX * ctx_passed,BN_GENCB * cb)228 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
229 BN_GENCB *cb)
230 {
231 return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb);
232 }
233
BN_is_prime_fasttest_ex(const BIGNUM * w,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)234 int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
235 int do_trial_division, BN_GENCB *cb)
236 {
237 return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb);
238 }
239 #endif
240
241 /* Wrapper around bn_is_prime_int that sets the minimum number of checks */
ossl_bn_check_prime(const BIGNUM * w,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)242 int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
243 int do_trial_division, BN_GENCB *cb)
244 {
245 int min_checks = bn_mr_min_checks(BN_num_bits(w));
246
247 if (checks < min_checks)
248 checks = min_checks;
249
250 return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
251 }
252
253 /*
254 * Use this only for key generation.
255 * It always uses trial division. The number of checks
256 * (MR rounds) passed in is used without being clamped to a minimum value.
257 */
ossl_bn_check_generated_prime(const BIGNUM * w,int checks,BN_CTX * ctx,BN_GENCB * cb)258 int ossl_bn_check_generated_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
259 BN_GENCB *cb)
260 {
261 return bn_is_prime_int(w, checks, ctx, 1, cb);
262 }
263
BN_check_prime(const BIGNUM * p,BN_CTX * ctx,BN_GENCB * cb)264 int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
265 {
266 return ossl_bn_check_prime(p, 0, ctx, 1, cb);
267 }
268
269 /*
270 * Tests that |w| is probably prime
271 * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
272 *
273 * Returns 0 when composite, 1 when probable prime, -1 on error.
274 */
bn_is_prime_int(const BIGNUM * w,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)275 static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
276 int do_trial_division, BN_GENCB *cb)
277 {
278 int i, status, ret = -1;
279 #ifndef FIPS_MODULE
280 BN_CTX *ctxlocal = NULL;
281 #else
282
283 if (ctx == NULL)
284 return -1;
285 #endif
286
287 /* w must be bigger than 1 */
288 if (BN_cmp(w, BN_value_one()) <= 0)
289 return 0;
290
291 /* w must be odd */
292 if (BN_is_odd(w)) {
293 /* Take care of the really small prime 3 */
294 if (BN_is_word(w, 3))
295 return 1;
296 } else {
297 /* 2 is the only even prime */
298 return BN_is_word(w, 2);
299 }
300
301 /* first look for small factors */
302 if (do_trial_division) {
303 int trial_divisions = calc_trial_divisions(BN_num_bits(w));
304
305 for (i = 1; i < trial_divisions; i++) {
306 BN_ULONG mod = BN_mod_word(w, primes[i]);
307 if (mod == (BN_ULONG)-1)
308 return -1;
309 if (mod == 0)
310 return BN_is_word(w, primes[i]);
311 }
312 if (!BN_GENCB_call(cb, 1, -1))
313 return -1;
314 }
315 #ifndef FIPS_MODULE
316 if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL)
317 goto err;
318 #endif
319
320 if (!ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status)) {
321 ret = -1;
322 goto err;
323 }
324 ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
325 err:
326 #ifndef FIPS_MODULE
327 BN_CTX_free(ctxlocal);
328 #endif
329 return ret;
330 }
331
332 /*
333 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
334 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
335 * The Step numbers listed in the code refer to the enhanced case.
336 *
337 * if enhanced is set, then status returns one of the following:
338 * BN_PRIMETEST_PROBABLY_PRIME
339 * BN_PRIMETEST_COMPOSITE_WITH_FACTOR
340 * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
341 * if enhanced is zero, then status returns either
342 * BN_PRIMETEST_PROBABLY_PRIME or
343 * BN_PRIMETEST_COMPOSITE
344 *
345 * returns 0 if there was an error, otherwise it returns 1.
346 */
ossl_bn_miller_rabin_is_prime(const BIGNUM * w,int iterations,BN_CTX * ctx,BN_GENCB * cb,int enhanced,int * status)347 int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
348 BN_GENCB *cb, int enhanced, int *status)
349 {
350 int i, j, a, ret = 0;
351 BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
352 BN_MONT_CTX *mont = NULL;
353
354 /* w must be odd */
355 if (!BN_is_odd(w))
356 return 0;
357
358 BN_CTX_start(ctx);
359 g = BN_CTX_get(ctx);
360 w1 = BN_CTX_get(ctx);
361 w3 = BN_CTX_get(ctx);
362 x = BN_CTX_get(ctx);
363 m = BN_CTX_get(ctx);
364 z = BN_CTX_get(ctx);
365 b = BN_CTX_get(ctx);
366
367 if (!(b != NULL
368 /* w1 := w - 1 */
369 && BN_copy(w1, w)
370 && BN_sub_word(w1, 1)
371 /* w3 := w - 3 */
372 && BN_copy(w3, w)
373 && BN_sub_word(w3, 3)))
374 goto err;
375
376 /* check w is larger than 3, otherwise the random b will be too small */
377 if (BN_is_zero(w3) || BN_is_negative(w3))
378 goto err;
379
380 /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
381 a = 1;
382 while (!BN_is_bit_set(w1, a))
383 a++;
384 /* (Step 2) m = (w-1) / 2^a */
385 if (!BN_rshift(m, w1, a))
386 goto err;
387
388 /* Montgomery setup for computations mod a */
389 mont = BN_MONT_CTX_new();
390 if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
391 goto err;
392
393 if (iterations == 0)
394 iterations = bn_mr_min_checks(BN_num_bits(w));
395
396 /* (Step 4) */
397 for (i = 0; i < iterations; ++i) {
398 /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
399 if (!BN_priv_rand_range_ex(b, w3, 0, ctx)
400 || !BN_add_word(b, 2)) /* 1 < b < w-1 */
401 goto err;
402
403 if (enhanced) {
404 /* (Step 4.3) */
405 if (!BN_gcd(g, b, w, ctx))
406 goto err;
407 /* (Step 4.4) */
408 if (!BN_is_one(g)) {
409 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
410 ret = 1;
411 goto err;
412 }
413 }
414 /* (Step 4.5) z = b^m mod w */
415 if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
416 goto err;
417 /* (Step 4.6) if (z = 1 or z = w-1) */
418 if (BN_is_one(z) || BN_cmp(z, w1) == 0)
419 goto outer_loop;
420 /* (Step 4.7) for j = 1 to a-1 */
421 for (j = 1; j < a ; ++j) {
422 /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
423 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
424 goto err;
425 /* (Step 4.7.3) */
426 if (BN_cmp(z, w1) == 0)
427 goto outer_loop;
428 /* (Step 4.7.4) */
429 if (BN_is_one(z))
430 goto composite;
431 }
432 /* At this point z = b^((w-1)/2) mod w */
433 /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
434 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
435 goto err;
436 /* (Step 4.10) */
437 if (BN_is_one(z))
438 goto composite;
439 /* (Step 4.11) x = b^(w-1) mod w */
440 if (!BN_copy(x, z))
441 goto err;
442 composite:
443 if (enhanced) {
444 /* (Step 4.1.2) g = GCD(x-1, w) */
445 if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
446 goto err;
447 /* (Steps 4.1.3 - 4.1.4) */
448 if (BN_is_one(g))
449 *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
450 else
451 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
452 } else {
453 *status = BN_PRIMETEST_COMPOSITE;
454 }
455 ret = 1;
456 goto err;
457 outer_loop: ;
458 /* (Step 4.1.5) */
459 if (!BN_GENCB_call(cb, 1, i))
460 goto err;
461 }
462 /* (Step 5) */
463 *status = BN_PRIMETEST_PROBABLY_PRIME;
464 ret = 1;
465 err:
466 BN_clear(g);
467 BN_clear(w1);
468 BN_clear(w3);
469 BN_clear(x);
470 BN_clear(m);
471 BN_clear(z);
472 BN_clear(b);
473 BN_CTX_end(ctx);
474 BN_MONT_CTX_free(mont);
475 return ret;
476 }
477
478 /*
479 * Generate a random number of |bits| bits that is probably prime by sieving.
480 * If |safe| != 0, it generates a safe prime.
481 * |mods| is a preallocated array that gets reused when called again.
482 *
483 * The probably prime is saved in |rnd|.
484 *
485 * Returns 1 on success and 0 on error.
486 */
probable_prime(BIGNUM * rnd,int bits,int safe,prime_t * mods,BN_CTX * ctx)487 static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
488 BN_CTX *ctx)
489 {
490 int i;
491 BN_ULONG delta;
492 int trial_divisions = calc_trial_divisions(bits);
493 BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
494
495 again:
496 if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0,
497 ctx))
498 return 0;
499 if (safe && !BN_set_bit(rnd, 1))
500 return 0;
501 /* we now have a random number 'rnd' to test. */
502 for (i = 1; i < trial_divisions; i++) {
503 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
504 if (mod == (BN_ULONG)-1)
505 return 0;
506 mods[i] = (prime_t) mod;
507 }
508 delta = 0;
509 loop:
510 for (i = 1; i < trial_divisions; i++) {
511 /*
512 * check that rnd is a prime and also that
513 * gcd(rnd-1,primes) == 1 (except for 2)
514 * do the second check only if we are interested in safe primes
515 * in the case that the candidate prime is a single word then
516 * we check only the primes up to sqrt(rnd)
517 */
518 if (bits <= 31 && delta <= 0x7fffffff
519 && square(primes[i]) > BN_get_word(rnd) + delta)
520 break;
521 if (safe ? (mods[i] + delta) % primes[i] <= 1
522 : (mods[i] + delta) % primes[i] == 0) {
523 delta += safe ? 4 : 2;
524 if (delta > maxdelta)
525 goto again;
526 goto loop;
527 }
528 }
529 if (!BN_add_word(rnd, delta))
530 return 0;
531 if (BN_num_bits(rnd) != bits)
532 goto again;
533 bn_check_top(rnd);
534 return 1;
535 }
536
537 /*
538 * Generate a random number |rnd| of |bits| bits that is probably prime
539 * and satisfies |rnd| % |add| == |rem| by sieving.
540 * If |safe| != 0, it generates a safe prime.
541 * |mods| is a preallocated array that gets reused when called again.
542 *
543 * Returns 1 on success and 0 on error.
544 */
probable_prime_dh(BIGNUM * rnd,int bits,int safe,prime_t * mods,const BIGNUM * add,const BIGNUM * rem,BN_CTX * ctx)545 static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
546 const BIGNUM *add, const BIGNUM *rem,
547 BN_CTX *ctx)
548 {
549 int i, ret = 0;
550 BIGNUM *t1;
551 BN_ULONG delta;
552 int trial_divisions = calc_trial_divisions(bits);
553 BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
554
555 BN_CTX_start(ctx);
556 if ((t1 = BN_CTX_get(ctx)) == NULL)
557 goto err;
558
559 if (maxdelta > BN_MASK2 - BN_get_word(add))
560 maxdelta = BN_MASK2 - BN_get_word(add);
561
562 again:
563 if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx))
564 goto err;
565
566 /* we need ((rnd-rem) % add) == 0 */
567
568 if (!BN_mod(t1, rnd, add, ctx))
569 goto err;
570 if (!BN_sub(rnd, rnd, t1))
571 goto err;
572 if (rem == NULL) {
573 if (!BN_add_word(rnd, safe ? 3u : 1u))
574 goto err;
575 } else {
576 if (!BN_add(rnd, rnd, rem))
577 goto err;
578 }
579
580 if (BN_num_bits(rnd) < bits
581 || BN_get_word(rnd) < (safe ? 5u : 3u)) {
582 if (!BN_add(rnd, rnd, add))
583 goto err;
584 }
585
586 /* we now have a random number 'rnd' to test. */
587 for (i = 1; i < trial_divisions; i++) {
588 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
589 if (mod == (BN_ULONG)-1)
590 goto err;
591 mods[i] = (prime_t) mod;
592 }
593 delta = 0;
594 loop:
595 for (i = 1; i < trial_divisions; i++) {
596 /* check that rnd is a prime */
597 if (bits <= 31 && delta <= 0x7fffffff
598 && square(primes[i]) > BN_get_word(rnd) + delta)
599 break;
600 /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
601 if (safe ? (mods[i] + delta) % primes[i] <= 1
602 : (mods[i] + delta) % primes[i] == 0) {
603 delta += BN_get_word(add);
604 if (delta > maxdelta)
605 goto again;
606 goto loop;
607 }
608 }
609 if (!BN_add_word(rnd, delta))
610 goto err;
611 ret = 1;
612
613 err:
614 BN_CTX_end(ctx);
615 bn_check_top(rnd);
616 return ret;
617 }
618