1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <assert.h>
11 #include <limits.h>
12 #include "internal/cryptlib.h"
13 #include "internal/endian.h"
14 #include "bn_local.h"
15 #include <openssl/opensslconf.h>
16 #include "internal/constant_time.h"
17
18 /* This stuff appears to be completely unused, so is deprecated */
19 #ifndef OPENSSL_NO_DEPRECATED_0_9_8
20 /*-
21 * For a 32 bit machine
22 * 2 - 4 == 128
23 * 3 - 8 == 256
24 * 4 - 16 == 512
25 * 5 - 32 == 1024
26 * 6 - 64 == 2048
27 * 7 - 128 == 4096
28 * 8 - 256 == 8192
29 */
30 static int bn_limit_bits = 0;
31 static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
32 static int bn_limit_bits_low = 0;
33 static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
34 static int bn_limit_bits_high = 0;
35 static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
36 static int bn_limit_bits_mont = 0;
37 static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
38
BN_set_params(int mult,int high,int low,int mont)39 void BN_set_params(int mult, int high, int low, int mont)
40 {
41 if (mult >= 0) {
42 if (mult > (int)(sizeof(int) * 8) - 1)
43 mult = sizeof(int) * 8 - 1;
44 bn_limit_bits = mult;
45 bn_limit_num = 1 << mult;
46 }
47 if (high >= 0) {
48 if (high > (int)(sizeof(int) * 8) - 1)
49 high = sizeof(int) * 8 - 1;
50 bn_limit_bits_high = high;
51 bn_limit_num_high = 1 << high;
52 }
53 if (low >= 0) {
54 if (low > (int)(sizeof(int) * 8) - 1)
55 low = sizeof(int) * 8 - 1;
56 bn_limit_bits_low = low;
57 bn_limit_num_low = 1 << low;
58 }
59 if (mont >= 0) {
60 if (mont > (int)(sizeof(int) * 8) - 1)
61 mont = sizeof(int) * 8 - 1;
62 bn_limit_bits_mont = mont;
63 bn_limit_num_mont = 1 << mont;
64 }
65 }
66
BN_get_params(int which)67 int BN_get_params(int which)
68 {
69 if (which == 0)
70 return bn_limit_bits;
71 else if (which == 1)
72 return bn_limit_bits_high;
73 else if (which == 2)
74 return bn_limit_bits_low;
75 else if (which == 3)
76 return bn_limit_bits_mont;
77 else
78 return 0;
79 }
80 #endif
81
BN_value_one(void)82 const BIGNUM *BN_value_one(void)
83 {
84 static const BN_ULONG data_one = 1L;
85 static const BIGNUM const_one = {
86 (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA
87 };
88
89 return &const_one;
90 }
91
92 /*
93 * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
94 * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
95 */
96 #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
97 && _MSC_VER>=1400 && _MSC_VER<1501
98 # define MS_BROKEN_BN_num_bits_word
99 # pragma optimize("", off)
100 #endif
BN_num_bits_word(BN_ULONG l)101 int BN_num_bits_word(BN_ULONG l)
102 {
103 BN_ULONG x, mask;
104 int bits = (l != 0);
105
106 #if BN_BITS2 > 32
107 x = l >> 32;
108 mask = (0 - x) & BN_MASK2;
109 mask = (0 - (mask >> (BN_BITS2 - 1)));
110 bits += 32 & mask;
111 l ^= (x ^ l) & mask;
112 #endif
113
114 x = l >> 16;
115 mask = (0 - x) & BN_MASK2;
116 mask = (0 - (mask >> (BN_BITS2 - 1)));
117 bits += 16 & mask;
118 l ^= (x ^ l) & mask;
119
120 x = l >> 8;
121 mask = (0 - x) & BN_MASK2;
122 mask = (0 - (mask >> (BN_BITS2 - 1)));
123 bits += 8 & mask;
124 l ^= (x ^ l) & mask;
125
126 x = l >> 4;
127 mask = (0 - x) & BN_MASK2;
128 mask = (0 - (mask >> (BN_BITS2 - 1)));
129 bits += 4 & mask;
130 l ^= (x ^ l) & mask;
131
132 x = l >> 2;
133 mask = (0 - x) & BN_MASK2;
134 mask = (0 - (mask >> (BN_BITS2 - 1)));
135 bits += 2 & mask;
136 l ^= (x ^ l) & mask;
137
138 x = l >> 1;
139 mask = (0 - x) & BN_MASK2;
140 mask = (0 - (mask >> (BN_BITS2 - 1)));
141 bits += 1 & mask;
142
143 return bits;
144 }
145 #ifdef MS_BROKEN_BN_num_bits_word
146 # pragma optimize("", on)
147 #endif
148
149 /*
150 * This function still leaks `a->dmax`: it's caller's responsibility to
151 * expand the input `a` in advance to a public length.
152 */
153 static ossl_inline
bn_num_bits_consttime(const BIGNUM * a)154 int bn_num_bits_consttime(const BIGNUM *a)
155 {
156 int j, ret;
157 unsigned int mask, past_i;
158 int i = a->top - 1;
159 bn_check_top(a);
160
161 for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
162 mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
163
164 ret += BN_BITS2 & (~mask & ~past_i);
165 ret += BN_num_bits_word(a->d[j]) & mask;
166
167 past_i |= mask; /* past_i will become 0xff..ff after i==j */
168 }
169
170 /*
171 * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
172 * final result.
173 */
174 mask = ~(constant_time_eq_int(i, ((int)-1)));
175
176 return ret & mask;
177 }
178
BN_num_bits(const BIGNUM * a)179 int BN_num_bits(const BIGNUM *a)
180 {
181 int i = a->top - 1;
182 bn_check_top(a);
183
184 if (a->flags & BN_FLG_CONSTTIME) {
185 /*
186 * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
187 * so that a->dmax is not leaking secret information.
188 *
189 * In other words, it's the caller's responsibility to ensure `a` has
190 * been preallocated in advance to a public length if we hit this
191 * branch.
192 *
193 */
194 return bn_num_bits_consttime(a);
195 }
196
197 if (BN_is_zero(a))
198 return 0;
199
200 return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
201 }
202
bn_free_d(BIGNUM * a,int clear)203 static void bn_free_d(BIGNUM *a, int clear)
204 {
205 if (BN_get_flags(a, BN_FLG_SECURE))
206 OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
207 else if (clear != 0)
208 OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
209 else
210 OPENSSL_free(a->d);
211 }
212
213
BN_clear_free(BIGNUM * a)214 void BN_clear_free(BIGNUM *a)
215 {
216 if (a == NULL)
217 return;
218 if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
219 bn_free_d(a, 1);
220 if (BN_get_flags(a, BN_FLG_MALLOCED)) {
221 OPENSSL_cleanse(a, sizeof(*a));
222 OPENSSL_free(a);
223 }
224 }
225
BN_free(BIGNUM * a)226 void BN_free(BIGNUM *a)
227 {
228 if (a == NULL)
229 return;
230 if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
231 bn_free_d(a, 0);
232 if (a->flags & BN_FLG_MALLOCED)
233 OPENSSL_free(a);
234 }
235
bn_init(BIGNUM * a)236 void bn_init(BIGNUM *a)
237 {
238 static BIGNUM nilbn;
239
240 *a = nilbn;
241 bn_check_top(a);
242 }
243
BN_new(void)244 BIGNUM *BN_new(void)
245 {
246 BIGNUM *ret;
247
248 if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
249 return NULL;
250 ret->flags = BN_FLG_MALLOCED;
251 bn_check_top(ret);
252 return ret;
253 }
254
BN_secure_new(void)255 BIGNUM *BN_secure_new(void)
256 {
257 BIGNUM *ret = BN_new();
258
259 if (ret != NULL)
260 ret->flags |= BN_FLG_SECURE;
261 return ret;
262 }
263
264 /* This is used by bn_expand2() */
265 /* The caller MUST check that words > b->dmax before calling this */
bn_expand_internal(const BIGNUM * b,int words)266 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
267 {
268 BN_ULONG *a = NULL;
269
270 if (words > (INT_MAX / (4 * BN_BITS2))) {
271 ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG);
272 return NULL;
273 }
274 if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
275 ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
276 return NULL;
277 }
278 if (BN_get_flags(b, BN_FLG_SECURE))
279 a = OPENSSL_secure_zalloc(words * sizeof(*a));
280 else
281 a = OPENSSL_zalloc(words * sizeof(*a));
282 if (a == NULL)
283 return NULL;
284
285 assert(b->top <= words);
286 if (b->top > 0)
287 memcpy(a, b->d, sizeof(*a) * b->top);
288
289 return a;
290 }
291
292 /*
293 * This is an internal function that should not be used in applications. It
294 * ensures that 'b' has enough room for a 'words' word number and initialises
295 * any unused part of b->d with leading zeros. It is mostly used by the
296 * various BIGNUM routines. If there is an error, NULL is returned. If not,
297 * 'b' is returned.
298 */
299
bn_expand2(BIGNUM * b,int words)300 BIGNUM *bn_expand2(BIGNUM *b, int words)
301 {
302 if (words > b->dmax) {
303 BN_ULONG *a = bn_expand_internal(b, words);
304 if (!a)
305 return NULL;
306 if (b->d != NULL)
307 bn_free_d(b, 1);
308 b->d = a;
309 b->dmax = words;
310 }
311
312 return b;
313 }
314
BN_dup(const BIGNUM * a)315 BIGNUM *BN_dup(const BIGNUM *a)
316 {
317 BIGNUM *t;
318
319 if (a == NULL)
320 return NULL;
321 bn_check_top(a);
322
323 t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
324 if (t == NULL)
325 return NULL;
326 if (!BN_copy(t, a)) {
327 BN_free(t);
328 return NULL;
329 }
330 bn_check_top(t);
331 return t;
332 }
333
BN_copy(BIGNUM * a,const BIGNUM * b)334 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
335 {
336 int bn_words;
337
338 bn_check_top(b);
339
340 bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
341
342 if (a == b)
343 return a;
344 if (bn_wexpand(a, bn_words) == NULL)
345 return NULL;
346
347 if (b->top > 0)
348 memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
349
350 a->neg = b->neg;
351 a->top = b->top;
352 a->flags |= b->flags & BN_FLG_FIXED_TOP;
353 bn_check_top(a);
354 return a;
355 }
356
357 #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
358 | BN_FLG_CONSTTIME \
359 | BN_FLG_SECURE \
360 | BN_FLG_FIXED_TOP))
361 #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
362
BN_swap(BIGNUM * a,BIGNUM * b)363 void BN_swap(BIGNUM *a, BIGNUM *b)
364 {
365 int flags_old_a, flags_old_b;
366 BN_ULONG *tmp_d;
367 int tmp_top, tmp_dmax, tmp_neg;
368
369 bn_check_top(a);
370 bn_check_top(b);
371
372 flags_old_a = a->flags;
373 flags_old_b = b->flags;
374
375 tmp_d = a->d;
376 tmp_top = a->top;
377 tmp_dmax = a->dmax;
378 tmp_neg = a->neg;
379
380 a->d = b->d;
381 a->top = b->top;
382 a->dmax = b->dmax;
383 a->neg = b->neg;
384
385 b->d = tmp_d;
386 b->top = tmp_top;
387 b->dmax = tmp_dmax;
388 b->neg = tmp_neg;
389
390 a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
391 b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
392 bn_check_top(a);
393 bn_check_top(b);
394 }
395
BN_clear(BIGNUM * a)396 void BN_clear(BIGNUM *a)
397 {
398 if (a == NULL)
399 return;
400 bn_check_top(a);
401 if (a->d != NULL)
402 OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
403 a->neg = 0;
404 a->top = 0;
405 a->flags &= ~BN_FLG_FIXED_TOP;
406 }
407
BN_get_word(const BIGNUM * a)408 BN_ULONG BN_get_word(const BIGNUM *a)
409 {
410 if (a->top > 1)
411 return BN_MASK2;
412 else if (a->top == 1)
413 return a->d[0];
414 /* a->top == 0 */
415 return 0;
416 }
417
BN_set_word(BIGNUM * a,BN_ULONG w)418 int BN_set_word(BIGNUM *a, BN_ULONG w)
419 {
420 bn_check_top(a);
421 if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
422 return 0;
423 a->neg = 0;
424 a->d[0] = w;
425 a->top = (w ? 1 : 0);
426 a->flags &= ~BN_FLG_FIXED_TOP;
427 bn_check_top(a);
428 return 1;
429 }
430
431 typedef enum {BIG, LITTLE} endianness_t;
432 typedef enum {SIGNED, UNSIGNED} signedness_t;
433
bin2bn(const unsigned char * s,int len,BIGNUM * ret,endianness_t endianness,signedness_t signedness)434 static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret,
435 endianness_t endianness, signedness_t signedness)
436 {
437 int inc;
438 const unsigned char *s2;
439 int inc2;
440 int neg = 0, xor = 0, carry = 0;
441 unsigned int i;
442 unsigned int n;
443 BIGNUM *bn = NULL;
444
445 /* Negative length is not acceptable */
446 if (len < 0)
447 return NULL;
448
449 if (ret == NULL)
450 ret = bn = BN_new();
451 if (ret == NULL)
452 return NULL;
453 bn_check_top(ret);
454
455 /*
456 * If the input has no bits, the number is considered zero.
457 * This makes calls with s==NULL and len==0 safe.
458 */
459 if (len == 0) {
460 BN_clear(ret);
461 return ret;
462 }
463
464 /*
465 * The loop that does the work iterates from least to most
466 * significant BIGNUM chunk, so we adapt parameters to transfer
467 * input bytes accordingly.
468 */
469 if (endianness == LITTLE) {
470 s2 = s + len - 1;
471 inc2 = -1;
472 inc = 1;
473 } else {
474 s2 = s;
475 inc2 = 1;
476 inc = -1;
477 s += len - 1;
478 }
479
480 /* Take note of the signedness of the input bytes*/
481 if (signedness == SIGNED) {
482 neg = !!(*s2 & 0x80);
483 xor = neg ? 0xff : 0x00;
484 carry = neg;
485 }
486
487 /*
488 * Skip leading sign extensions (the value of |xor|).
489 * This is the only spot where |s2| and |inc2| are used.
490 */
491 for ( ; len > 0 && *s2 == xor; s2 += inc2, len--)
492 continue;
493
494 /*
495 * If there was a set of 0xff, we backtrack one byte unless the next
496 * one has a sign bit, as the last 0xff is then part of the actual
497 * number, rather then a mere sign extension.
498 */
499 if (xor == 0xff) {
500 if (len == 0 || !(*s2 & 0x80))
501 len++;
502 }
503 /* If it was all zeros, we're done */
504 if (len == 0) {
505 ret->top = 0;
506 return ret;
507 }
508 n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */
509 if (bn_wexpand(ret, (int)n) == NULL) {
510 BN_free(bn);
511 return NULL;
512 }
513 ret->top = n;
514 ret->neg = neg;
515 for (i = 0; n-- > 0; i++) {
516 BN_ULONG l = 0; /* Accumulator */
517 unsigned int m = 0; /* Offset in a bignum chunk, in bits */
518
519 for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) {
520 BN_ULONG byte_xored = *s ^ xor;
521 BN_ULONG byte = (byte_xored + carry) & 0xff;
522
523 carry = byte_xored > byte; /* Implicit 1 or 0 */
524 l |= (byte << m);
525 }
526 ret->d[i] = l;
527 }
528 /*
529 * need to call this due to clear byte at top if avoiding having the top
530 * bit set (-ve number)
531 */
532 bn_correct_top(ret);
533 return ret;
534 }
535
BN_bin2bn(const unsigned char * s,int len,BIGNUM * ret)536 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
537 {
538 return bin2bn(s, len, ret, BIG, UNSIGNED);
539 }
540
BN_signed_bin2bn(const unsigned char * s,int len,BIGNUM * ret)541 BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
542 {
543 return bin2bn(s, len, ret, BIG, SIGNED);
544 }
545
bn2binpad(const BIGNUM * a,unsigned char * to,int tolen,endianness_t endianness,signedness_t signedness)546 static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen,
547 endianness_t endianness, signedness_t signedness)
548 {
549 int inc;
550 int n, n8;
551 int xor = 0, carry = 0, ext = 0;
552 size_t i, lasti, j, atop, mask;
553 BN_ULONG l;
554
555 /*
556 * In case |a| is fixed-top, BN_num_bits can return bogus length,
557 * but it's assumed that fixed-top inputs ought to be "nominated"
558 * even for padded output, so it works out...
559 */
560 n8 = BN_num_bits(a);
561 n = (n8 + 7) / 8; /* This is what BN_num_bytes() does */
562
563 /* Take note of the signedness of the bignum */
564 if (signedness == SIGNED) {
565 xor = a->neg ? 0xff : 0x00;
566 carry = a->neg;
567
568 /*
569 * if |n * 8 == n|, then the MSbit is set, otherwise unset.
570 * We must compensate with one extra byte if that doesn't
571 * correspond to the signedness of the bignum with regards
572 * to 2's complement.
573 */
574 ext = (n * 8 == n8)
575 ? !a->neg /* MSbit set on nonnegative bignum */
576 : a->neg; /* MSbit unset on negative bignum */
577 }
578
579 if (tolen == -1) {
580 tolen = n + ext;
581 } else if (tolen < n + ext) { /* uncommon/unlike case */
582 BIGNUM temp = *a;
583
584 bn_correct_top(&temp);
585 n8 = BN_num_bits(&temp);
586 n = (n8 + 7) / 8; /* This is what BN_num_bytes() does */
587 if (tolen < n + ext)
588 return -1;
589 }
590
591 /* Swipe through whole available data and don't give away padded zero. */
592 atop = a->dmax * BN_BYTES;
593 if (atop == 0) {
594 if (tolen != 0)
595 memset(to, '\0', tolen);
596 return tolen;
597 }
598
599 /*
600 * The loop that does the work iterates from least significant
601 * to most significant BIGNUM limb, so we adapt parameters to
602 * transfer output bytes accordingly.
603 */
604 if (endianness == LITTLE) {
605 inc = 1;
606 } else {
607 inc = -1;
608 to += tolen - 1; /* Move to the last byte, not beyond */
609 }
610
611 lasti = atop - 1;
612 atop = a->top * BN_BYTES;
613 for (i = 0, j = 0; j < (size_t)tolen; j++) {
614 unsigned char byte, byte_xored;
615
616 l = a->d[i / BN_BYTES];
617 mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
618 byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
619 byte_xored = byte ^ xor;
620 *to = (unsigned char)(byte_xored + carry);
621 carry = byte_xored > *to; /* Implicit 1 or 0 */
622 to += inc;
623 i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
624 }
625
626 return tolen;
627 }
628
BN_bn2binpad(const BIGNUM * a,unsigned char * to,int tolen)629 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
630 {
631 if (tolen < 0)
632 return -1;
633 return bn2binpad(a, to, tolen, BIG, UNSIGNED);
634 }
635
BN_signed_bn2bin(const BIGNUM * a,unsigned char * to,int tolen)636 int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen)
637 {
638 if (tolen < 0)
639 return -1;
640 return bn2binpad(a, to, tolen, BIG, SIGNED);
641 }
642
BN_bn2bin(const BIGNUM * a,unsigned char * to)643 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
644 {
645 return bn2binpad(a, to, -1, BIG, UNSIGNED);
646 }
647
BN_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)648 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
649 {
650 return bin2bn(s, len, ret, LITTLE, UNSIGNED);
651 }
652
BN_signed_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)653 BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
654 {
655 return bin2bn(s, len, ret, LITTLE, SIGNED);
656 }
657
BN_bn2lebinpad(const BIGNUM * a,unsigned char * to,int tolen)658 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
659 {
660 if (tolen < 0)
661 return -1;
662 return bn2binpad(a, to, tolen, LITTLE, UNSIGNED);
663 }
664
BN_signed_bn2lebin(const BIGNUM * a,unsigned char * to,int tolen)665 int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen)
666 {
667 if (tolen < 0)
668 return -1;
669 return bn2binpad(a, to, tolen, LITTLE, SIGNED);
670 }
671
BN_native2bn(const unsigned char * s,int len,BIGNUM * ret)672 BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret)
673 {
674 DECLARE_IS_ENDIAN;
675
676 if (IS_LITTLE_ENDIAN)
677 return BN_lebin2bn(s, len, ret);
678 return BN_bin2bn(s, len, ret);
679 }
680
BN_signed_native2bn(const unsigned char * s,int len,BIGNUM * ret)681 BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret)
682 {
683 DECLARE_IS_ENDIAN;
684
685 if (IS_LITTLE_ENDIAN)
686 return BN_signed_lebin2bn(s, len, ret);
687 return BN_signed_bin2bn(s, len, ret);
688 }
689
BN_bn2nativepad(const BIGNUM * a,unsigned char * to,int tolen)690 int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen)
691 {
692 DECLARE_IS_ENDIAN;
693
694 if (IS_LITTLE_ENDIAN)
695 return BN_bn2lebinpad(a, to, tolen);
696 return BN_bn2binpad(a, to, tolen);
697 }
698
BN_signed_bn2native(const BIGNUM * a,unsigned char * to,int tolen)699 int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen)
700 {
701 DECLARE_IS_ENDIAN;
702
703 if (IS_LITTLE_ENDIAN)
704 return BN_signed_bn2lebin(a, to, tolen);
705 return BN_signed_bn2bin(a, to, tolen);
706 }
707
BN_ucmp(const BIGNUM * a,const BIGNUM * b)708 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
709 {
710 int i;
711 BN_ULONG t1, t2, *ap, *bp;
712
713 ap = a->d;
714 bp = b->d;
715
716 if (BN_get_flags(a, BN_FLG_CONSTTIME)
717 && a->top == b->top) {
718 int res = 0;
719
720 for (i = 0; i < b->top; i++) {
721 res = constant_time_select_int(constant_time_lt_bn(ap[i], bp[i]),
722 -1, res);
723 res = constant_time_select_int(constant_time_lt_bn(bp[i], ap[i]),
724 1, res);
725 }
726 return res;
727 }
728
729 bn_check_top(a);
730 bn_check_top(b);
731
732 i = a->top - b->top;
733 if (i != 0)
734 return i;
735
736 for (i = a->top - 1; i >= 0; i--) {
737 t1 = ap[i];
738 t2 = bp[i];
739 if (t1 != t2)
740 return ((t1 > t2) ? 1 : -1);
741 }
742 return 0;
743 }
744
BN_cmp(const BIGNUM * a,const BIGNUM * b)745 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
746 {
747 int i;
748 int gt, lt;
749 BN_ULONG t1, t2;
750
751 if ((a == NULL) || (b == NULL)) {
752 if (a != NULL)
753 return -1;
754 else if (b != NULL)
755 return 1;
756 else
757 return 0;
758 }
759
760 bn_check_top(a);
761 bn_check_top(b);
762
763 if (a->neg != b->neg) {
764 if (a->neg)
765 return -1;
766 else
767 return 1;
768 }
769 if (a->neg == 0) {
770 gt = 1;
771 lt = -1;
772 } else {
773 gt = -1;
774 lt = 1;
775 }
776
777 if (a->top > b->top)
778 return gt;
779 if (a->top < b->top)
780 return lt;
781 for (i = a->top - 1; i >= 0; i--) {
782 t1 = a->d[i];
783 t2 = b->d[i];
784 if (t1 > t2)
785 return gt;
786 if (t1 < t2)
787 return lt;
788 }
789 return 0;
790 }
791
BN_set_bit(BIGNUM * a,int n)792 int BN_set_bit(BIGNUM *a, int n)
793 {
794 int i, j, k;
795
796 if (n < 0)
797 return 0;
798
799 i = n / BN_BITS2;
800 j = n % BN_BITS2;
801 if (a->top <= i) {
802 if (bn_wexpand(a, i + 1) == NULL)
803 return 0;
804 for (k = a->top; k < i + 1; k++)
805 a->d[k] = 0;
806 a->top = i + 1;
807 a->flags &= ~BN_FLG_FIXED_TOP;
808 }
809
810 a->d[i] |= (((BN_ULONG)1) << j);
811 bn_check_top(a);
812 return 1;
813 }
814
BN_clear_bit(BIGNUM * a,int n)815 int BN_clear_bit(BIGNUM *a, int n)
816 {
817 int i, j;
818
819 bn_check_top(a);
820 if (n < 0)
821 return 0;
822
823 i = n / BN_BITS2;
824 j = n % BN_BITS2;
825 if (a->top <= i)
826 return 0;
827
828 a->d[i] &= (~(((BN_ULONG)1) << j));
829 bn_correct_top(a);
830 return 1;
831 }
832
BN_is_bit_set(const BIGNUM * a,int n)833 int BN_is_bit_set(const BIGNUM *a, int n)
834 {
835 int i, j;
836
837 bn_check_top(a);
838 if (n < 0)
839 return 0;
840 i = n / BN_BITS2;
841 j = n % BN_BITS2;
842 if (a->top <= i)
843 return 0;
844 return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
845 }
846
ossl_bn_mask_bits_fixed_top(BIGNUM * a,int n)847 int ossl_bn_mask_bits_fixed_top(BIGNUM *a, int n)
848 {
849 int b, w;
850
851 if (n < 0)
852 return 0;
853
854 w = n / BN_BITS2;
855 b = n % BN_BITS2;
856 if (w >= a->top)
857 return 0;
858 if (b == 0)
859 a->top = w;
860 else {
861 a->top = w + 1;
862 a->d[w] &= ~(BN_MASK2 << b);
863 }
864 a->flags |= BN_FLG_FIXED_TOP;
865 return 1;
866 }
867
BN_mask_bits(BIGNUM * a,int n)868 int BN_mask_bits(BIGNUM *a, int n)
869 {
870 int ret;
871
872 bn_check_top(a);
873 ret = ossl_bn_mask_bits_fixed_top(a, n);
874 if (ret)
875 bn_correct_top(a);
876 return ret;
877 }
878
BN_set_negative(BIGNUM * a,int b)879 void BN_set_negative(BIGNUM *a, int b)
880 {
881 if (b && !BN_is_zero(a))
882 a->neg = 1;
883 else
884 a->neg = 0;
885 }
886
bn_cmp_words(const BN_ULONG * a,const BN_ULONG * b,int n)887 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
888 {
889 int i;
890 BN_ULONG aa, bb;
891
892 if (n == 0)
893 return 0;
894
895 aa = a[n - 1];
896 bb = b[n - 1];
897 if (aa != bb)
898 return ((aa > bb) ? 1 : -1);
899 for (i = n - 2; i >= 0; i--) {
900 aa = a[i];
901 bb = b[i];
902 if (aa != bb)
903 return ((aa > bb) ? 1 : -1);
904 }
905 return 0;
906 }
907
908 /*
909 * Here follows a specialised variants of bn_cmp_words(). It has the
910 * capability of performing the operation on arrays of different sizes. The
911 * sizes of those arrays is expressed through cl, which is the common length
912 * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
913 * two lengths, calculated as len(a)-len(b). All lengths are the number of
914 * BN_ULONGs...
915 */
916
bn_cmp_part_words(const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)917 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
918 {
919 int n, i;
920 n = cl - 1;
921
922 if (dl < 0) {
923 for (i = dl; i < 0; i++) {
924 if (b[n - i] != 0)
925 return -1; /* a < b */
926 }
927 }
928 if (dl > 0) {
929 for (i = dl; i > 0; i--) {
930 if (a[n + i] != 0)
931 return 1; /* a > b */
932 }
933 }
934 return bn_cmp_words(a, b, cl);
935 }
936
937 /*-
938 * Constant-time conditional swap of a and b.
939 * a and b are swapped if condition is not 0.
940 * nwords is the number of words to swap.
941 * Assumes that at least nwords are allocated in both a and b.
942 * Assumes that no more than nwords are used by either a or b.
943 */
BN_consttime_swap(BN_ULONG condition,BIGNUM * a,BIGNUM * b,int nwords)944 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
945 {
946 BN_ULONG t;
947 int i;
948
949 bn_wcheck_size(a, nwords);
950 bn_wcheck_size(b, nwords);
951
952 condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
953
954 t = (a->top ^ b->top) & condition;
955 a->top ^= t;
956 b->top ^= t;
957
958 t = (a->neg ^ b->neg) & condition;
959 a->neg ^= t;
960 b->neg ^= t;
961
962 /*-
963 * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
964 * is actually to treat it as it's read-only data, and some (if not most)
965 * of it does reside in read-only segment. In other words observation of
966 * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
967 * condition. It would either cause SEGV or effectively cause data
968 * corruption.
969 *
970 * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
971 * preserved.
972 *
973 * BN_FLG_SECURE: must be preserved, because it determines how x->d was
974 * allocated and hence how to free it.
975 *
976 * BN_FLG_CONSTTIME: sufficient to mask and swap
977 *
978 * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
979 * the data, so the d array may be padded with additional 0 values (i.e.
980 * top could be greater than the minimal value that it could be). We should
981 * be swapping it
982 */
983
984 #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
985
986 t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
987 a->flags ^= t;
988 b->flags ^= t;
989
990 /* conditionally swap the data */
991 for (i = 0; i < nwords; i++) {
992 t = (a->d[i] ^ b->d[i]) & condition;
993 a->d[i] ^= t;
994 b->d[i] ^= t;
995 }
996 }
997
998 #undef BN_CONSTTIME_SWAP_FLAGS
999
1000 /* Bits of security, see SP800-57 */
1001
BN_security_bits(int L,int N)1002 int BN_security_bits(int L, int N)
1003 {
1004 int secbits, bits;
1005 if (L >= 15360)
1006 secbits = 256;
1007 else if (L >= 7680)
1008 secbits = 192;
1009 else if (L >= 3072)
1010 secbits = 128;
1011 else if (L >= 2048)
1012 secbits = 112;
1013 else if (L >= 1024)
1014 secbits = 80;
1015 else
1016 return 0;
1017 if (N == -1)
1018 return secbits;
1019 bits = N / 2;
1020 if (bits < 80)
1021 return 0;
1022 return bits >= secbits ? secbits : bits;
1023 }
1024
BN_zero_ex(BIGNUM * a)1025 void BN_zero_ex(BIGNUM *a)
1026 {
1027 a->neg = 0;
1028 a->top = 0;
1029 a->flags &= ~BN_FLG_FIXED_TOP;
1030 }
1031
BN_abs_is_word(const BIGNUM * a,const BN_ULONG w)1032 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
1033 {
1034 return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
1035 }
1036
BN_is_zero(const BIGNUM * a)1037 int BN_is_zero(const BIGNUM *a)
1038 {
1039 return a->top == 0;
1040 }
1041
BN_is_one(const BIGNUM * a)1042 int BN_is_one(const BIGNUM *a)
1043 {
1044 return BN_abs_is_word(a, 1) && !a->neg;
1045 }
1046
BN_is_word(const BIGNUM * a,const BN_ULONG w)1047 int BN_is_word(const BIGNUM *a, const BN_ULONG w)
1048 {
1049 return BN_abs_is_word(a, w) && (!w || !a->neg);
1050 }
1051
ossl_bn_is_word_fixed_top(const BIGNUM * a,const BN_ULONG w)1052 int ossl_bn_is_word_fixed_top(const BIGNUM *a, const BN_ULONG w)
1053 {
1054 int res, i;
1055 const BN_ULONG *ap = a->d;
1056
1057 if (a->neg || a->top == 0)
1058 return 0;
1059
1060 res = constant_time_select_int(constant_time_eq_bn(ap[0], w), 1, 0);
1061
1062 for (i = 1; i < a->top; i++)
1063 res = constant_time_select_int(constant_time_is_zero_bn(ap[i]),
1064 res, 0);
1065 return res;
1066 }
1067
BN_is_odd(const BIGNUM * a)1068 int BN_is_odd(const BIGNUM *a)
1069 {
1070 return (a->top > 0) && (a->d[0] & 1);
1071 }
1072
BN_is_negative(const BIGNUM * a)1073 int BN_is_negative(const BIGNUM *a)
1074 {
1075 return (a->neg != 0);
1076 }
1077
BN_to_montgomery(BIGNUM * r,const BIGNUM * a,BN_MONT_CTX * mont,BN_CTX * ctx)1078 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
1079 BN_CTX *ctx)
1080 {
1081 return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
1082 }
1083
BN_with_flags(BIGNUM * dest,const BIGNUM * b,int flags)1084 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
1085 {
1086 dest->d = b->d;
1087 dest->top = b->top;
1088 dest->dmax = b->dmax;
1089 dest->neg = b->neg;
1090 dest->flags = ((dest->flags & BN_FLG_MALLOCED)
1091 | (b->flags & ~BN_FLG_MALLOCED)
1092 | BN_FLG_STATIC_DATA | flags);
1093 }
1094
BN_GENCB_new(void)1095 BN_GENCB *BN_GENCB_new(void)
1096 {
1097 BN_GENCB *ret;
1098
1099 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
1100 return NULL;
1101
1102 return ret;
1103 }
1104
BN_GENCB_free(BN_GENCB * cb)1105 void BN_GENCB_free(BN_GENCB *cb)
1106 {
1107 if (cb == NULL)
1108 return;
1109 OPENSSL_free(cb);
1110 }
1111
BN_set_flags(BIGNUM * b,int n)1112 void BN_set_flags(BIGNUM *b, int n)
1113 {
1114 b->flags |= n;
1115 }
1116
BN_get_flags(const BIGNUM * b,int n)1117 int BN_get_flags(const BIGNUM *b, int n)
1118 {
1119 return b->flags & n;
1120 }
1121
1122 /* Populate a BN_GENCB structure with an "old"-style callback */
BN_GENCB_set_old(BN_GENCB * gencb,void (* callback)(int,int,void *),void * cb_arg)1123 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
1124 void *cb_arg)
1125 {
1126 BN_GENCB *tmp_gencb = gencb;
1127 tmp_gencb->ver = 1;
1128 tmp_gencb->arg = cb_arg;
1129 tmp_gencb->cb.cb_1 = callback;
1130 }
1131
1132 /* Populate a BN_GENCB structure with a "new"-style callback */
BN_GENCB_set(BN_GENCB * gencb,int (* callback)(int,int,BN_GENCB *),void * cb_arg)1133 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
1134 void *cb_arg)
1135 {
1136 BN_GENCB *tmp_gencb = gencb;
1137 tmp_gencb->ver = 2;
1138 tmp_gencb->arg = cb_arg;
1139 tmp_gencb->cb.cb_2 = callback;
1140 }
1141
BN_GENCB_get_arg(BN_GENCB * cb)1142 void *BN_GENCB_get_arg(BN_GENCB *cb)
1143 {
1144 return cb->arg;
1145 }
1146
bn_wexpand(BIGNUM * a,int words)1147 BIGNUM *bn_wexpand(BIGNUM *a, int words)
1148 {
1149 return (words <= a->dmax) ? a : bn_expand2(a, words);
1150 }
1151
bn_correct_top_consttime(BIGNUM * a)1152 void bn_correct_top_consttime(BIGNUM *a)
1153 {
1154 int j, atop;
1155 BN_ULONG limb;
1156 unsigned int mask;
1157
1158 for (j = 0, atop = 0; j < a->dmax; j++) {
1159 limb = a->d[j];
1160 limb |= 0 - limb;
1161 limb >>= BN_BITS2 - 1;
1162 limb = 0 - limb;
1163 mask = (unsigned int)limb;
1164 mask &= constant_time_msb(j - a->top);
1165 atop = constant_time_select_int(mask, j + 1, atop);
1166 }
1167
1168 mask = constant_time_eq_int(atop, 0);
1169 a->top = atop;
1170 a->neg = constant_time_select_int(mask, 0, a->neg);
1171 a->flags &= ~BN_FLG_FIXED_TOP;
1172 }
1173
bn_correct_top(BIGNUM * a)1174 void bn_correct_top(BIGNUM *a)
1175 {
1176 BN_ULONG *ftl;
1177 int tmp_top = a->top;
1178
1179 if (tmp_top > 0) {
1180 for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1181 ftl--;
1182 if (*ftl != 0)
1183 break;
1184 }
1185 a->top = tmp_top;
1186 }
1187 if (a->top == 0)
1188 a->neg = 0;
1189 a->flags &= ~BN_FLG_FIXED_TOP;
1190 bn_pollute(a);
1191 }
1192