xref: /openssl/crypto/bn/bn_lib.c (revision 2e407ea5)
1 /*
2  * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <assert.h>
11 #include <limits.h>
12 #include "internal/cryptlib.h"
13 #include "internal/endian.h"
14 #include "bn_local.h"
15 #include <openssl/opensslconf.h>
16 #include "internal/constant_time.h"
17 
18 /* This stuff appears to be completely unused, so is deprecated */
19 #ifndef OPENSSL_NO_DEPRECATED_0_9_8
20 /*-
21  * For a 32 bit machine
22  * 2 -   4 ==  128
23  * 3 -   8 ==  256
24  * 4 -  16 ==  512
25  * 5 -  32 == 1024
26  * 6 -  64 == 2048
27  * 7 - 128 == 4096
28  * 8 - 256 == 8192
29  */
30 static int bn_limit_bits = 0;
31 static int bn_limit_num = 8;    /* (1<<bn_limit_bits) */
32 static int bn_limit_bits_low = 0;
33 static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
34 static int bn_limit_bits_high = 0;
35 static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
36 static int bn_limit_bits_mont = 0;
37 static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
38 
BN_set_params(int mult,int high,int low,int mont)39 void BN_set_params(int mult, int high, int low, int mont)
40 {
41     if (mult >= 0) {
42         if (mult > (int)(sizeof(int) * 8) - 1)
43             mult = sizeof(int) * 8 - 1;
44         bn_limit_bits = mult;
45         bn_limit_num = 1 << mult;
46     }
47     if (high >= 0) {
48         if (high > (int)(sizeof(int) * 8) - 1)
49             high = sizeof(int) * 8 - 1;
50         bn_limit_bits_high = high;
51         bn_limit_num_high = 1 << high;
52     }
53     if (low >= 0) {
54         if (low > (int)(sizeof(int) * 8) - 1)
55             low = sizeof(int) * 8 - 1;
56         bn_limit_bits_low = low;
57         bn_limit_num_low = 1 << low;
58     }
59     if (mont >= 0) {
60         if (mont > (int)(sizeof(int) * 8) - 1)
61             mont = sizeof(int) * 8 - 1;
62         bn_limit_bits_mont = mont;
63         bn_limit_num_mont = 1 << mont;
64     }
65 }
66 
BN_get_params(int which)67 int BN_get_params(int which)
68 {
69     if (which == 0)
70         return bn_limit_bits;
71     else if (which == 1)
72         return bn_limit_bits_high;
73     else if (which == 2)
74         return bn_limit_bits_low;
75     else if (which == 3)
76         return bn_limit_bits_mont;
77     else
78         return 0;
79 }
80 #endif
81 
BN_value_one(void)82 const BIGNUM *BN_value_one(void)
83 {
84     static const BN_ULONG data_one = 1L;
85     static const BIGNUM const_one = {
86         (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA
87     };
88 
89     return &const_one;
90 }
91 
92 /*
93  * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
94  * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
95  */
96 #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
97     && _MSC_VER>=1400 && _MSC_VER<1501
98 # define MS_BROKEN_BN_num_bits_word
99 # pragma optimize("", off)
100 #endif
BN_num_bits_word(BN_ULONG l)101 int BN_num_bits_word(BN_ULONG l)
102 {
103     BN_ULONG x, mask;
104     int bits = (l != 0);
105 
106 #if BN_BITS2 > 32
107     x = l >> 32;
108     mask = (0 - x) & BN_MASK2;
109     mask = (0 - (mask >> (BN_BITS2 - 1)));
110     bits += 32 & mask;
111     l ^= (x ^ l) & mask;
112 #endif
113 
114     x = l >> 16;
115     mask = (0 - x) & BN_MASK2;
116     mask = (0 - (mask >> (BN_BITS2 - 1)));
117     bits += 16 & mask;
118     l ^= (x ^ l) & mask;
119 
120     x = l >> 8;
121     mask = (0 - x) & BN_MASK2;
122     mask = (0 - (mask >> (BN_BITS2 - 1)));
123     bits += 8 & mask;
124     l ^= (x ^ l) & mask;
125 
126     x = l >> 4;
127     mask = (0 - x) & BN_MASK2;
128     mask = (0 - (mask >> (BN_BITS2 - 1)));
129     bits += 4 & mask;
130     l ^= (x ^ l) & mask;
131 
132     x = l >> 2;
133     mask = (0 - x) & BN_MASK2;
134     mask = (0 - (mask >> (BN_BITS2 - 1)));
135     bits += 2 & mask;
136     l ^= (x ^ l) & mask;
137 
138     x = l >> 1;
139     mask = (0 - x) & BN_MASK2;
140     mask = (0 - (mask >> (BN_BITS2 - 1)));
141     bits += 1 & mask;
142 
143     return bits;
144 }
145 #ifdef MS_BROKEN_BN_num_bits_word
146 # pragma optimize("", on)
147 #endif
148 
149 /*
150  * This function still leaks `a->dmax`: it's caller's responsibility to
151  * expand the input `a` in advance to a public length.
152  */
153 static ossl_inline
bn_num_bits_consttime(const BIGNUM * a)154 int bn_num_bits_consttime(const BIGNUM *a)
155 {
156     int j, ret;
157     unsigned int mask, past_i;
158     int i = a->top - 1;
159     bn_check_top(a);
160 
161     for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
162         mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
163 
164         ret += BN_BITS2 & (~mask & ~past_i);
165         ret += BN_num_bits_word(a->d[j]) & mask;
166 
167         past_i |= mask; /* past_i will become 0xff..ff after i==j */
168     }
169 
170     /*
171      * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
172      * final result.
173      */
174     mask = ~(constant_time_eq_int(i, ((int)-1)));
175 
176     return ret & mask;
177 }
178 
BN_num_bits(const BIGNUM * a)179 int BN_num_bits(const BIGNUM *a)
180 {
181     int i = a->top - 1;
182     bn_check_top(a);
183 
184     if (a->flags & BN_FLG_CONSTTIME) {
185         /*
186          * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
187          * so that a->dmax is not leaking secret information.
188          *
189          * In other words, it's the caller's responsibility to ensure `a` has
190          * been preallocated in advance to a public length if we hit this
191          * branch.
192          *
193          */
194         return bn_num_bits_consttime(a);
195     }
196 
197     if (BN_is_zero(a))
198         return 0;
199 
200     return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
201 }
202 
bn_free_d(BIGNUM * a,int clear)203 static void bn_free_d(BIGNUM *a, int clear)
204 {
205     if (BN_get_flags(a, BN_FLG_SECURE))
206         OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
207     else if (clear != 0)
208         OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
209     else
210         OPENSSL_free(a->d);
211 }
212 
213 
BN_clear_free(BIGNUM * a)214 void BN_clear_free(BIGNUM *a)
215 {
216     if (a == NULL)
217         return;
218     if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
219         bn_free_d(a, 1);
220     if (BN_get_flags(a, BN_FLG_MALLOCED)) {
221         OPENSSL_cleanse(a, sizeof(*a));
222         OPENSSL_free(a);
223     }
224 }
225 
BN_free(BIGNUM * a)226 void BN_free(BIGNUM *a)
227 {
228     if (a == NULL)
229         return;
230     if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
231         bn_free_d(a, 0);
232     if (a->flags & BN_FLG_MALLOCED)
233         OPENSSL_free(a);
234 }
235 
bn_init(BIGNUM * a)236 void bn_init(BIGNUM *a)
237 {
238     static BIGNUM nilbn;
239 
240     *a = nilbn;
241     bn_check_top(a);
242 }
243 
BN_new(void)244 BIGNUM *BN_new(void)
245 {
246     BIGNUM *ret;
247 
248     if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
249         return NULL;
250     ret->flags = BN_FLG_MALLOCED;
251     bn_check_top(ret);
252     return ret;
253 }
254 
BN_secure_new(void)255 BIGNUM *BN_secure_new(void)
256 {
257     BIGNUM *ret = BN_new();
258 
259     if (ret != NULL)
260         ret->flags |= BN_FLG_SECURE;
261     return ret;
262 }
263 
264 /* This is used by bn_expand2() */
265 /* The caller MUST check that words > b->dmax before calling this */
bn_expand_internal(const BIGNUM * b,int words)266 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
267 {
268     BN_ULONG *a = NULL;
269 
270     if (words > (INT_MAX / (4 * BN_BITS2))) {
271         ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG);
272         return NULL;
273     }
274     if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
275         ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
276         return NULL;
277     }
278     if (BN_get_flags(b, BN_FLG_SECURE))
279         a = OPENSSL_secure_zalloc(words * sizeof(*a));
280     else
281         a = OPENSSL_zalloc(words * sizeof(*a));
282     if (a == NULL)
283         return NULL;
284 
285     assert(b->top <= words);
286     if (b->top > 0)
287         memcpy(a, b->d, sizeof(*a) * b->top);
288 
289     return a;
290 }
291 
292 /*
293  * This is an internal function that should not be used in applications. It
294  * ensures that 'b' has enough room for a 'words' word number and initialises
295  * any unused part of b->d with leading zeros. It is mostly used by the
296  * various BIGNUM routines. If there is an error, NULL is returned. If not,
297  * 'b' is returned.
298  */
299 
bn_expand2(BIGNUM * b,int words)300 BIGNUM *bn_expand2(BIGNUM *b, int words)
301 {
302     if (words > b->dmax) {
303         BN_ULONG *a = bn_expand_internal(b, words);
304         if (!a)
305             return NULL;
306         if (b->d != NULL)
307             bn_free_d(b, 1);
308         b->d = a;
309         b->dmax = words;
310     }
311 
312     return b;
313 }
314 
BN_dup(const BIGNUM * a)315 BIGNUM *BN_dup(const BIGNUM *a)
316 {
317     BIGNUM *t;
318 
319     if (a == NULL)
320         return NULL;
321     bn_check_top(a);
322 
323     t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
324     if (t == NULL)
325         return NULL;
326     if (!BN_copy(t, a)) {
327         BN_free(t);
328         return NULL;
329     }
330     bn_check_top(t);
331     return t;
332 }
333 
BN_copy(BIGNUM * a,const BIGNUM * b)334 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
335 {
336     int bn_words;
337 
338     bn_check_top(b);
339 
340     bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
341 
342     if (a == b)
343         return a;
344     if (bn_wexpand(a, bn_words) == NULL)
345         return NULL;
346 
347     if (b->top > 0)
348         memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
349 
350     a->neg = b->neg;
351     a->top = b->top;
352     a->flags |= b->flags & BN_FLG_FIXED_TOP;
353     bn_check_top(a);
354     return a;
355 }
356 
357 #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
358                                     | BN_FLG_CONSTTIME   \
359                                     | BN_FLG_SECURE      \
360                                     | BN_FLG_FIXED_TOP))
361 #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
362 
BN_swap(BIGNUM * a,BIGNUM * b)363 void BN_swap(BIGNUM *a, BIGNUM *b)
364 {
365     int flags_old_a, flags_old_b;
366     BN_ULONG *tmp_d;
367     int tmp_top, tmp_dmax, tmp_neg;
368 
369     bn_check_top(a);
370     bn_check_top(b);
371 
372     flags_old_a = a->flags;
373     flags_old_b = b->flags;
374 
375     tmp_d = a->d;
376     tmp_top = a->top;
377     tmp_dmax = a->dmax;
378     tmp_neg = a->neg;
379 
380     a->d = b->d;
381     a->top = b->top;
382     a->dmax = b->dmax;
383     a->neg = b->neg;
384 
385     b->d = tmp_d;
386     b->top = tmp_top;
387     b->dmax = tmp_dmax;
388     b->neg = tmp_neg;
389 
390     a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
391     b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
392     bn_check_top(a);
393     bn_check_top(b);
394 }
395 
BN_clear(BIGNUM * a)396 void BN_clear(BIGNUM *a)
397 {
398     if (a == NULL)
399         return;
400     bn_check_top(a);
401     if (a->d != NULL)
402         OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
403     a->neg = 0;
404     a->top = 0;
405     a->flags &= ~BN_FLG_FIXED_TOP;
406 }
407 
BN_get_word(const BIGNUM * a)408 BN_ULONG BN_get_word(const BIGNUM *a)
409 {
410     if (a->top > 1)
411         return BN_MASK2;
412     else if (a->top == 1)
413         return a->d[0];
414     /* a->top == 0 */
415     return 0;
416 }
417 
BN_set_word(BIGNUM * a,BN_ULONG w)418 int BN_set_word(BIGNUM *a, BN_ULONG w)
419 {
420     bn_check_top(a);
421     if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
422         return 0;
423     a->neg = 0;
424     a->d[0] = w;
425     a->top = (w ? 1 : 0);
426     a->flags &= ~BN_FLG_FIXED_TOP;
427     bn_check_top(a);
428     return 1;
429 }
430 
431 typedef enum {BIG, LITTLE} endianness_t;
432 typedef enum {SIGNED, UNSIGNED} signedness_t;
433 
bin2bn(const unsigned char * s,int len,BIGNUM * ret,endianness_t endianness,signedness_t signedness)434 static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret,
435                       endianness_t endianness, signedness_t signedness)
436 {
437     int inc;
438     const unsigned char *s2;
439     int inc2;
440     int neg = 0, xor = 0, carry = 0;
441     unsigned int i;
442     unsigned int n;
443     BIGNUM *bn = NULL;
444 
445     /* Negative length is not acceptable */
446     if (len < 0)
447         return NULL;
448 
449     if (ret == NULL)
450         ret = bn = BN_new();
451     if (ret == NULL)
452         return NULL;
453     bn_check_top(ret);
454 
455     /*
456      * If the input has no bits, the number is considered zero.
457      * This makes calls with s==NULL and len==0 safe.
458      */
459     if (len == 0) {
460         BN_clear(ret);
461         return ret;
462     }
463 
464     /*
465      * The loop that does the work iterates from least to most
466      * significant BIGNUM chunk, so we adapt parameters to transfer
467      * input bytes accordingly.
468      */
469     if (endianness == LITTLE) {
470         s2 = s + len - 1;
471         inc2 = -1;
472         inc = 1;
473     } else {
474         s2 = s;
475         inc2 = 1;
476         inc = -1;
477         s += len - 1;
478     }
479 
480     /* Take note of the signedness of the input bytes*/
481     if (signedness == SIGNED) {
482         neg = !!(*s2 & 0x80);
483         xor = neg ? 0xff : 0x00;
484         carry = neg;
485     }
486 
487     /*
488      * Skip leading sign extensions (the value of |xor|).
489      * This is the only spot where |s2| and |inc2| are used.
490      */
491     for ( ; len > 0 && *s2 == xor; s2 += inc2, len--)
492         continue;
493 
494     /*
495      * If there was a set of 0xff, we backtrack one byte unless the next
496      * one has a sign bit, as the last 0xff is then part of the actual
497      * number, rather then a mere sign extension.
498      */
499     if (xor == 0xff) {
500         if (len == 0 || !(*s2 & 0x80))
501             len++;
502     }
503     /* If it was all zeros, we're done */
504     if (len == 0) {
505         ret->top = 0;
506         return ret;
507     }
508     n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */
509     if (bn_wexpand(ret, (int)n) == NULL) {
510         BN_free(bn);
511         return NULL;
512     }
513     ret->top = n;
514     ret->neg = neg;
515     for (i = 0; n-- > 0; i++) {
516         BN_ULONG l = 0;        /* Accumulator */
517         unsigned int m = 0;    /* Offset in a bignum chunk, in bits */
518 
519         for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) {
520             BN_ULONG byte_xored = *s ^ xor;
521             BN_ULONG byte = (byte_xored + carry) & 0xff;
522 
523             carry = byte_xored > byte; /* Implicit 1 or 0 */
524             l |= (byte << m);
525         }
526         ret->d[i] = l;
527     }
528     /*
529      * need to call this due to clear byte at top if avoiding having the top
530      * bit set (-ve number)
531      */
532     bn_correct_top(ret);
533     return ret;
534 }
535 
BN_bin2bn(const unsigned char * s,int len,BIGNUM * ret)536 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
537 {
538     return bin2bn(s, len, ret, BIG, UNSIGNED);
539 }
540 
BN_signed_bin2bn(const unsigned char * s,int len,BIGNUM * ret)541 BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
542 {
543     return bin2bn(s, len, ret, BIG, SIGNED);
544 }
545 
bn2binpad(const BIGNUM * a,unsigned char * to,int tolen,endianness_t endianness,signedness_t signedness)546 static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen,
547                      endianness_t endianness, signedness_t signedness)
548 {
549     int inc;
550     int n, n8;
551     int xor = 0, carry = 0, ext = 0;
552     size_t i, lasti, j, atop, mask;
553     BN_ULONG l;
554 
555     /*
556      * In case |a| is fixed-top, BN_num_bits can return bogus length,
557      * but it's assumed that fixed-top inputs ought to be "nominated"
558      * even for padded output, so it works out...
559      */
560     n8 = BN_num_bits(a);
561     n = (n8 + 7) / 8;           /* This is what BN_num_bytes() does */
562 
563     /* Take note of the signedness of the bignum */
564     if (signedness == SIGNED) {
565         xor = a->neg ? 0xff : 0x00;
566         carry = a->neg;
567 
568         /*
569          * if |n * 8 == n|, then the MSbit is set, otherwise unset.
570          * We must compensate with one extra byte if that doesn't
571          * correspond to the signedness of the bignum with regards
572          * to 2's complement.
573          */
574         ext = (n * 8 == n8)
575             ? !a->neg            /* MSbit set on nonnegative bignum */
576             : a->neg;            /* MSbit unset on negative bignum */
577     }
578 
579     if (tolen == -1) {
580         tolen = n + ext;
581     } else if (tolen < n + ext) { /* uncommon/unlike case */
582         BIGNUM temp = *a;
583 
584         bn_correct_top(&temp);
585         n8 = BN_num_bits(&temp);
586         n = (n8 + 7) / 8;       /* This is what BN_num_bytes() does */
587         if (tolen < n + ext)
588             return -1;
589     }
590 
591     /* Swipe through whole available data and don't give away padded zero. */
592     atop = a->dmax * BN_BYTES;
593     if (atop == 0) {
594         if (tolen != 0)
595             memset(to, '\0', tolen);
596         return tolen;
597     }
598 
599     /*
600      * The loop that does the work iterates from least significant
601      * to most significant BIGNUM limb, so we adapt parameters to
602      * transfer output bytes accordingly.
603      */
604     if (endianness == LITTLE) {
605         inc = 1;
606     } else {
607         inc = -1;
608         to += tolen - 1;         /* Move to the last byte, not beyond */
609     }
610 
611     lasti = atop - 1;
612     atop = a->top * BN_BYTES;
613     for (i = 0, j = 0; j < (size_t)tolen; j++) {
614         unsigned char byte, byte_xored;
615 
616         l = a->d[i / BN_BYTES];
617         mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
618         byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
619         byte_xored = byte ^ xor;
620         *to = (unsigned char)(byte_xored + carry);
621         carry = byte_xored > *to; /* Implicit 1 or 0 */
622         to += inc;
623         i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
624     }
625 
626     return tolen;
627 }
628 
BN_bn2binpad(const BIGNUM * a,unsigned char * to,int tolen)629 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
630 {
631     if (tolen < 0)
632         return -1;
633     return bn2binpad(a, to, tolen, BIG, UNSIGNED);
634 }
635 
BN_signed_bn2bin(const BIGNUM * a,unsigned char * to,int tolen)636 int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen)
637 {
638     if (tolen < 0)
639         return -1;
640     return bn2binpad(a, to, tolen, BIG, SIGNED);
641 }
642 
BN_bn2bin(const BIGNUM * a,unsigned char * to)643 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
644 {
645     return bn2binpad(a, to, -1, BIG, UNSIGNED);
646 }
647 
BN_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)648 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
649 {
650     return bin2bn(s, len, ret, LITTLE, UNSIGNED);
651 }
652 
BN_signed_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)653 BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
654 {
655     return bin2bn(s, len, ret, LITTLE, SIGNED);
656 }
657 
BN_bn2lebinpad(const BIGNUM * a,unsigned char * to,int tolen)658 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
659 {
660     if (tolen < 0)
661         return -1;
662     return bn2binpad(a, to, tolen, LITTLE, UNSIGNED);
663 }
664 
BN_signed_bn2lebin(const BIGNUM * a,unsigned char * to,int tolen)665 int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen)
666 {
667     if (tolen < 0)
668         return -1;
669     return bn2binpad(a, to, tolen, LITTLE, SIGNED);
670 }
671 
BN_native2bn(const unsigned char * s,int len,BIGNUM * ret)672 BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret)
673 {
674     DECLARE_IS_ENDIAN;
675 
676     if (IS_LITTLE_ENDIAN)
677         return BN_lebin2bn(s, len, ret);
678     return BN_bin2bn(s, len, ret);
679 }
680 
BN_signed_native2bn(const unsigned char * s,int len,BIGNUM * ret)681 BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret)
682 {
683     DECLARE_IS_ENDIAN;
684 
685     if (IS_LITTLE_ENDIAN)
686         return BN_signed_lebin2bn(s, len, ret);
687     return BN_signed_bin2bn(s, len, ret);
688 }
689 
BN_bn2nativepad(const BIGNUM * a,unsigned char * to,int tolen)690 int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen)
691 {
692     DECLARE_IS_ENDIAN;
693 
694     if (IS_LITTLE_ENDIAN)
695         return BN_bn2lebinpad(a, to, tolen);
696     return BN_bn2binpad(a, to, tolen);
697 }
698 
BN_signed_bn2native(const BIGNUM * a,unsigned char * to,int tolen)699 int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen)
700 {
701     DECLARE_IS_ENDIAN;
702 
703     if (IS_LITTLE_ENDIAN)
704         return BN_signed_bn2lebin(a, to, tolen);
705     return BN_signed_bn2bin(a, to, tolen);
706 }
707 
BN_ucmp(const BIGNUM * a,const BIGNUM * b)708 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
709 {
710     int i;
711     BN_ULONG t1, t2, *ap, *bp;
712 
713     ap = a->d;
714     bp = b->d;
715 
716     if (BN_get_flags(a, BN_FLG_CONSTTIME)
717             && a->top == b->top) {
718         int res = 0;
719 
720         for (i = 0; i < b->top; i++) {
721             res = constant_time_select_int(constant_time_lt_bn(ap[i], bp[i]),
722                                            -1, res);
723             res = constant_time_select_int(constant_time_lt_bn(bp[i], ap[i]),
724                                            1, res);
725         }
726         return res;
727     }
728 
729     bn_check_top(a);
730     bn_check_top(b);
731 
732     i = a->top - b->top;
733     if (i != 0)
734         return i;
735 
736     for (i = a->top - 1; i >= 0; i--) {
737         t1 = ap[i];
738         t2 = bp[i];
739         if (t1 != t2)
740             return ((t1 > t2) ? 1 : -1);
741     }
742     return 0;
743 }
744 
BN_cmp(const BIGNUM * a,const BIGNUM * b)745 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
746 {
747     int i;
748     int gt, lt;
749     BN_ULONG t1, t2;
750 
751     if ((a == NULL) || (b == NULL)) {
752         if (a != NULL)
753             return -1;
754         else if (b != NULL)
755             return 1;
756         else
757             return 0;
758     }
759 
760     bn_check_top(a);
761     bn_check_top(b);
762 
763     if (a->neg != b->neg) {
764         if (a->neg)
765             return -1;
766         else
767             return 1;
768     }
769     if (a->neg == 0) {
770         gt = 1;
771         lt = -1;
772     } else {
773         gt = -1;
774         lt = 1;
775     }
776 
777     if (a->top > b->top)
778         return gt;
779     if (a->top < b->top)
780         return lt;
781     for (i = a->top - 1; i >= 0; i--) {
782         t1 = a->d[i];
783         t2 = b->d[i];
784         if (t1 > t2)
785             return gt;
786         if (t1 < t2)
787             return lt;
788     }
789     return 0;
790 }
791 
BN_set_bit(BIGNUM * a,int n)792 int BN_set_bit(BIGNUM *a, int n)
793 {
794     int i, j, k;
795 
796     if (n < 0)
797         return 0;
798 
799     i = n / BN_BITS2;
800     j = n % BN_BITS2;
801     if (a->top <= i) {
802         if (bn_wexpand(a, i + 1) == NULL)
803             return 0;
804         for (k = a->top; k < i + 1; k++)
805             a->d[k] = 0;
806         a->top = i + 1;
807         a->flags &= ~BN_FLG_FIXED_TOP;
808     }
809 
810     a->d[i] |= (((BN_ULONG)1) << j);
811     bn_check_top(a);
812     return 1;
813 }
814 
BN_clear_bit(BIGNUM * a,int n)815 int BN_clear_bit(BIGNUM *a, int n)
816 {
817     int i, j;
818 
819     bn_check_top(a);
820     if (n < 0)
821         return 0;
822 
823     i = n / BN_BITS2;
824     j = n % BN_BITS2;
825     if (a->top <= i)
826         return 0;
827 
828     a->d[i] &= (~(((BN_ULONG)1) << j));
829     bn_correct_top(a);
830     return 1;
831 }
832 
BN_is_bit_set(const BIGNUM * a,int n)833 int BN_is_bit_set(const BIGNUM *a, int n)
834 {
835     int i, j;
836 
837     bn_check_top(a);
838     if (n < 0)
839         return 0;
840     i = n / BN_BITS2;
841     j = n % BN_BITS2;
842     if (a->top <= i)
843         return 0;
844     return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
845 }
846 
ossl_bn_mask_bits_fixed_top(BIGNUM * a,int n)847 int ossl_bn_mask_bits_fixed_top(BIGNUM *a, int n)
848 {
849     int b, w;
850 
851     if (n < 0)
852         return 0;
853 
854     w = n / BN_BITS2;
855     b = n % BN_BITS2;
856     if (w >= a->top)
857         return 0;
858     if (b == 0)
859         a->top = w;
860     else {
861         a->top = w + 1;
862         a->d[w] &= ~(BN_MASK2 << b);
863     }
864     a->flags |= BN_FLG_FIXED_TOP;
865     return 1;
866 }
867 
BN_mask_bits(BIGNUM * a,int n)868 int BN_mask_bits(BIGNUM *a, int n)
869 {
870     int ret;
871 
872     bn_check_top(a);
873     ret = ossl_bn_mask_bits_fixed_top(a, n);
874     if (ret)
875         bn_correct_top(a);
876     return ret;
877 }
878 
BN_set_negative(BIGNUM * a,int b)879 void BN_set_negative(BIGNUM *a, int b)
880 {
881     if (b && !BN_is_zero(a))
882         a->neg = 1;
883     else
884         a->neg = 0;
885 }
886 
bn_cmp_words(const BN_ULONG * a,const BN_ULONG * b,int n)887 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
888 {
889     int i;
890     BN_ULONG aa, bb;
891 
892     if (n == 0)
893         return 0;
894 
895     aa = a[n - 1];
896     bb = b[n - 1];
897     if (aa != bb)
898         return ((aa > bb) ? 1 : -1);
899     for (i = n - 2; i >= 0; i--) {
900         aa = a[i];
901         bb = b[i];
902         if (aa != bb)
903             return ((aa > bb) ? 1 : -1);
904     }
905     return 0;
906 }
907 
908 /*
909  * Here follows a specialised variants of bn_cmp_words().  It has the
910  * capability of performing the operation on arrays of different sizes. The
911  * sizes of those arrays is expressed through cl, which is the common length
912  * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
913  * two lengths, calculated as len(a)-len(b). All lengths are the number of
914  * BN_ULONGs...
915  */
916 
bn_cmp_part_words(const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)917 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
918 {
919     int n, i;
920     n = cl - 1;
921 
922     if (dl < 0) {
923         for (i = dl; i < 0; i++) {
924             if (b[n - i] != 0)
925                 return -1;      /* a < b */
926         }
927     }
928     if (dl > 0) {
929         for (i = dl; i > 0; i--) {
930             if (a[n + i] != 0)
931                 return 1;       /* a > b */
932         }
933     }
934     return bn_cmp_words(a, b, cl);
935 }
936 
937 /*-
938  * Constant-time conditional swap of a and b.
939  * a and b are swapped if condition is not 0.
940  * nwords is the number of words to swap.
941  * Assumes that at least nwords are allocated in both a and b.
942  * Assumes that no more than nwords are used by either a or b.
943  */
BN_consttime_swap(BN_ULONG condition,BIGNUM * a,BIGNUM * b,int nwords)944 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
945 {
946     BN_ULONG t;
947     int i;
948 
949     bn_wcheck_size(a, nwords);
950     bn_wcheck_size(b, nwords);
951 
952     condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
953 
954     t = (a->top ^ b->top) & condition;
955     a->top ^= t;
956     b->top ^= t;
957 
958     t = (a->neg ^ b->neg) & condition;
959     a->neg ^= t;
960     b->neg ^= t;
961 
962     /*-
963      * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
964      * is actually to treat it as it's read-only data, and some (if not most)
965      * of it does reside in read-only segment. In other words observation of
966      * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
967      * condition. It would either cause SEGV or effectively cause data
968      * corruption.
969      *
970      * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
971      * preserved.
972      *
973      * BN_FLG_SECURE: must be preserved, because it determines how x->d was
974      * allocated and hence how to free it.
975      *
976      * BN_FLG_CONSTTIME: sufficient to mask and swap
977      *
978      * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
979      * the data, so the d array may be padded with additional 0 values (i.e.
980      * top could be greater than the minimal value that it could be). We should
981      * be swapping it
982      */
983 
984 #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
985 
986     t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
987     a->flags ^= t;
988     b->flags ^= t;
989 
990     /* conditionally swap the data */
991     for (i = 0; i < nwords; i++) {
992         t = (a->d[i] ^ b->d[i]) & condition;
993         a->d[i] ^= t;
994         b->d[i] ^= t;
995     }
996 }
997 
998 #undef BN_CONSTTIME_SWAP_FLAGS
999 
1000 /* Bits of security, see SP800-57 */
1001 
BN_security_bits(int L,int N)1002 int BN_security_bits(int L, int N)
1003 {
1004     int secbits, bits;
1005     if (L >= 15360)
1006         secbits = 256;
1007     else if (L >= 7680)
1008         secbits = 192;
1009     else if (L >= 3072)
1010         secbits = 128;
1011     else if (L >= 2048)
1012         secbits = 112;
1013     else if (L >= 1024)
1014         secbits = 80;
1015     else
1016         return 0;
1017     if (N == -1)
1018         return secbits;
1019     bits = N / 2;
1020     if (bits < 80)
1021         return 0;
1022     return bits >= secbits ? secbits : bits;
1023 }
1024 
BN_zero_ex(BIGNUM * a)1025 void BN_zero_ex(BIGNUM *a)
1026 {
1027     a->neg = 0;
1028     a->top = 0;
1029     a->flags &= ~BN_FLG_FIXED_TOP;
1030 }
1031 
BN_abs_is_word(const BIGNUM * a,const BN_ULONG w)1032 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
1033 {
1034     return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
1035 }
1036 
BN_is_zero(const BIGNUM * a)1037 int BN_is_zero(const BIGNUM *a)
1038 {
1039     return a->top == 0;
1040 }
1041 
BN_is_one(const BIGNUM * a)1042 int BN_is_one(const BIGNUM *a)
1043 {
1044     return BN_abs_is_word(a, 1) && !a->neg;
1045 }
1046 
BN_is_word(const BIGNUM * a,const BN_ULONG w)1047 int BN_is_word(const BIGNUM *a, const BN_ULONG w)
1048 {
1049     return BN_abs_is_word(a, w) && (!w || !a->neg);
1050 }
1051 
ossl_bn_is_word_fixed_top(const BIGNUM * a,const BN_ULONG w)1052 int ossl_bn_is_word_fixed_top(const BIGNUM *a, const BN_ULONG w)
1053 {
1054     int res, i;
1055     const BN_ULONG *ap = a->d;
1056 
1057     if (a->neg || a->top == 0)
1058         return 0;
1059 
1060     res = constant_time_select_int(constant_time_eq_bn(ap[0], w), 1, 0);
1061 
1062     for (i = 1; i < a->top; i++)
1063         res = constant_time_select_int(constant_time_is_zero_bn(ap[i]),
1064                                        res, 0);
1065     return res;
1066 }
1067 
BN_is_odd(const BIGNUM * a)1068 int BN_is_odd(const BIGNUM *a)
1069 {
1070     return (a->top > 0) && (a->d[0] & 1);
1071 }
1072 
BN_is_negative(const BIGNUM * a)1073 int BN_is_negative(const BIGNUM *a)
1074 {
1075     return (a->neg != 0);
1076 }
1077 
BN_to_montgomery(BIGNUM * r,const BIGNUM * a,BN_MONT_CTX * mont,BN_CTX * ctx)1078 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
1079                      BN_CTX *ctx)
1080 {
1081     return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
1082 }
1083 
BN_with_flags(BIGNUM * dest,const BIGNUM * b,int flags)1084 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
1085 {
1086     dest->d = b->d;
1087     dest->top = b->top;
1088     dest->dmax = b->dmax;
1089     dest->neg = b->neg;
1090     dest->flags = ((dest->flags & BN_FLG_MALLOCED)
1091                    | (b->flags & ~BN_FLG_MALLOCED)
1092                    | BN_FLG_STATIC_DATA | flags);
1093 }
1094 
BN_GENCB_new(void)1095 BN_GENCB *BN_GENCB_new(void)
1096 {
1097     BN_GENCB *ret;
1098 
1099     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
1100         return NULL;
1101 
1102     return ret;
1103 }
1104 
BN_GENCB_free(BN_GENCB * cb)1105 void BN_GENCB_free(BN_GENCB *cb)
1106 {
1107     if (cb == NULL)
1108         return;
1109     OPENSSL_free(cb);
1110 }
1111 
BN_set_flags(BIGNUM * b,int n)1112 void BN_set_flags(BIGNUM *b, int n)
1113 {
1114     b->flags |= n;
1115 }
1116 
BN_get_flags(const BIGNUM * b,int n)1117 int BN_get_flags(const BIGNUM *b, int n)
1118 {
1119     return b->flags & n;
1120 }
1121 
1122 /* Populate a BN_GENCB structure with an "old"-style callback */
BN_GENCB_set_old(BN_GENCB * gencb,void (* callback)(int,int,void *),void * cb_arg)1123 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
1124                       void *cb_arg)
1125 {
1126     BN_GENCB *tmp_gencb = gencb;
1127     tmp_gencb->ver = 1;
1128     tmp_gencb->arg = cb_arg;
1129     tmp_gencb->cb.cb_1 = callback;
1130 }
1131 
1132 /* Populate a BN_GENCB structure with a "new"-style callback */
BN_GENCB_set(BN_GENCB * gencb,int (* callback)(int,int,BN_GENCB *),void * cb_arg)1133 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
1134                   void *cb_arg)
1135 {
1136     BN_GENCB *tmp_gencb = gencb;
1137     tmp_gencb->ver = 2;
1138     tmp_gencb->arg = cb_arg;
1139     tmp_gencb->cb.cb_2 = callback;
1140 }
1141 
BN_GENCB_get_arg(BN_GENCB * cb)1142 void *BN_GENCB_get_arg(BN_GENCB *cb)
1143 {
1144     return cb->arg;
1145 }
1146 
bn_wexpand(BIGNUM * a,int words)1147 BIGNUM *bn_wexpand(BIGNUM *a, int words)
1148 {
1149     return (words <= a->dmax) ? a : bn_expand2(a, words);
1150 }
1151 
bn_correct_top_consttime(BIGNUM * a)1152 void bn_correct_top_consttime(BIGNUM *a)
1153 {
1154     int j, atop;
1155     BN_ULONG limb;
1156     unsigned int mask;
1157 
1158     for (j = 0, atop = 0; j < a->dmax; j++) {
1159         limb = a->d[j];
1160         limb |= 0 - limb;
1161         limb >>= BN_BITS2 - 1;
1162         limb = 0 - limb;
1163         mask = (unsigned int)limb;
1164         mask &= constant_time_msb(j - a->top);
1165         atop = constant_time_select_int(mask, j + 1, atop);
1166     }
1167 
1168     mask = constant_time_eq_int(atop, 0);
1169     a->top = atop;
1170     a->neg = constant_time_select_int(mask, 0, a->neg);
1171     a->flags &= ~BN_FLG_FIXED_TOP;
1172 }
1173 
bn_correct_top(BIGNUM * a)1174 void bn_correct_top(BIGNUM *a)
1175 {
1176     BN_ULONG *ftl;
1177     int tmp_top = a->top;
1178 
1179     if (tmp_top > 0) {
1180         for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1181             ftl--;
1182             if (*ftl != 0)
1183                 break;
1184         }
1185         a->top = tmp_top;
1186     }
1187     if (a->top == 0)
1188         a->neg = 0;
1189     a->flags &= ~BN_FLG_FIXED_TOP;
1190     bn_pollute(a);
1191 }
1192