1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <assert.h>
11 #include <limits.h>
12 #include "internal/cryptlib.h"
13 #include "internal/endian.h"
14 #include "bn_local.h"
15 #include <openssl/opensslconf.h>
16 #include "internal/constant_time.h"
17
18 /* This stuff appears to be completely unused, so is deprecated */
19 #ifndef OPENSSL_NO_DEPRECATED_0_9_8
20 /*-
21 * For a 32 bit machine
22 * 2 - 4 == 128
23 * 3 - 8 == 256
24 * 4 - 16 == 512
25 * 5 - 32 == 1024
26 * 6 - 64 == 2048
27 * 7 - 128 == 4096
28 * 8 - 256 == 8192
29 */
30 static int bn_limit_bits = 0;
31 static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
32 static int bn_limit_bits_low = 0;
33 static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
34 static int bn_limit_bits_high = 0;
35 static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
36 static int bn_limit_bits_mont = 0;
37 static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
38
BN_set_params(int mult,int high,int low,int mont)39 void BN_set_params(int mult, int high, int low, int mont)
40 {
41 if (mult >= 0) {
42 if (mult > (int)(sizeof(int) * 8) - 1)
43 mult = sizeof(int) * 8 - 1;
44 bn_limit_bits = mult;
45 bn_limit_num = 1 << mult;
46 }
47 if (high >= 0) {
48 if (high > (int)(sizeof(int) * 8) - 1)
49 high = sizeof(int) * 8 - 1;
50 bn_limit_bits_high = high;
51 bn_limit_num_high = 1 << high;
52 }
53 if (low >= 0) {
54 if (low > (int)(sizeof(int) * 8) - 1)
55 low = sizeof(int) * 8 - 1;
56 bn_limit_bits_low = low;
57 bn_limit_num_low = 1 << low;
58 }
59 if (mont >= 0) {
60 if (mont > (int)(sizeof(int) * 8) - 1)
61 mont = sizeof(int) * 8 - 1;
62 bn_limit_bits_mont = mont;
63 bn_limit_num_mont = 1 << mont;
64 }
65 }
66
BN_get_params(int which)67 int BN_get_params(int which)
68 {
69 if (which == 0)
70 return bn_limit_bits;
71 else if (which == 1)
72 return bn_limit_bits_high;
73 else if (which == 2)
74 return bn_limit_bits_low;
75 else if (which == 3)
76 return bn_limit_bits_mont;
77 else
78 return 0;
79 }
80 #endif
81
BN_value_one(void)82 const BIGNUM *BN_value_one(void)
83 {
84 static const BN_ULONG data_one = 1L;
85 static const BIGNUM const_one = {
86 (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA
87 };
88
89 return &const_one;
90 }
91
92 /*
93 * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
94 * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
95 */
96 #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
97 && _MSC_VER>=1400 && _MSC_VER<1501
98 # define MS_BROKEN_BN_num_bits_word
99 # pragma optimize("", off)
100 #endif
BN_num_bits_word(BN_ULONG l)101 int BN_num_bits_word(BN_ULONG l)
102 {
103 BN_ULONG x, mask;
104 int bits = (l != 0);
105
106 #if BN_BITS2 > 32
107 x = l >> 32;
108 mask = (0 - x) & BN_MASK2;
109 mask = (0 - (mask >> (BN_BITS2 - 1)));
110 bits += 32 & mask;
111 l ^= (x ^ l) & mask;
112 #endif
113
114 x = l >> 16;
115 mask = (0 - x) & BN_MASK2;
116 mask = (0 - (mask >> (BN_BITS2 - 1)));
117 bits += 16 & mask;
118 l ^= (x ^ l) & mask;
119
120 x = l >> 8;
121 mask = (0 - x) & BN_MASK2;
122 mask = (0 - (mask >> (BN_BITS2 - 1)));
123 bits += 8 & mask;
124 l ^= (x ^ l) & mask;
125
126 x = l >> 4;
127 mask = (0 - x) & BN_MASK2;
128 mask = (0 - (mask >> (BN_BITS2 - 1)));
129 bits += 4 & mask;
130 l ^= (x ^ l) & mask;
131
132 x = l >> 2;
133 mask = (0 - x) & BN_MASK2;
134 mask = (0 - (mask >> (BN_BITS2 - 1)));
135 bits += 2 & mask;
136 l ^= (x ^ l) & mask;
137
138 x = l >> 1;
139 mask = (0 - x) & BN_MASK2;
140 mask = (0 - (mask >> (BN_BITS2 - 1)));
141 bits += 1 & mask;
142
143 return bits;
144 }
145 #ifdef MS_BROKEN_BN_num_bits_word
146 # pragma optimize("", on)
147 #endif
148
149 /*
150 * This function still leaks `a->dmax`: it's caller's responsibility to
151 * expand the input `a` in advance to a public length.
152 */
153 static ossl_inline
bn_num_bits_consttime(const BIGNUM * a)154 int bn_num_bits_consttime(const BIGNUM *a)
155 {
156 int j, ret;
157 unsigned int mask, past_i;
158 int i = a->top - 1;
159 bn_check_top(a);
160
161 for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
162 mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
163
164 ret += BN_BITS2 & (~mask & ~past_i);
165 ret += BN_num_bits_word(a->d[j]) & mask;
166
167 past_i |= mask; /* past_i will become 0xff..ff after i==j */
168 }
169
170 /*
171 * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
172 * final result.
173 */
174 mask = ~(constant_time_eq_int(i, ((int)-1)));
175
176 return ret & mask;
177 }
178
BN_num_bits(const BIGNUM * a)179 int BN_num_bits(const BIGNUM *a)
180 {
181 int i = a->top - 1;
182 bn_check_top(a);
183
184 if (a->flags & BN_FLG_CONSTTIME) {
185 /*
186 * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
187 * so that a->dmax is not leaking secret information.
188 *
189 * In other words, it's the caller's responsibility to ensure `a` has
190 * been preallocated in advance to a public length if we hit this
191 * branch.
192 *
193 */
194 return bn_num_bits_consttime(a);
195 }
196
197 if (BN_is_zero(a))
198 return 0;
199
200 return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
201 }
202
bn_free_d(BIGNUM * a,int clear)203 static void bn_free_d(BIGNUM *a, int clear)
204 {
205 if (BN_get_flags(a, BN_FLG_SECURE))
206 OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
207 else if (clear != 0)
208 OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
209 else
210 OPENSSL_free(a->d);
211 }
212
213
BN_clear_free(BIGNUM * a)214 void BN_clear_free(BIGNUM *a)
215 {
216 if (a == NULL)
217 return;
218 if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
219 bn_free_d(a, 1);
220 if (BN_get_flags(a, BN_FLG_MALLOCED)) {
221 OPENSSL_cleanse(a, sizeof(*a));
222 OPENSSL_free(a);
223 }
224 }
225
BN_free(BIGNUM * a)226 void BN_free(BIGNUM *a)
227 {
228 if (a == NULL)
229 return;
230 if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
231 bn_free_d(a, 0);
232 if (a->flags & BN_FLG_MALLOCED)
233 OPENSSL_free(a);
234 }
235
bn_init(BIGNUM * a)236 void bn_init(BIGNUM *a)
237 {
238 static BIGNUM nilbn;
239
240 *a = nilbn;
241 bn_check_top(a);
242 }
243
BN_new(void)244 BIGNUM *BN_new(void)
245 {
246 BIGNUM *ret;
247
248 if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
249 return NULL;
250 ret->flags = BN_FLG_MALLOCED;
251 bn_check_top(ret);
252 return ret;
253 }
254
BN_secure_new(void)255 BIGNUM *BN_secure_new(void)
256 {
257 BIGNUM *ret = BN_new();
258 if (ret != NULL)
259 ret->flags |= BN_FLG_SECURE;
260 return ret;
261 }
262
263 /* This is used by bn_expand2() */
264 /* The caller MUST check that words > b->dmax before calling this */
bn_expand_internal(const BIGNUM * b,int words)265 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
266 {
267 BN_ULONG *a = NULL;
268
269 if (words > (INT_MAX / (4 * BN_BITS2))) {
270 ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG);
271 return NULL;
272 }
273 if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
274 ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
275 return NULL;
276 }
277 if (BN_get_flags(b, BN_FLG_SECURE))
278 a = OPENSSL_secure_zalloc(words * sizeof(*a));
279 else
280 a = OPENSSL_zalloc(words * sizeof(*a));
281 if (a == NULL)
282 return NULL;
283
284 assert(b->top <= words);
285 if (b->top > 0)
286 memcpy(a, b->d, sizeof(*a) * b->top);
287
288 return a;
289 }
290
291 /*
292 * This is an internal function that should not be used in applications. It
293 * ensures that 'b' has enough room for a 'words' word number and initialises
294 * any unused part of b->d with leading zeros. It is mostly used by the
295 * various BIGNUM routines. If there is an error, NULL is returned. If not,
296 * 'b' is returned.
297 */
298
bn_expand2(BIGNUM * b,int words)299 BIGNUM *bn_expand2(BIGNUM *b, int words)
300 {
301 if (words > b->dmax) {
302 BN_ULONG *a = bn_expand_internal(b, words);
303 if (!a)
304 return NULL;
305 if (b->d != NULL)
306 bn_free_d(b, 1);
307 b->d = a;
308 b->dmax = words;
309 }
310
311 return b;
312 }
313
BN_dup(const BIGNUM * a)314 BIGNUM *BN_dup(const BIGNUM *a)
315 {
316 BIGNUM *t;
317
318 if (a == NULL)
319 return NULL;
320 bn_check_top(a);
321
322 t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
323 if (t == NULL)
324 return NULL;
325 if (!BN_copy(t, a)) {
326 BN_free(t);
327 return NULL;
328 }
329 bn_check_top(t);
330 return t;
331 }
332
BN_copy(BIGNUM * a,const BIGNUM * b)333 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
334 {
335 int bn_words;
336
337 bn_check_top(b);
338
339 bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
340
341 if (a == b)
342 return a;
343 if (bn_wexpand(a, bn_words) == NULL)
344 return NULL;
345
346 if (b->top > 0)
347 memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
348
349 a->neg = b->neg;
350 a->top = b->top;
351 a->flags |= b->flags & BN_FLG_FIXED_TOP;
352 bn_check_top(a);
353 return a;
354 }
355
356 #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
357 | BN_FLG_CONSTTIME \
358 | BN_FLG_SECURE \
359 | BN_FLG_FIXED_TOP))
360 #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
361
BN_swap(BIGNUM * a,BIGNUM * b)362 void BN_swap(BIGNUM *a, BIGNUM *b)
363 {
364 int flags_old_a, flags_old_b;
365 BN_ULONG *tmp_d;
366 int tmp_top, tmp_dmax, tmp_neg;
367
368 bn_check_top(a);
369 bn_check_top(b);
370
371 flags_old_a = a->flags;
372 flags_old_b = b->flags;
373
374 tmp_d = a->d;
375 tmp_top = a->top;
376 tmp_dmax = a->dmax;
377 tmp_neg = a->neg;
378
379 a->d = b->d;
380 a->top = b->top;
381 a->dmax = b->dmax;
382 a->neg = b->neg;
383
384 b->d = tmp_d;
385 b->top = tmp_top;
386 b->dmax = tmp_dmax;
387 b->neg = tmp_neg;
388
389 a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
390 b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
391 bn_check_top(a);
392 bn_check_top(b);
393 }
394
BN_clear(BIGNUM * a)395 void BN_clear(BIGNUM *a)
396 {
397 if (a == NULL)
398 return;
399 bn_check_top(a);
400 if (a->d != NULL)
401 OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
402 a->neg = 0;
403 a->top = 0;
404 a->flags &= ~BN_FLG_FIXED_TOP;
405 }
406
BN_get_word(const BIGNUM * a)407 BN_ULONG BN_get_word(const BIGNUM *a)
408 {
409 if (a->top > 1)
410 return BN_MASK2;
411 else if (a->top == 1)
412 return a->d[0];
413 /* a->top == 0 */
414 return 0;
415 }
416
BN_set_word(BIGNUM * a,BN_ULONG w)417 int BN_set_word(BIGNUM *a, BN_ULONG w)
418 {
419 bn_check_top(a);
420 if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
421 return 0;
422 a->neg = 0;
423 a->d[0] = w;
424 a->top = (w ? 1 : 0);
425 a->flags &= ~BN_FLG_FIXED_TOP;
426 bn_check_top(a);
427 return 1;
428 }
429
430 typedef enum {BIG, LITTLE} endianness_t;
431 typedef enum {SIGNED, UNSIGNED} signedness_t;
432
bin2bn(const unsigned char * s,int len,BIGNUM * ret,endianness_t endianness,signedness_t signedness)433 static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret,
434 endianness_t endianness, signedness_t signedness)
435 {
436 int inc;
437 const unsigned char *s2;
438 int inc2;
439 int neg = 0, xor = 0, carry = 0;
440 unsigned int i;
441 unsigned int n;
442 BIGNUM *bn = NULL;
443
444 /* Negative length is not acceptable */
445 if (len < 0)
446 return NULL;
447
448 if (ret == NULL)
449 ret = bn = BN_new();
450 if (ret == NULL)
451 return NULL;
452 bn_check_top(ret);
453
454 /*
455 * If the input has no bits, the number is considered zero.
456 * This makes calls with s==NULL and len==0 safe.
457 */
458 if (len == 0) {
459 BN_clear(ret);
460 return ret;
461 }
462
463 /*
464 * The loop that does the work iterates from least to most
465 * significant BIGNUM chunk, so we adapt parameters to transfer
466 * input bytes accordingly.
467 */
468 if (endianness == LITTLE) {
469 s2 = s + len - 1;
470 inc2 = -1;
471 inc = 1;
472 } else {
473 s2 = s;
474 inc2 = 1;
475 inc = -1;
476 s += len - 1;
477 }
478
479 /* Take note of the signedness of the input bytes*/
480 if (signedness == SIGNED) {
481 neg = !!(*s2 & 0x80);
482 xor = neg ? 0xff : 0x00;
483 carry = neg;
484 }
485
486 /*
487 * Skip leading sign extensions (the value of |xor|).
488 * This is the only spot where |s2| and |inc2| are used.
489 */
490 for ( ; len > 0 && *s2 == xor; s2 += inc2, len--)
491 continue;
492
493 /*
494 * If there was a set of 0xff, we backtrack one byte unless the next
495 * one has a sign bit, as the last 0xff is then part of the actual
496 * number, rather then a mere sign extension.
497 */
498 if (xor == 0xff) {
499 if (len == 0 || !(*s2 & 0x80))
500 len++;
501 }
502 /* If it was all zeros, we're done */
503 if (len == 0) {
504 ret->top = 0;
505 return ret;
506 }
507 n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */
508 if (bn_wexpand(ret, (int)n) == NULL) {
509 BN_free(bn);
510 return NULL;
511 }
512 ret->top = n;
513 ret->neg = neg;
514 for (i = 0; n-- > 0; i++) {
515 BN_ULONG l = 0; /* Accumulator */
516 unsigned int m = 0; /* Offset in a bignum chunk, in bits */
517
518 for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) {
519 BN_ULONG byte_xored = *s ^ xor;
520 BN_ULONG byte = (byte_xored + carry) & 0xff;
521
522 carry = byte_xored > byte; /* Implicit 1 or 0 */
523 l |= (byte << m);
524 }
525 ret->d[i] = l;
526 }
527 /*
528 * need to call this due to clear byte at top if avoiding having the top
529 * bit set (-ve number)
530 */
531 bn_correct_top(ret);
532 return ret;
533 }
534
BN_bin2bn(const unsigned char * s,int len,BIGNUM * ret)535 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
536 {
537 return bin2bn(s, len, ret, BIG, UNSIGNED);
538 }
539
BN_signed_bin2bn(const unsigned char * s,int len,BIGNUM * ret)540 BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
541 {
542 return bin2bn(s, len, ret, BIG, SIGNED);
543 }
544
bn2binpad(const BIGNUM * a,unsigned char * to,int tolen,endianness_t endianness,signedness_t signedness)545 static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen,
546 endianness_t endianness, signedness_t signedness)
547 {
548 int inc;
549 int n, n8;
550 int xor = 0, carry = 0, ext = 0;
551 size_t i, lasti, j, atop, mask;
552 BN_ULONG l;
553
554 /*
555 * In case |a| is fixed-top, BN_num_bits can return bogus length,
556 * but it's assumed that fixed-top inputs ought to be "nominated"
557 * even for padded output, so it works out...
558 */
559 n8 = BN_num_bits(a);
560 n = (n8 + 7) / 8; /* This is what BN_num_bytes() does */
561
562 /* Take note of the signedness of the bignum */
563 if (signedness == SIGNED) {
564 xor = a->neg ? 0xff : 0x00;
565 carry = a->neg;
566
567 /*
568 * if |n * 8 == n|, then the MSbit is set, otherwise unset.
569 * We must compensate with one extra byte if that doesn't
570 * correspond to the signedness of the bignum with regards
571 * to 2's complement.
572 */
573 ext = (n * 8 == n8)
574 ? !a->neg /* MSbit set on nonnegative bignum */
575 : a->neg; /* MSbit unset on negative bignum */
576 }
577
578 if (tolen == -1) {
579 tolen = n + ext;
580 } else if (tolen < n + ext) { /* uncommon/unlike case */
581 BIGNUM temp = *a;
582
583 bn_correct_top(&temp);
584 n8 = BN_num_bits(&temp);
585 n = (n8 + 7) / 8; /* This is what BN_num_bytes() does */
586 if (tolen < n + ext)
587 return -1;
588 }
589
590 /* Swipe through whole available data and don't give away padded zero. */
591 atop = a->dmax * BN_BYTES;
592 if (atop == 0) {
593 if (tolen != 0)
594 memset(to, '\0', tolen);
595 return tolen;
596 }
597
598 /*
599 * The loop that does the work iterates from least significant
600 * to most significant BIGNUM limb, so we adapt parameters to
601 * transfer output bytes accordingly.
602 */
603 if (endianness == LITTLE) {
604 inc = 1;
605 } else {
606 inc = -1;
607 to += tolen - 1; /* Move to the last byte, not beyond */
608 }
609
610 lasti = atop - 1;
611 atop = a->top * BN_BYTES;
612 for (i = 0, j = 0; j < (size_t)tolen; j++) {
613 unsigned char byte, byte_xored;
614
615 l = a->d[i / BN_BYTES];
616 mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
617 byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
618 byte_xored = byte ^ xor;
619 *to = (unsigned char)(byte_xored + carry);
620 carry = byte_xored > *to; /* Implicit 1 or 0 */
621 to += inc;
622 i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
623 }
624
625 return tolen;
626 }
627
BN_bn2binpad(const BIGNUM * a,unsigned char * to,int tolen)628 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
629 {
630 if (tolen < 0)
631 return -1;
632 return bn2binpad(a, to, tolen, BIG, UNSIGNED);
633 }
634
BN_signed_bn2bin(const BIGNUM * a,unsigned char * to,int tolen)635 int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen)
636 {
637 if (tolen < 0)
638 return -1;
639 return bn2binpad(a, to, tolen, BIG, SIGNED);
640 }
641
BN_bn2bin(const BIGNUM * a,unsigned char * to)642 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
643 {
644 return bn2binpad(a, to, -1, BIG, UNSIGNED);
645 }
646
BN_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)647 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
648 {
649 return bin2bn(s, len, ret, LITTLE, UNSIGNED);
650 }
651
BN_signed_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)652 BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
653 {
654 return bin2bn(s, len, ret, LITTLE, SIGNED);
655 }
656
BN_bn2lebinpad(const BIGNUM * a,unsigned char * to,int tolen)657 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
658 {
659 if (tolen < 0)
660 return -1;
661 return bn2binpad(a, to, tolen, LITTLE, UNSIGNED);
662 }
663
BN_signed_bn2lebin(const BIGNUM * a,unsigned char * to,int tolen)664 int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen)
665 {
666 if (tolen < 0)
667 return -1;
668 return bn2binpad(a, to, tolen, LITTLE, SIGNED);
669 }
670
BN_native2bn(const unsigned char * s,int len,BIGNUM * ret)671 BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret)
672 {
673 DECLARE_IS_ENDIAN;
674
675 if (IS_LITTLE_ENDIAN)
676 return BN_lebin2bn(s, len, ret);
677 return BN_bin2bn(s, len, ret);
678 }
679
BN_signed_native2bn(const unsigned char * s,int len,BIGNUM * ret)680 BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret)
681 {
682 DECLARE_IS_ENDIAN;
683
684 if (IS_LITTLE_ENDIAN)
685 return BN_signed_lebin2bn(s, len, ret);
686 return BN_signed_bin2bn(s, len, ret);
687 }
688
BN_bn2nativepad(const BIGNUM * a,unsigned char * to,int tolen)689 int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen)
690 {
691 DECLARE_IS_ENDIAN;
692
693 if (IS_LITTLE_ENDIAN)
694 return BN_bn2lebinpad(a, to, tolen);
695 return BN_bn2binpad(a, to, tolen);
696 }
697
BN_signed_bn2native(const BIGNUM * a,unsigned char * to,int tolen)698 int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen)
699 {
700 DECLARE_IS_ENDIAN;
701
702 if (IS_LITTLE_ENDIAN)
703 return BN_signed_bn2lebin(a, to, tolen);
704 return BN_signed_bn2bin(a, to, tolen);
705 }
706
BN_ucmp(const BIGNUM * a,const BIGNUM * b)707 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
708 {
709 int i;
710 BN_ULONG t1, t2, *ap, *bp;
711
712 ap = a->d;
713 bp = b->d;
714
715 if (BN_get_flags(a, BN_FLG_CONSTTIME)
716 && a->top == b->top) {
717 int res = 0;
718
719 for (i = 0; i < b->top; i++) {
720 res = constant_time_select_int(constant_time_lt_bn(ap[i], bp[i]),
721 -1, res);
722 res = constant_time_select_int(constant_time_lt_bn(bp[i], ap[i]),
723 1, res);
724 }
725 return res;
726 }
727
728 bn_check_top(a);
729 bn_check_top(b);
730
731 i = a->top - b->top;
732 if (i != 0)
733 return i;
734
735 for (i = a->top - 1; i >= 0; i--) {
736 t1 = ap[i];
737 t2 = bp[i];
738 if (t1 != t2)
739 return ((t1 > t2) ? 1 : -1);
740 }
741 return 0;
742 }
743
BN_cmp(const BIGNUM * a,const BIGNUM * b)744 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
745 {
746 int i;
747 int gt, lt;
748 BN_ULONG t1, t2;
749
750 if ((a == NULL) || (b == NULL)) {
751 if (a != NULL)
752 return -1;
753 else if (b != NULL)
754 return 1;
755 else
756 return 0;
757 }
758
759 bn_check_top(a);
760 bn_check_top(b);
761
762 if (a->neg != b->neg) {
763 if (a->neg)
764 return -1;
765 else
766 return 1;
767 }
768 if (a->neg == 0) {
769 gt = 1;
770 lt = -1;
771 } else {
772 gt = -1;
773 lt = 1;
774 }
775
776 if (a->top > b->top)
777 return gt;
778 if (a->top < b->top)
779 return lt;
780 for (i = a->top - 1; i >= 0; i--) {
781 t1 = a->d[i];
782 t2 = b->d[i];
783 if (t1 > t2)
784 return gt;
785 if (t1 < t2)
786 return lt;
787 }
788 return 0;
789 }
790
BN_set_bit(BIGNUM * a,int n)791 int BN_set_bit(BIGNUM *a, int n)
792 {
793 int i, j, k;
794
795 if (n < 0)
796 return 0;
797
798 i = n / BN_BITS2;
799 j = n % BN_BITS2;
800 if (a->top <= i) {
801 if (bn_wexpand(a, i + 1) == NULL)
802 return 0;
803 for (k = a->top; k < i + 1; k++)
804 a->d[k] = 0;
805 a->top = i + 1;
806 a->flags &= ~BN_FLG_FIXED_TOP;
807 }
808
809 a->d[i] |= (((BN_ULONG)1) << j);
810 bn_check_top(a);
811 return 1;
812 }
813
BN_clear_bit(BIGNUM * a,int n)814 int BN_clear_bit(BIGNUM *a, int n)
815 {
816 int i, j;
817
818 bn_check_top(a);
819 if (n < 0)
820 return 0;
821
822 i = n / BN_BITS2;
823 j = n % BN_BITS2;
824 if (a->top <= i)
825 return 0;
826
827 a->d[i] &= (~(((BN_ULONG)1) << j));
828 bn_correct_top(a);
829 return 1;
830 }
831
BN_is_bit_set(const BIGNUM * a,int n)832 int BN_is_bit_set(const BIGNUM *a, int n)
833 {
834 int i, j;
835
836 bn_check_top(a);
837 if (n < 0)
838 return 0;
839 i = n / BN_BITS2;
840 j = n % BN_BITS2;
841 if (a->top <= i)
842 return 0;
843 return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
844 }
845
ossl_bn_mask_bits_fixed_top(BIGNUM * a,int n)846 int ossl_bn_mask_bits_fixed_top(BIGNUM *a, int n)
847 {
848 int b, w;
849
850 if (n < 0)
851 return 0;
852
853 w = n / BN_BITS2;
854 b = n % BN_BITS2;
855 if (w >= a->top)
856 return 0;
857 if (b == 0)
858 a->top = w;
859 else {
860 a->top = w + 1;
861 a->d[w] &= ~(BN_MASK2 << b);
862 }
863 a->flags |= BN_FLG_FIXED_TOP;
864 return 1;
865 }
866
BN_mask_bits(BIGNUM * a,int n)867 int BN_mask_bits(BIGNUM *a, int n)
868 {
869 int ret;
870
871 bn_check_top(a);
872 ret = ossl_bn_mask_bits_fixed_top(a, n);
873 if (ret)
874 bn_correct_top(a);
875 return ret;
876 }
877
BN_set_negative(BIGNUM * a,int b)878 void BN_set_negative(BIGNUM *a, int b)
879 {
880 if (b && !BN_is_zero(a))
881 a->neg = 1;
882 else
883 a->neg = 0;
884 }
885
bn_cmp_words(const BN_ULONG * a,const BN_ULONG * b,int n)886 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
887 {
888 int i;
889 BN_ULONG aa, bb;
890
891 if (n == 0)
892 return 0;
893
894 aa = a[n - 1];
895 bb = b[n - 1];
896 if (aa != bb)
897 return ((aa > bb) ? 1 : -1);
898 for (i = n - 2; i >= 0; i--) {
899 aa = a[i];
900 bb = b[i];
901 if (aa != bb)
902 return ((aa > bb) ? 1 : -1);
903 }
904 return 0;
905 }
906
907 /*
908 * Here follows a specialised variants of bn_cmp_words(). It has the
909 * capability of performing the operation on arrays of different sizes. The
910 * sizes of those arrays is expressed through cl, which is the common length
911 * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
912 * two lengths, calculated as len(a)-len(b). All lengths are the number of
913 * BN_ULONGs...
914 */
915
bn_cmp_part_words(const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)916 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
917 {
918 int n, i;
919 n = cl - 1;
920
921 if (dl < 0) {
922 for (i = dl; i < 0; i++) {
923 if (b[n - i] != 0)
924 return -1; /* a < b */
925 }
926 }
927 if (dl > 0) {
928 for (i = dl; i > 0; i--) {
929 if (a[n + i] != 0)
930 return 1; /* a > b */
931 }
932 }
933 return bn_cmp_words(a, b, cl);
934 }
935
936 /*-
937 * Constant-time conditional swap of a and b.
938 * a and b are swapped if condition is not 0.
939 * nwords is the number of words to swap.
940 * Assumes that at least nwords are allocated in both a and b.
941 * Assumes that no more than nwords are used by either a or b.
942 */
BN_consttime_swap(BN_ULONG condition,BIGNUM * a,BIGNUM * b,int nwords)943 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
944 {
945 BN_ULONG t;
946 int i;
947
948 bn_wcheck_size(a, nwords);
949 bn_wcheck_size(b, nwords);
950
951 condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
952
953 t = (a->top ^ b->top) & condition;
954 a->top ^= t;
955 b->top ^= t;
956
957 t = (a->neg ^ b->neg) & condition;
958 a->neg ^= t;
959 b->neg ^= t;
960
961 /*-
962 * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
963 * is actually to treat it as it's read-only data, and some (if not most)
964 * of it does reside in read-only segment. In other words observation of
965 * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
966 * condition. It would either cause SEGV or effectively cause data
967 * corruption.
968 *
969 * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
970 * preserved.
971 *
972 * BN_FLG_SECURE: must be preserved, because it determines how x->d was
973 * allocated and hence how to free it.
974 *
975 * BN_FLG_CONSTTIME: sufficient to mask and swap
976 *
977 * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
978 * the data, so the d array may be padded with additional 0 values (i.e.
979 * top could be greater than the minimal value that it could be). We should
980 * be swapping it
981 */
982
983 #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
984
985 t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
986 a->flags ^= t;
987 b->flags ^= t;
988
989 /* conditionally swap the data */
990 for (i = 0; i < nwords; i++) {
991 t = (a->d[i] ^ b->d[i]) & condition;
992 a->d[i] ^= t;
993 b->d[i] ^= t;
994 }
995 }
996
997 #undef BN_CONSTTIME_SWAP_FLAGS
998
999 /* Bits of security, see SP800-57 */
1000
BN_security_bits(int L,int N)1001 int BN_security_bits(int L, int N)
1002 {
1003 int secbits, bits;
1004 if (L >= 15360)
1005 secbits = 256;
1006 else if (L >= 7680)
1007 secbits = 192;
1008 else if (L >= 3072)
1009 secbits = 128;
1010 else if (L >= 2048)
1011 secbits = 112;
1012 else if (L >= 1024)
1013 secbits = 80;
1014 else
1015 return 0;
1016 if (N == -1)
1017 return secbits;
1018 bits = N / 2;
1019 if (bits < 80)
1020 return 0;
1021 return bits >= secbits ? secbits : bits;
1022 }
1023
BN_zero_ex(BIGNUM * a)1024 void BN_zero_ex(BIGNUM *a)
1025 {
1026 a->neg = 0;
1027 a->top = 0;
1028 a->flags &= ~BN_FLG_FIXED_TOP;
1029 }
1030
BN_abs_is_word(const BIGNUM * a,const BN_ULONG w)1031 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
1032 {
1033 return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
1034 }
1035
BN_is_zero(const BIGNUM * a)1036 int BN_is_zero(const BIGNUM *a)
1037 {
1038 return a->top == 0;
1039 }
1040
BN_is_one(const BIGNUM * a)1041 int BN_is_one(const BIGNUM *a)
1042 {
1043 return BN_abs_is_word(a, 1) && !a->neg;
1044 }
1045
BN_is_word(const BIGNUM * a,const BN_ULONG w)1046 int BN_is_word(const BIGNUM *a, const BN_ULONG w)
1047 {
1048 return BN_abs_is_word(a, w) && (!w || !a->neg);
1049 }
1050
ossl_bn_is_word_fixed_top(const BIGNUM * a,const BN_ULONG w)1051 int ossl_bn_is_word_fixed_top(const BIGNUM *a, const BN_ULONG w)
1052 {
1053 int res, i;
1054 const BN_ULONG *ap = a->d;
1055
1056 if (a->neg || a->top == 0)
1057 return 0;
1058
1059 res = constant_time_select_int(constant_time_eq_bn(ap[0], w), 1, 0);
1060
1061 for (i = 1; i < a->top; i++)
1062 res = constant_time_select_int(constant_time_is_zero_bn(ap[i]),
1063 res, 0);
1064 return res;
1065 }
1066
BN_is_odd(const BIGNUM * a)1067 int BN_is_odd(const BIGNUM *a)
1068 {
1069 return (a->top > 0) && (a->d[0] & 1);
1070 }
1071
BN_is_negative(const BIGNUM * a)1072 int BN_is_negative(const BIGNUM *a)
1073 {
1074 return (a->neg != 0);
1075 }
1076
BN_to_montgomery(BIGNUM * r,const BIGNUM * a,BN_MONT_CTX * mont,BN_CTX * ctx)1077 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
1078 BN_CTX *ctx)
1079 {
1080 return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
1081 }
1082
BN_with_flags(BIGNUM * dest,const BIGNUM * b,int flags)1083 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
1084 {
1085 dest->d = b->d;
1086 dest->top = b->top;
1087 dest->dmax = b->dmax;
1088 dest->neg = b->neg;
1089 dest->flags = ((dest->flags & BN_FLG_MALLOCED)
1090 | (b->flags & ~BN_FLG_MALLOCED)
1091 | BN_FLG_STATIC_DATA | flags);
1092 }
1093
BN_GENCB_new(void)1094 BN_GENCB *BN_GENCB_new(void)
1095 {
1096 BN_GENCB *ret;
1097
1098 if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
1099 return NULL;
1100
1101 return ret;
1102 }
1103
BN_GENCB_free(BN_GENCB * cb)1104 void BN_GENCB_free(BN_GENCB *cb)
1105 {
1106 if (cb == NULL)
1107 return;
1108 OPENSSL_free(cb);
1109 }
1110
BN_set_flags(BIGNUM * b,int n)1111 void BN_set_flags(BIGNUM *b, int n)
1112 {
1113 b->flags |= n;
1114 }
1115
BN_get_flags(const BIGNUM * b,int n)1116 int BN_get_flags(const BIGNUM *b, int n)
1117 {
1118 return b->flags & n;
1119 }
1120
1121 /* Populate a BN_GENCB structure with an "old"-style callback */
BN_GENCB_set_old(BN_GENCB * gencb,void (* callback)(int,int,void *),void * cb_arg)1122 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
1123 void *cb_arg)
1124 {
1125 BN_GENCB *tmp_gencb = gencb;
1126 tmp_gencb->ver = 1;
1127 tmp_gencb->arg = cb_arg;
1128 tmp_gencb->cb.cb_1 = callback;
1129 }
1130
1131 /* Populate a BN_GENCB structure with a "new"-style callback */
BN_GENCB_set(BN_GENCB * gencb,int (* callback)(int,int,BN_GENCB *),void * cb_arg)1132 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
1133 void *cb_arg)
1134 {
1135 BN_GENCB *tmp_gencb = gencb;
1136 tmp_gencb->ver = 2;
1137 tmp_gencb->arg = cb_arg;
1138 tmp_gencb->cb.cb_2 = callback;
1139 }
1140
BN_GENCB_get_arg(BN_GENCB * cb)1141 void *BN_GENCB_get_arg(BN_GENCB *cb)
1142 {
1143 return cb->arg;
1144 }
1145
bn_wexpand(BIGNUM * a,int words)1146 BIGNUM *bn_wexpand(BIGNUM *a, int words)
1147 {
1148 return (words <= a->dmax) ? a : bn_expand2(a, words);
1149 }
1150
bn_correct_top_consttime(BIGNUM * a)1151 void bn_correct_top_consttime(BIGNUM *a)
1152 {
1153 int j, atop;
1154 BN_ULONG limb;
1155 unsigned int mask;
1156
1157 for (j = 0, atop = 0; j < a->dmax; j++) {
1158 limb = a->d[j];
1159 limb |= 0 - limb;
1160 limb >>= BN_BITS2 - 1;
1161 limb = 0 - limb;
1162 mask = (unsigned int)limb;
1163 mask &= constant_time_msb(j - a->top);
1164 atop = constant_time_select_int(mask, j + 1, atop);
1165 }
1166
1167 mask = constant_time_eq_int(atop, 0);
1168 a->top = atop;
1169 a->neg = constant_time_select_int(mask, 0, a->neg);
1170 a->flags &= ~BN_FLG_FIXED_TOP;
1171 }
1172
bn_correct_top(BIGNUM * a)1173 void bn_correct_top(BIGNUM *a)
1174 {
1175 BN_ULONG *ftl;
1176 int tmp_top = a->top;
1177
1178 if (tmp_top > 0) {
1179 for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1180 ftl--;
1181 if (*ftl != 0)
1182 break;
1183 }
1184 a->top = tmp_top;
1185 }
1186 if (a->top == 0)
1187 a->neg = 0;
1188 a->flags &= ~BN_FLG_FIXED_TOP;
1189 bn_pollute(a);
1190 }
1191