xref: /openssl/crypto/bn/bn_lib.c (revision 7ed6de99)
1 /*
2  * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <assert.h>
11 #include <limits.h>
12 #include "internal/cryptlib.h"
13 #include "internal/endian.h"
14 #include "bn_local.h"
15 #include <openssl/opensslconf.h>
16 #include "internal/constant_time.h"
17 
18 /* This stuff appears to be completely unused, so is deprecated */
19 #ifndef OPENSSL_NO_DEPRECATED_0_9_8
20 /*-
21  * For a 32 bit machine
22  * 2 -   4 ==  128
23  * 3 -   8 ==  256
24  * 4 -  16 ==  512
25  * 5 -  32 == 1024
26  * 6 -  64 == 2048
27  * 7 - 128 == 4096
28  * 8 - 256 == 8192
29  */
30 static int bn_limit_bits = 0;
31 static int bn_limit_num = 8;    /* (1<<bn_limit_bits) */
32 static int bn_limit_bits_low = 0;
33 static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
34 static int bn_limit_bits_high = 0;
35 static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
36 static int bn_limit_bits_mont = 0;
37 static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
38 
BN_set_params(int mult,int high,int low,int mont)39 void BN_set_params(int mult, int high, int low, int mont)
40 {
41     if (mult >= 0) {
42         if (mult > (int)(sizeof(int) * 8) - 1)
43             mult = sizeof(int) * 8 - 1;
44         bn_limit_bits = mult;
45         bn_limit_num = 1 << mult;
46     }
47     if (high >= 0) {
48         if (high > (int)(sizeof(int) * 8) - 1)
49             high = sizeof(int) * 8 - 1;
50         bn_limit_bits_high = high;
51         bn_limit_num_high = 1 << high;
52     }
53     if (low >= 0) {
54         if (low > (int)(sizeof(int) * 8) - 1)
55             low = sizeof(int) * 8 - 1;
56         bn_limit_bits_low = low;
57         bn_limit_num_low = 1 << low;
58     }
59     if (mont >= 0) {
60         if (mont > (int)(sizeof(int) * 8) - 1)
61             mont = sizeof(int) * 8 - 1;
62         bn_limit_bits_mont = mont;
63         bn_limit_num_mont = 1 << mont;
64     }
65 }
66 
BN_get_params(int which)67 int BN_get_params(int which)
68 {
69     if (which == 0)
70         return bn_limit_bits;
71     else if (which == 1)
72         return bn_limit_bits_high;
73     else if (which == 2)
74         return bn_limit_bits_low;
75     else if (which == 3)
76         return bn_limit_bits_mont;
77     else
78         return 0;
79 }
80 #endif
81 
BN_value_one(void)82 const BIGNUM *BN_value_one(void)
83 {
84     static const BN_ULONG data_one = 1L;
85     static const BIGNUM const_one = {
86         (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA
87     };
88 
89     return &const_one;
90 }
91 
92 /*
93  * Old Visual Studio ARM compiler miscompiles BN_num_bits_word()
94  * https://mta.openssl.org/pipermail/openssl-users/2018-August/008465.html
95  */
96 #if defined(_MSC_VER) && defined(_ARM_) && defined(_WIN32_WCE) \
97     && _MSC_VER>=1400 && _MSC_VER<1501
98 # define MS_BROKEN_BN_num_bits_word
99 # pragma optimize("", off)
100 #endif
BN_num_bits_word(BN_ULONG l)101 int BN_num_bits_word(BN_ULONG l)
102 {
103     BN_ULONG x, mask;
104     int bits = (l != 0);
105 
106 #if BN_BITS2 > 32
107     x = l >> 32;
108     mask = (0 - x) & BN_MASK2;
109     mask = (0 - (mask >> (BN_BITS2 - 1)));
110     bits += 32 & mask;
111     l ^= (x ^ l) & mask;
112 #endif
113 
114     x = l >> 16;
115     mask = (0 - x) & BN_MASK2;
116     mask = (0 - (mask >> (BN_BITS2 - 1)));
117     bits += 16 & mask;
118     l ^= (x ^ l) & mask;
119 
120     x = l >> 8;
121     mask = (0 - x) & BN_MASK2;
122     mask = (0 - (mask >> (BN_BITS2 - 1)));
123     bits += 8 & mask;
124     l ^= (x ^ l) & mask;
125 
126     x = l >> 4;
127     mask = (0 - x) & BN_MASK2;
128     mask = (0 - (mask >> (BN_BITS2 - 1)));
129     bits += 4 & mask;
130     l ^= (x ^ l) & mask;
131 
132     x = l >> 2;
133     mask = (0 - x) & BN_MASK2;
134     mask = (0 - (mask >> (BN_BITS2 - 1)));
135     bits += 2 & mask;
136     l ^= (x ^ l) & mask;
137 
138     x = l >> 1;
139     mask = (0 - x) & BN_MASK2;
140     mask = (0 - (mask >> (BN_BITS2 - 1)));
141     bits += 1 & mask;
142 
143     return bits;
144 }
145 #ifdef MS_BROKEN_BN_num_bits_word
146 # pragma optimize("", on)
147 #endif
148 
149 /*
150  * This function still leaks `a->dmax`: it's caller's responsibility to
151  * expand the input `a` in advance to a public length.
152  */
153 static ossl_inline
bn_num_bits_consttime(const BIGNUM * a)154 int bn_num_bits_consttime(const BIGNUM *a)
155 {
156     int j, ret;
157     unsigned int mask, past_i;
158     int i = a->top - 1;
159     bn_check_top(a);
160 
161     for (j = 0, past_i = 0, ret = 0; j < a->dmax; j++) {
162         mask = constant_time_eq_int(i, j); /* 0xff..ff if i==j, 0x0 otherwise */
163 
164         ret += BN_BITS2 & (~mask & ~past_i);
165         ret += BN_num_bits_word(a->d[j]) & mask;
166 
167         past_i |= mask; /* past_i will become 0xff..ff after i==j */
168     }
169 
170     /*
171      * if BN_is_zero(a) => i is -1 and ret contains garbage, so we mask the
172      * final result.
173      */
174     mask = ~(constant_time_eq_int(i, ((int)-1)));
175 
176     return ret & mask;
177 }
178 
BN_num_bits(const BIGNUM * a)179 int BN_num_bits(const BIGNUM *a)
180 {
181     int i = a->top - 1;
182     bn_check_top(a);
183 
184     if (a->flags & BN_FLG_CONSTTIME) {
185         /*
186          * We assume that BIGNUMs flagged as CONSTTIME have also been expanded
187          * so that a->dmax is not leaking secret information.
188          *
189          * In other words, it's the caller's responsibility to ensure `a` has
190          * been preallocated in advance to a public length if we hit this
191          * branch.
192          *
193          */
194         return bn_num_bits_consttime(a);
195     }
196 
197     if (BN_is_zero(a))
198         return 0;
199 
200     return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
201 }
202 
bn_free_d(BIGNUM * a,int clear)203 static void bn_free_d(BIGNUM *a, int clear)
204 {
205     if (BN_get_flags(a, BN_FLG_SECURE))
206         OPENSSL_secure_clear_free(a->d, a->dmax * sizeof(a->d[0]));
207     else if (clear != 0)
208         OPENSSL_clear_free(a->d, a->dmax * sizeof(a->d[0]));
209     else
210         OPENSSL_free(a->d);
211 }
212 
213 
BN_clear_free(BIGNUM * a)214 void BN_clear_free(BIGNUM *a)
215 {
216     if (a == NULL)
217         return;
218     if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA))
219         bn_free_d(a, 1);
220     if (BN_get_flags(a, BN_FLG_MALLOCED)) {
221         OPENSSL_cleanse(a, sizeof(*a));
222         OPENSSL_free(a);
223     }
224 }
225 
BN_free(BIGNUM * a)226 void BN_free(BIGNUM *a)
227 {
228     if (a == NULL)
229         return;
230     if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
231         bn_free_d(a, 0);
232     if (a->flags & BN_FLG_MALLOCED)
233         OPENSSL_free(a);
234 }
235 
bn_init(BIGNUM * a)236 void bn_init(BIGNUM *a)
237 {
238     static BIGNUM nilbn;
239 
240     *a = nilbn;
241     bn_check_top(a);
242 }
243 
BN_new(void)244 BIGNUM *BN_new(void)
245 {
246     BIGNUM *ret;
247 
248     if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL)
249         return NULL;
250     ret->flags = BN_FLG_MALLOCED;
251     bn_check_top(ret);
252     return ret;
253 }
254 
BN_secure_new(void)255  BIGNUM *BN_secure_new(void)
256  {
257      BIGNUM *ret = BN_new();
258      if (ret != NULL)
259          ret->flags |= BN_FLG_SECURE;
260      return ret;
261  }
262 
263 /* This is used by bn_expand2() */
264 /* The caller MUST check that words > b->dmax before calling this */
bn_expand_internal(const BIGNUM * b,int words)265 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
266 {
267     BN_ULONG *a = NULL;
268 
269     if (words > (INT_MAX / (4 * BN_BITS2))) {
270         ERR_raise(ERR_LIB_BN, BN_R_BIGNUM_TOO_LONG);
271         return NULL;
272     }
273     if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
274         ERR_raise(ERR_LIB_BN, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
275         return NULL;
276     }
277     if (BN_get_flags(b, BN_FLG_SECURE))
278         a = OPENSSL_secure_zalloc(words * sizeof(*a));
279     else
280         a = OPENSSL_zalloc(words * sizeof(*a));
281     if (a == NULL)
282         return NULL;
283 
284     assert(b->top <= words);
285     if (b->top > 0)
286         memcpy(a, b->d, sizeof(*a) * b->top);
287 
288     return a;
289 }
290 
291 /*
292  * This is an internal function that should not be used in applications. It
293  * ensures that 'b' has enough room for a 'words' word number and initialises
294  * any unused part of b->d with leading zeros. It is mostly used by the
295  * various BIGNUM routines. If there is an error, NULL is returned. If not,
296  * 'b' is returned.
297  */
298 
bn_expand2(BIGNUM * b,int words)299 BIGNUM *bn_expand2(BIGNUM *b, int words)
300 {
301     if (words > b->dmax) {
302         BN_ULONG *a = bn_expand_internal(b, words);
303         if (!a)
304             return NULL;
305         if (b->d != NULL)
306             bn_free_d(b, 1);
307         b->d = a;
308         b->dmax = words;
309     }
310 
311     return b;
312 }
313 
BN_dup(const BIGNUM * a)314 BIGNUM *BN_dup(const BIGNUM *a)
315 {
316     BIGNUM *t;
317 
318     if (a == NULL)
319         return NULL;
320     bn_check_top(a);
321 
322     t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
323     if (t == NULL)
324         return NULL;
325     if (!BN_copy(t, a)) {
326         BN_free(t);
327         return NULL;
328     }
329     bn_check_top(t);
330     return t;
331 }
332 
BN_copy(BIGNUM * a,const BIGNUM * b)333 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
334 {
335     int bn_words;
336 
337     bn_check_top(b);
338 
339     bn_words = BN_get_flags(b, BN_FLG_CONSTTIME) ? b->dmax : b->top;
340 
341     if (a == b)
342         return a;
343     if (bn_wexpand(a, bn_words) == NULL)
344         return NULL;
345 
346     if (b->top > 0)
347         memcpy(a->d, b->d, sizeof(b->d[0]) * bn_words);
348 
349     a->neg = b->neg;
350     a->top = b->top;
351     a->flags |= b->flags & BN_FLG_FIXED_TOP;
352     bn_check_top(a);
353     return a;
354 }
355 
356 #define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
357                                     | BN_FLG_CONSTTIME   \
358                                     | BN_FLG_SECURE      \
359                                     | BN_FLG_FIXED_TOP))
360 #define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
361 
BN_swap(BIGNUM * a,BIGNUM * b)362 void BN_swap(BIGNUM *a, BIGNUM *b)
363 {
364     int flags_old_a, flags_old_b;
365     BN_ULONG *tmp_d;
366     int tmp_top, tmp_dmax, tmp_neg;
367 
368     bn_check_top(a);
369     bn_check_top(b);
370 
371     flags_old_a = a->flags;
372     flags_old_b = b->flags;
373 
374     tmp_d = a->d;
375     tmp_top = a->top;
376     tmp_dmax = a->dmax;
377     tmp_neg = a->neg;
378 
379     a->d = b->d;
380     a->top = b->top;
381     a->dmax = b->dmax;
382     a->neg = b->neg;
383 
384     b->d = tmp_d;
385     b->top = tmp_top;
386     b->dmax = tmp_dmax;
387     b->neg = tmp_neg;
388 
389     a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
390     b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
391     bn_check_top(a);
392     bn_check_top(b);
393 }
394 
BN_clear(BIGNUM * a)395 void BN_clear(BIGNUM *a)
396 {
397     if (a == NULL)
398         return;
399     bn_check_top(a);
400     if (a->d != NULL)
401         OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
402     a->neg = 0;
403     a->top = 0;
404     a->flags &= ~BN_FLG_FIXED_TOP;
405 }
406 
BN_get_word(const BIGNUM * a)407 BN_ULONG BN_get_word(const BIGNUM *a)
408 {
409     if (a->top > 1)
410         return BN_MASK2;
411     else if (a->top == 1)
412         return a->d[0];
413     /* a->top == 0 */
414     return 0;
415 }
416 
BN_set_word(BIGNUM * a,BN_ULONG w)417 int BN_set_word(BIGNUM *a, BN_ULONG w)
418 {
419     bn_check_top(a);
420     if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
421         return 0;
422     a->neg = 0;
423     a->d[0] = w;
424     a->top = (w ? 1 : 0);
425     a->flags &= ~BN_FLG_FIXED_TOP;
426     bn_check_top(a);
427     return 1;
428 }
429 
430 typedef enum {BIG, LITTLE} endianness_t;
431 typedef enum {SIGNED, UNSIGNED} signedness_t;
432 
bin2bn(const unsigned char * s,int len,BIGNUM * ret,endianness_t endianness,signedness_t signedness)433 static BIGNUM *bin2bn(const unsigned char *s, int len, BIGNUM *ret,
434                       endianness_t endianness, signedness_t signedness)
435 {
436     int inc;
437     const unsigned char *s2;
438     int inc2;
439     int neg = 0, xor = 0, carry = 0;
440     unsigned int i;
441     unsigned int n;
442     BIGNUM *bn = NULL;
443 
444     /* Negative length is not acceptable */
445     if (len < 0)
446         return NULL;
447 
448     if (ret == NULL)
449         ret = bn = BN_new();
450     if (ret == NULL)
451         return NULL;
452     bn_check_top(ret);
453 
454     /*
455      * If the input has no bits, the number is considered zero.
456      * This makes calls with s==NULL and len==0 safe.
457      */
458     if (len == 0) {
459         BN_clear(ret);
460         return ret;
461     }
462 
463     /*
464      * The loop that does the work iterates from least to most
465      * significant BIGNUM chunk, so we adapt parameters to transfer
466      * input bytes accordingly.
467      */
468     if (endianness == LITTLE) {
469         s2 = s + len - 1;
470         inc2 = -1;
471         inc = 1;
472     } else {
473         s2 = s;
474         inc2 = 1;
475         inc = -1;
476         s += len - 1;
477     }
478 
479     /* Take note of the signedness of the input bytes*/
480     if (signedness == SIGNED) {
481         neg = !!(*s2 & 0x80);
482         xor = neg ? 0xff : 0x00;
483         carry = neg;
484     }
485 
486     /*
487      * Skip leading sign extensions (the value of |xor|).
488      * This is the only spot where |s2| and |inc2| are used.
489      */
490     for ( ; len > 0 && *s2 == xor; s2 += inc2, len--)
491         continue;
492 
493     /*
494      * If there was a set of 0xff, we backtrack one byte unless the next
495      * one has a sign bit, as the last 0xff is then part of the actual
496      * number, rather then a mere sign extension.
497      */
498     if (xor == 0xff) {
499         if (len == 0 || !(*s2 & 0x80))
500             len++;
501     }
502     /* If it was all zeros, we're done */
503     if (len == 0) {
504         ret->top = 0;
505         return ret;
506     }
507     n = ((len - 1) / BN_BYTES) + 1; /* Number of resulting bignum chunks */
508     if (bn_wexpand(ret, (int)n) == NULL) {
509         BN_free(bn);
510         return NULL;
511     }
512     ret->top = n;
513     ret->neg = neg;
514     for (i = 0; n-- > 0; i++) {
515         BN_ULONG l = 0;        /* Accumulator */
516         unsigned int m = 0;    /* Offset in a bignum chunk, in bits */
517 
518         for (; len > 0 && m < BN_BYTES * 8; len--, s += inc, m += 8) {
519             BN_ULONG byte_xored = *s ^ xor;
520             BN_ULONG byte = (byte_xored + carry) & 0xff;
521 
522             carry = byte_xored > byte; /* Implicit 1 or 0 */
523             l |= (byte << m);
524         }
525         ret->d[i] = l;
526     }
527     /*
528      * need to call this due to clear byte at top if avoiding having the top
529      * bit set (-ve number)
530      */
531     bn_correct_top(ret);
532     return ret;
533 }
534 
BN_bin2bn(const unsigned char * s,int len,BIGNUM * ret)535 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
536 {
537     return bin2bn(s, len, ret, BIG, UNSIGNED);
538 }
539 
BN_signed_bin2bn(const unsigned char * s,int len,BIGNUM * ret)540 BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
541 {
542     return bin2bn(s, len, ret, BIG, SIGNED);
543 }
544 
bn2binpad(const BIGNUM * a,unsigned char * to,int tolen,endianness_t endianness,signedness_t signedness)545 static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen,
546                      endianness_t endianness, signedness_t signedness)
547 {
548     int inc;
549     int n, n8;
550     int xor = 0, carry = 0, ext = 0;
551     size_t i, lasti, j, atop, mask;
552     BN_ULONG l;
553 
554     /*
555      * In case |a| is fixed-top, BN_num_bits can return bogus length,
556      * but it's assumed that fixed-top inputs ought to be "nominated"
557      * even for padded output, so it works out...
558      */
559     n8 = BN_num_bits(a);
560     n = (n8 + 7) / 8;           /* This is what BN_num_bytes() does */
561 
562     /* Take note of the signedness of the bignum */
563     if (signedness == SIGNED) {
564         xor = a->neg ? 0xff : 0x00;
565         carry = a->neg;
566 
567         /*
568          * if |n * 8 == n|, then the MSbit is set, otherwise unset.
569          * We must compensate with one extra byte if that doesn't
570          * correspond to the signedness of the bignum with regards
571          * to 2's complement.
572          */
573         ext = (n * 8 == n8)
574             ? !a->neg            /* MSbit set on nonnegative bignum */
575             : a->neg;            /* MSbit unset on negative bignum */
576     }
577 
578     if (tolen == -1) {
579         tolen = n + ext;
580     } else if (tolen < n + ext) { /* uncommon/unlike case */
581         BIGNUM temp = *a;
582 
583         bn_correct_top(&temp);
584         n8 = BN_num_bits(&temp);
585         n = (n8 + 7) / 8;       /* This is what BN_num_bytes() does */
586         if (tolen < n + ext)
587             return -1;
588     }
589 
590     /* Swipe through whole available data and don't give away padded zero. */
591     atop = a->dmax * BN_BYTES;
592     if (atop == 0) {
593         if (tolen != 0)
594             memset(to, '\0', tolen);
595         return tolen;
596     }
597 
598     /*
599      * The loop that does the work iterates from least significant
600      * to most significant BIGNUM limb, so we adapt parameters to
601      * transfer output bytes accordingly.
602      */
603     if (endianness == LITTLE) {
604         inc = 1;
605     } else {
606         inc = -1;
607         to += tolen - 1;         /* Move to the last byte, not beyond */
608     }
609 
610     lasti = atop - 1;
611     atop = a->top * BN_BYTES;
612     for (i = 0, j = 0; j < (size_t)tolen; j++) {
613         unsigned char byte, byte_xored;
614 
615         l = a->d[i / BN_BYTES];
616         mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
617         byte = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
618         byte_xored = byte ^ xor;
619         *to = (unsigned char)(byte_xored + carry);
620         carry = byte_xored > *to; /* Implicit 1 or 0 */
621         to += inc;
622         i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
623     }
624 
625     return tolen;
626 }
627 
BN_bn2binpad(const BIGNUM * a,unsigned char * to,int tolen)628 int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
629 {
630     if (tolen < 0)
631         return -1;
632     return bn2binpad(a, to, tolen, BIG, UNSIGNED);
633 }
634 
BN_signed_bn2bin(const BIGNUM * a,unsigned char * to,int tolen)635 int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen)
636 {
637     if (tolen < 0)
638         return -1;
639     return bn2binpad(a, to, tolen, BIG, SIGNED);
640 }
641 
BN_bn2bin(const BIGNUM * a,unsigned char * to)642 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
643 {
644     return bn2binpad(a, to, -1, BIG, UNSIGNED);
645 }
646 
BN_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)647 BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
648 {
649     return bin2bn(s, len, ret, LITTLE, UNSIGNED);
650 }
651 
BN_signed_lebin2bn(const unsigned char * s,int len,BIGNUM * ret)652 BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
653 {
654     return bin2bn(s, len, ret, LITTLE, SIGNED);
655 }
656 
BN_bn2lebinpad(const BIGNUM * a,unsigned char * to,int tolen)657 int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
658 {
659     if (tolen < 0)
660         return -1;
661     return bn2binpad(a, to, tolen, LITTLE, UNSIGNED);
662 }
663 
BN_signed_bn2lebin(const BIGNUM * a,unsigned char * to,int tolen)664 int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen)
665 {
666     if (tolen < 0)
667         return -1;
668     return bn2binpad(a, to, tolen, LITTLE, SIGNED);
669 }
670 
BN_native2bn(const unsigned char * s,int len,BIGNUM * ret)671 BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret)
672 {
673     DECLARE_IS_ENDIAN;
674 
675     if (IS_LITTLE_ENDIAN)
676         return BN_lebin2bn(s, len, ret);
677     return BN_bin2bn(s, len, ret);
678 }
679 
BN_signed_native2bn(const unsigned char * s,int len,BIGNUM * ret)680 BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret)
681 {
682     DECLARE_IS_ENDIAN;
683 
684     if (IS_LITTLE_ENDIAN)
685         return BN_signed_lebin2bn(s, len, ret);
686     return BN_signed_bin2bn(s, len, ret);
687 }
688 
BN_bn2nativepad(const BIGNUM * a,unsigned char * to,int tolen)689 int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen)
690 {
691     DECLARE_IS_ENDIAN;
692 
693     if (IS_LITTLE_ENDIAN)
694         return BN_bn2lebinpad(a, to, tolen);
695     return BN_bn2binpad(a, to, tolen);
696 }
697 
BN_signed_bn2native(const BIGNUM * a,unsigned char * to,int tolen)698 int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen)
699 {
700     DECLARE_IS_ENDIAN;
701 
702     if (IS_LITTLE_ENDIAN)
703         return BN_signed_bn2lebin(a, to, tolen);
704     return BN_signed_bn2bin(a, to, tolen);
705 }
706 
BN_ucmp(const BIGNUM * a,const BIGNUM * b)707 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
708 {
709     int i;
710     BN_ULONG t1, t2, *ap, *bp;
711 
712     ap = a->d;
713     bp = b->d;
714 
715     if (BN_get_flags(a, BN_FLG_CONSTTIME)
716             && a->top == b->top) {
717         int res = 0;
718 
719         for (i = 0; i < b->top; i++) {
720             res = constant_time_select_int(constant_time_lt_bn(ap[i], bp[i]),
721                                            -1, res);
722             res = constant_time_select_int(constant_time_lt_bn(bp[i], ap[i]),
723                                            1, res);
724         }
725         return res;
726     }
727 
728     bn_check_top(a);
729     bn_check_top(b);
730 
731     i = a->top - b->top;
732     if (i != 0)
733         return i;
734 
735     for (i = a->top - 1; i >= 0; i--) {
736         t1 = ap[i];
737         t2 = bp[i];
738         if (t1 != t2)
739             return ((t1 > t2) ? 1 : -1);
740     }
741     return 0;
742 }
743 
BN_cmp(const BIGNUM * a,const BIGNUM * b)744 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
745 {
746     int i;
747     int gt, lt;
748     BN_ULONG t1, t2;
749 
750     if ((a == NULL) || (b == NULL)) {
751         if (a != NULL)
752             return -1;
753         else if (b != NULL)
754             return 1;
755         else
756             return 0;
757     }
758 
759     bn_check_top(a);
760     bn_check_top(b);
761 
762     if (a->neg != b->neg) {
763         if (a->neg)
764             return -1;
765         else
766             return 1;
767     }
768     if (a->neg == 0) {
769         gt = 1;
770         lt = -1;
771     } else {
772         gt = -1;
773         lt = 1;
774     }
775 
776     if (a->top > b->top)
777         return gt;
778     if (a->top < b->top)
779         return lt;
780     for (i = a->top - 1; i >= 0; i--) {
781         t1 = a->d[i];
782         t2 = b->d[i];
783         if (t1 > t2)
784             return gt;
785         if (t1 < t2)
786             return lt;
787     }
788     return 0;
789 }
790 
BN_set_bit(BIGNUM * a,int n)791 int BN_set_bit(BIGNUM *a, int n)
792 {
793     int i, j, k;
794 
795     if (n < 0)
796         return 0;
797 
798     i = n / BN_BITS2;
799     j = n % BN_BITS2;
800     if (a->top <= i) {
801         if (bn_wexpand(a, i + 1) == NULL)
802             return 0;
803         for (k = a->top; k < i + 1; k++)
804             a->d[k] = 0;
805         a->top = i + 1;
806         a->flags &= ~BN_FLG_FIXED_TOP;
807     }
808 
809     a->d[i] |= (((BN_ULONG)1) << j);
810     bn_check_top(a);
811     return 1;
812 }
813 
BN_clear_bit(BIGNUM * a,int n)814 int BN_clear_bit(BIGNUM *a, int n)
815 {
816     int i, j;
817 
818     bn_check_top(a);
819     if (n < 0)
820         return 0;
821 
822     i = n / BN_BITS2;
823     j = n % BN_BITS2;
824     if (a->top <= i)
825         return 0;
826 
827     a->d[i] &= (~(((BN_ULONG)1) << j));
828     bn_correct_top(a);
829     return 1;
830 }
831 
BN_is_bit_set(const BIGNUM * a,int n)832 int BN_is_bit_set(const BIGNUM *a, int n)
833 {
834     int i, j;
835 
836     bn_check_top(a);
837     if (n < 0)
838         return 0;
839     i = n / BN_BITS2;
840     j = n % BN_BITS2;
841     if (a->top <= i)
842         return 0;
843     return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
844 }
845 
ossl_bn_mask_bits_fixed_top(BIGNUM * a,int n)846 int ossl_bn_mask_bits_fixed_top(BIGNUM *a, int n)
847 {
848     int b, w;
849 
850     if (n < 0)
851         return 0;
852 
853     w = n / BN_BITS2;
854     b = n % BN_BITS2;
855     if (w >= a->top)
856         return 0;
857     if (b == 0)
858         a->top = w;
859     else {
860         a->top = w + 1;
861         a->d[w] &= ~(BN_MASK2 << b);
862     }
863     a->flags |= BN_FLG_FIXED_TOP;
864     return 1;
865 }
866 
BN_mask_bits(BIGNUM * a,int n)867 int BN_mask_bits(BIGNUM *a, int n)
868 {
869     int ret;
870 
871     bn_check_top(a);
872     ret = ossl_bn_mask_bits_fixed_top(a, n);
873     if (ret)
874         bn_correct_top(a);
875     return ret;
876 }
877 
BN_set_negative(BIGNUM * a,int b)878 void BN_set_negative(BIGNUM *a, int b)
879 {
880     if (b && !BN_is_zero(a))
881         a->neg = 1;
882     else
883         a->neg = 0;
884 }
885 
bn_cmp_words(const BN_ULONG * a,const BN_ULONG * b,int n)886 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
887 {
888     int i;
889     BN_ULONG aa, bb;
890 
891     if (n == 0)
892         return 0;
893 
894     aa = a[n - 1];
895     bb = b[n - 1];
896     if (aa != bb)
897         return ((aa > bb) ? 1 : -1);
898     for (i = n - 2; i >= 0; i--) {
899         aa = a[i];
900         bb = b[i];
901         if (aa != bb)
902             return ((aa > bb) ? 1 : -1);
903     }
904     return 0;
905 }
906 
907 /*
908  * Here follows a specialised variants of bn_cmp_words().  It has the
909  * capability of performing the operation on arrays of different sizes. The
910  * sizes of those arrays is expressed through cl, which is the common length
911  * ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
912  * two lengths, calculated as len(a)-len(b). All lengths are the number of
913  * BN_ULONGs...
914  */
915 
bn_cmp_part_words(const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)916 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
917 {
918     int n, i;
919     n = cl - 1;
920 
921     if (dl < 0) {
922         for (i = dl; i < 0; i++) {
923             if (b[n - i] != 0)
924                 return -1;      /* a < b */
925         }
926     }
927     if (dl > 0) {
928         for (i = dl; i > 0; i--) {
929             if (a[n + i] != 0)
930                 return 1;       /* a > b */
931         }
932     }
933     return bn_cmp_words(a, b, cl);
934 }
935 
936 /*-
937  * Constant-time conditional swap of a and b.
938  * a and b are swapped if condition is not 0.
939  * nwords is the number of words to swap.
940  * Assumes that at least nwords are allocated in both a and b.
941  * Assumes that no more than nwords are used by either a or b.
942  */
BN_consttime_swap(BN_ULONG condition,BIGNUM * a,BIGNUM * b,int nwords)943 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
944 {
945     BN_ULONG t;
946     int i;
947 
948     bn_wcheck_size(a, nwords);
949     bn_wcheck_size(b, nwords);
950 
951     condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
952 
953     t = (a->top ^ b->top) & condition;
954     a->top ^= t;
955     b->top ^= t;
956 
957     t = (a->neg ^ b->neg) & condition;
958     a->neg ^= t;
959     b->neg ^= t;
960 
961     /*-
962      * BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
963      * is actually to treat it as it's read-only data, and some (if not most)
964      * of it does reside in read-only segment. In other words observation of
965      * BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
966      * condition. It would either cause SEGV or effectively cause data
967      * corruption.
968      *
969      * BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
970      * preserved.
971      *
972      * BN_FLG_SECURE: must be preserved, because it determines how x->d was
973      * allocated and hence how to free it.
974      *
975      * BN_FLG_CONSTTIME: sufficient to mask and swap
976      *
977      * BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
978      * the data, so the d array may be padded with additional 0 values (i.e.
979      * top could be greater than the minimal value that it could be). We should
980      * be swapping it
981      */
982 
983 #define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
984 
985     t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
986     a->flags ^= t;
987     b->flags ^= t;
988 
989     /* conditionally swap the data */
990     for (i = 0; i < nwords; i++) {
991         t = (a->d[i] ^ b->d[i]) & condition;
992         a->d[i] ^= t;
993         b->d[i] ^= t;
994     }
995 }
996 
997 #undef BN_CONSTTIME_SWAP_FLAGS
998 
999 /* Bits of security, see SP800-57 */
1000 
BN_security_bits(int L,int N)1001 int BN_security_bits(int L, int N)
1002 {
1003     int secbits, bits;
1004     if (L >= 15360)
1005         secbits = 256;
1006     else if (L >= 7680)
1007         secbits = 192;
1008     else if (L >= 3072)
1009         secbits = 128;
1010     else if (L >= 2048)
1011         secbits = 112;
1012     else if (L >= 1024)
1013         secbits = 80;
1014     else
1015         return 0;
1016     if (N == -1)
1017         return secbits;
1018     bits = N / 2;
1019     if (bits < 80)
1020         return 0;
1021     return bits >= secbits ? secbits : bits;
1022 }
1023 
BN_zero_ex(BIGNUM * a)1024 void BN_zero_ex(BIGNUM *a)
1025 {
1026     a->neg = 0;
1027     a->top = 0;
1028     a->flags &= ~BN_FLG_FIXED_TOP;
1029 }
1030 
BN_abs_is_word(const BIGNUM * a,const BN_ULONG w)1031 int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
1032 {
1033     return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
1034 }
1035 
BN_is_zero(const BIGNUM * a)1036 int BN_is_zero(const BIGNUM *a)
1037 {
1038     return a->top == 0;
1039 }
1040 
BN_is_one(const BIGNUM * a)1041 int BN_is_one(const BIGNUM *a)
1042 {
1043     return BN_abs_is_word(a, 1) && !a->neg;
1044 }
1045 
BN_is_word(const BIGNUM * a,const BN_ULONG w)1046 int BN_is_word(const BIGNUM *a, const BN_ULONG w)
1047 {
1048     return BN_abs_is_word(a, w) && (!w || !a->neg);
1049 }
1050 
ossl_bn_is_word_fixed_top(const BIGNUM * a,const BN_ULONG w)1051 int ossl_bn_is_word_fixed_top(const BIGNUM *a, const BN_ULONG w)
1052 {
1053     int res, i;
1054     const BN_ULONG *ap = a->d;
1055 
1056     if (a->neg || a->top == 0)
1057         return 0;
1058 
1059     res = constant_time_select_int(constant_time_eq_bn(ap[0], w), 1, 0);
1060 
1061     for (i = 1; i < a->top; i++)
1062         res = constant_time_select_int(constant_time_is_zero_bn(ap[i]),
1063                                        res, 0);
1064     return res;
1065 }
1066 
BN_is_odd(const BIGNUM * a)1067 int BN_is_odd(const BIGNUM *a)
1068 {
1069     return (a->top > 0) && (a->d[0] & 1);
1070 }
1071 
BN_is_negative(const BIGNUM * a)1072 int BN_is_negative(const BIGNUM *a)
1073 {
1074     return (a->neg != 0);
1075 }
1076 
BN_to_montgomery(BIGNUM * r,const BIGNUM * a,BN_MONT_CTX * mont,BN_CTX * ctx)1077 int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
1078                      BN_CTX *ctx)
1079 {
1080     return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
1081 }
1082 
BN_with_flags(BIGNUM * dest,const BIGNUM * b,int flags)1083 void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
1084 {
1085     dest->d = b->d;
1086     dest->top = b->top;
1087     dest->dmax = b->dmax;
1088     dest->neg = b->neg;
1089     dest->flags = ((dest->flags & BN_FLG_MALLOCED)
1090                    | (b->flags & ~BN_FLG_MALLOCED)
1091                    | BN_FLG_STATIC_DATA | flags);
1092 }
1093 
BN_GENCB_new(void)1094 BN_GENCB *BN_GENCB_new(void)
1095 {
1096     BN_GENCB *ret;
1097 
1098     if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL)
1099         return NULL;
1100 
1101     return ret;
1102 }
1103 
BN_GENCB_free(BN_GENCB * cb)1104 void BN_GENCB_free(BN_GENCB *cb)
1105 {
1106     if (cb == NULL)
1107         return;
1108     OPENSSL_free(cb);
1109 }
1110 
BN_set_flags(BIGNUM * b,int n)1111 void BN_set_flags(BIGNUM *b, int n)
1112 {
1113     b->flags |= n;
1114 }
1115 
BN_get_flags(const BIGNUM * b,int n)1116 int BN_get_flags(const BIGNUM *b, int n)
1117 {
1118     return b->flags & n;
1119 }
1120 
1121 /* Populate a BN_GENCB structure with an "old"-style callback */
BN_GENCB_set_old(BN_GENCB * gencb,void (* callback)(int,int,void *),void * cb_arg)1122 void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
1123                       void *cb_arg)
1124 {
1125     BN_GENCB *tmp_gencb = gencb;
1126     tmp_gencb->ver = 1;
1127     tmp_gencb->arg = cb_arg;
1128     tmp_gencb->cb.cb_1 = callback;
1129 }
1130 
1131 /* Populate a BN_GENCB structure with a "new"-style callback */
BN_GENCB_set(BN_GENCB * gencb,int (* callback)(int,int,BN_GENCB *),void * cb_arg)1132 void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
1133                   void *cb_arg)
1134 {
1135     BN_GENCB *tmp_gencb = gencb;
1136     tmp_gencb->ver = 2;
1137     tmp_gencb->arg = cb_arg;
1138     tmp_gencb->cb.cb_2 = callback;
1139 }
1140 
BN_GENCB_get_arg(BN_GENCB * cb)1141 void *BN_GENCB_get_arg(BN_GENCB *cb)
1142 {
1143     return cb->arg;
1144 }
1145 
bn_wexpand(BIGNUM * a,int words)1146 BIGNUM *bn_wexpand(BIGNUM *a, int words)
1147 {
1148     return (words <= a->dmax) ? a : bn_expand2(a, words);
1149 }
1150 
bn_correct_top_consttime(BIGNUM * a)1151 void bn_correct_top_consttime(BIGNUM *a)
1152 {
1153     int j, atop;
1154     BN_ULONG limb;
1155     unsigned int mask;
1156 
1157     for (j = 0, atop = 0; j < a->dmax; j++) {
1158         limb = a->d[j];
1159         limb |= 0 - limb;
1160         limb >>= BN_BITS2 - 1;
1161         limb = 0 - limb;
1162         mask = (unsigned int)limb;
1163         mask &= constant_time_msb(j - a->top);
1164         atop = constant_time_select_int(mask, j + 1, atop);
1165     }
1166 
1167     mask = constant_time_eq_int(atop, 0);
1168     a->top = atop;
1169     a->neg = constant_time_select_int(mask, 0, a->neg);
1170     a->flags &= ~BN_FLG_FIXED_TOP;
1171 }
1172 
bn_correct_top(BIGNUM * a)1173 void bn_correct_top(BIGNUM *a)
1174 {
1175     BN_ULONG *ftl;
1176     int tmp_top = a->top;
1177 
1178     if (tmp_top > 0) {
1179         for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
1180             ftl--;
1181             if (*ftl != 0)
1182                 break;
1183         }
1184         a->top = tmp_top;
1185     }
1186     if (a->top == 0)
1187         a->neg = 0;
1188     a->flags &= ~BN_FLG_FIXED_TOP;
1189     bn_pollute(a);
1190 }
1191