xref: /openssl/crypto/bn/bn_exp.c (revision c18b6f4c)
1 /*
2  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include "internal/cryptlib.h"
11 #include "internal/constant_time.h"
12 #include "bn_local.h"
13 
14 #include <stdlib.h>
15 #ifdef _WIN32
16 # include <malloc.h>
17 # ifndef alloca
18 #  define alloca _alloca
19 # endif
20 #elif defined(__GNUC__)
21 # ifndef alloca
22 #  define alloca(s) __builtin_alloca((s))
23 # endif
24 #elif defined(__sun)
25 # include <alloca.h>
26 #endif
27 
28 #include "rsaz_exp.h"
29 
30 #undef SPARC_T4_MONT
31 #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
32 # include "crypto/sparc_arch.h"
33 # define SPARC_T4_MONT
34 #endif
35 
36 /* maximum precomputation table size for *variable* sliding windows */
37 #define TABLE_SIZE      32
38 
39 /*
40  * Beyond this limit the constant time code is disabled due to
41  * the possible overflow in the computation of powerbufLen in
42  * BN_mod_exp_mont_consttime.
43  * When this limit is exceeded, the computation will be done using
44  * non-constant time code, but it will take very long.
45  */
46 #define BN_CONSTTIME_SIZE_LIMIT (INT_MAX / BN_BYTES / 256)
47 
48 /* this one works - simple but works */
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)49 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
50 {
51     int i, bits, ret = 0;
52     BIGNUM *v, *rr;
53 
54     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
55             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
56         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
57         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
58         return 0;
59     }
60 
61     BN_CTX_start(ctx);
62     rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
63     v = BN_CTX_get(ctx);
64     if (rr == NULL || v == NULL)
65         goto err;
66 
67     if (BN_copy(v, a) == NULL)
68         goto err;
69     bits = BN_num_bits(p);
70 
71     if (BN_is_odd(p)) {
72         if (BN_copy(rr, a) == NULL)
73             goto err;
74     } else {
75         if (!BN_one(rr))
76             goto err;
77     }
78 
79     for (i = 1; i < bits; i++) {
80         if (!BN_sqr(v, v, ctx))
81             goto err;
82         if (BN_is_bit_set(p, i)) {
83             if (!BN_mul(rr, rr, v, ctx))
84                 goto err;
85         }
86     }
87     if (r != rr && BN_copy(r, rr) == NULL)
88         goto err;
89 
90     ret = 1;
91  err:
92     BN_CTX_end(ctx);
93     bn_check_top(r);
94     return ret;
95 }
96 
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)97 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
98                BN_CTX *ctx)
99 {
100     int ret;
101 
102     bn_check_top(a);
103     bn_check_top(p);
104     bn_check_top(m);
105 
106     /*-
107      * For even modulus  m = 2^k*m_odd, it might make sense to compute
108      * a^p mod m_odd  and  a^p mod 2^k  separately (with Montgomery
109      * exponentiation for the odd part), using appropriate exponent
110      * reductions, and combine the results using the CRT.
111      *
112      * For now, we use Montgomery only if the modulus is odd; otherwise,
113      * exponentiation using the reciprocal-based quick remaindering
114      * algorithm is used.
115      *
116      * (Timing obtained with expspeed.c [computations  a^p mod m
117      * where  a, p, m  are of the same length: 256, 512, 1024, 2048,
118      * 4096, 8192 bits], compared to the running time of the
119      * standard algorithm:
120      *
121      *   BN_mod_exp_mont   33 .. 40 %  [AMD K6-2, Linux, debug configuration]
122      *                     55 .. 77 %  [UltraSparc processor, but
123      *                                  debug-solaris-sparcv8-gcc conf.]
124      *
125      *   BN_mod_exp_recp   50 .. 70 %  [AMD K6-2, Linux, debug configuration]
126      *                     62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
127      *
128      * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
129      * at 2048 and more bits, but at 512 and 1024 bits, it was
130      * slower even than the standard algorithm!
131      *
132      * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
133      * should be obtained when the new Montgomery reduction code
134      * has been integrated into OpenSSL.)
135      */
136 
137 #define MONT_MUL_MOD
138 #define MONT_EXP_WORD
139 #define RECP_MUL_MOD
140 
141 #ifdef MONT_MUL_MOD
142     if (BN_is_odd(m)) {
143 # ifdef MONT_EXP_WORD
144         if (a->top == 1 && !a->neg
145             && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
146             && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
147             && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
148             BN_ULONG A = a->d[0];
149             ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
150         } else
151 # endif
152             ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
153     } else
154 #endif
155 #ifdef RECP_MUL_MOD
156     {
157         ret = BN_mod_exp_recp(r, a, p, m, ctx);
158     }
159 #else
160     {
161         ret = BN_mod_exp_simple(r, a, p, m, ctx);
162     }
163 #endif
164 
165     bn_check_top(r);
166     return ret;
167 }
168 
BN_mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)169 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
170                     const BIGNUM *m, BN_CTX *ctx)
171 {
172     int i, j, bits, ret = 0, wstart, wend, window;
173     int start = 1;
174     BIGNUM *aa;
175     /* Table of variables obtained from 'ctx' */
176     BIGNUM *val[TABLE_SIZE];
177     BN_RECP_CTX recp;
178 
179     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
180             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
181             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
182         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
183         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
184         return 0;
185     }
186 
187     bits = BN_num_bits(p);
188     if (bits == 0) {
189         /* x**0 mod 1, or x**0 mod -1 is still zero. */
190         if (BN_abs_is_word(m, 1)) {
191             ret = 1;
192             BN_zero(r);
193         } else {
194             ret = BN_one(r);
195         }
196         return ret;
197     }
198 
199     BN_RECP_CTX_init(&recp);
200 
201     BN_CTX_start(ctx);
202     aa = BN_CTX_get(ctx);
203     val[0] = BN_CTX_get(ctx);
204     if (val[0] == NULL)
205         goto err;
206 
207     if (m->neg) {
208         /* ignore sign of 'm' */
209         if (!BN_copy(aa, m))
210             goto err;
211         aa->neg = 0;
212         if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
213             goto err;
214     } else {
215         if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
216             goto err;
217     }
218 
219     if (!BN_nnmod(val[0], a, m, ctx))
220         goto err;               /* 1 */
221     if (BN_is_zero(val[0])) {
222         BN_zero(r);
223         ret = 1;
224         goto err;
225     }
226 
227     window = BN_window_bits_for_exponent_size(bits);
228     if (window > 1) {
229         if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
230             goto err;           /* 2 */
231         j = 1 << (window - 1);
232         for (i = 1; i < j; i++) {
233             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
234                 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
235                 goto err;
236         }
237     }
238 
239     start = 1;                  /* This is used to avoid multiplication etc
240                                  * when there is only the value '1' in the
241                                  * buffer. */
242     wstart = bits - 1;          /* The top bit of the window */
243     wend = 0;                   /* The bottom bit of the window */
244 
245     if (r == p) {
246         BIGNUM *p_dup = BN_CTX_get(ctx);
247 
248         if (p_dup == NULL || BN_copy(p_dup, p) == NULL)
249             goto err;
250         p = p_dup;
251     }
252 
253     if (!BN_one(r))
254         goto err;
255 
256     for (;;) {
257         int wvalue;             /* The 'value' of the window */
258 
259         if (BN_is_bit_set(p, wstart) == 0) {
260             if (!start)
261                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
262                     goto err;
263             if (wstart == 0)
264                 break;
265             wstart--;
266             continue;
267         }
268         /*
269          * We now have wstart on a 'set' bit, we now need to work out how bit
270          * a window to do.  To do this we need to scan forward until the last
271          * set bit before the end of the window
272          */
273         wvalue = 1;
274         wend = 0;
275         for (i = 1; i < window; i++) {
276             if (wstart - i < 0)
277                 break;
278             if (BN_is_bit_set(p, wstart - i)) {
279                 wvalue <<= (i - wend);
280                 wvalue |= 1;
281                 wend = i;
282             }
283         }
284 
285         /* wend is the size of the current window */
286         j = wend + 1;
287         /* add the 'bytes above' */
288         if (!start)
289             for (i = 0; i < j; i++) {
290                 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
291                     goto err;
292             }
293 
294         /* wvalue will be an odd number < 2^window */
295         if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
296             goto err;
297 
298         /* move the 'window' down further */
299         wstart -= wend + 1;
300         start = 0;
301         if (wstart < 0)
302             break;
303     }
304     ret = 1;
305  err:
306     BN_CTX_end(ctx);
307     BN_RECP_CTX_free(&recp);
308     bn_check_top(r);
309     return ret;
310 }
311 
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)312 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
313                     const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
314 {
315     int i, j, bits, ret = 0, wstart, wend, window;
316     int start = 1;
317     BIGNUM *d, *r;
318     const BIGNUM *aa;
319     /* Table of variables obtained from 'ctx' */
320     BIGNUM *val[TABLE_SIZE];
321     BN_MONT_CTX *mont = NULL;
322 
323     bn_check_top(a);
324     bn_check_top(p);
325     bn_check_top(m);
326 
327     if (!BN_is_odd(m)) {
328         ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
329         return 0;
330     }
331 
332     if (m->top <= BN_CONSTTIME_SIZE_LIMIT
333         && (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
334             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
335             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0)) {
336         return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
337     }
338 
339     bits = BN_num_bits(p);
340     if (bits == 0) {
341         /* x**0 mod 1, or x**0 mod -1 is still zero. */
342         if (BN_abs_is_word(m, 1)) {
343             ret = 1;
344             BN_zero(rr);
345         } else {
346             ret = BN_one(rr);
347         }
348         return ret;
349     }
350 
351     BN_CTX_start(ctx);
352     d = BN_CTX_get(ctx);
353     r = BN_CTX_get(ctx);
354     val[0] = BN_CTX_get(ctx);
355     if (val[0] == NULL)
356         goto err;
357 
358     /*
359      * If this is not done, things will break in the montgomery part
360      */
361 
362     if (in_mont != NULL)
363         mont = in_mont;
364     else {
365         if ((mont = BN_MONT_CTX_new()) == NULL)
366             goto err;
367         if (!BN_MONT_CTX_set(mont, m, ctx))
368             goto err;
369     }
370 
371     if (a->neg || BN_ucmp(a, m) >= 0) {
372         if (!BN_nnmod(val[0], a, m, ctx))
373             goto err;
374         aa = val[0];
375     } else
376         aa = a;
377     if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
378         goto err;               /* 1 */
379 
380     window = BN_window_bits_for_exponent_size(bits);
381     if (window > 1) {
382         if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
383             goto err;           /* 2 */
384         j = 1 << (window - 1);
385         for (i = 1; i < j; i++) {
386             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
387                 !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
388                 goto err;
389         }
390     }
391 
392     start = 1;                  /* This is used to avoid multiplication etc
393                                  * when there is only the value '1' in the
394                                  * buffer. */
395     wstart = bits - 1;          /* The top bit of the window */
396     wend = 0;                   /* The bottom bit of the window */
397 
398 #if 1                           /* by Shay Gueron's suggestion */
399     j = m->top;                 /* borrow j */
400     if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
401         if (bn_wexpand(r, j) == NULL)
402             goto err;
403         /* 2^(top*BN_BITS2) - m */
404         r->d[0] = (0 - m->d[0]) & BN_MASK2;
405         for (i = 1; i < j; i++)
406             r->d[i] = (~m->d[i]) & BN_MASK2;
407         r->top = j;
408         r->flags |= BN_FLG_FIXED_TOP;
409     } else
410 #endif
411     if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
412         goto err;
413     for (;;) {
414         int wvalue;             /* The 'value' of the window */
415 
416         if (BN_is_bit_set(p, wstart) == 0) {
417             if (!start) {
418                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
419                     goto err;
420             }
421             if (wstart == 0)
422                 break;
423             wstart--;
424             continue;
425         }
426         /*
427          * We now have wstart on a 'set' bit, we now need to work out how bit
428          * a window to do.  To do this we need to scan forward until the last
429          * set bit before the end of the window
430          */
431         wvalue = 1;
432         wend = 0;
433         for (i = 1; i < window; i++) {
434             if (wstart - i < 0)
435                 break;
436             if (BN_is_bit_set(p, wstart - i)) {
437                 wvalue <<= (i - wend);
438                 wvalue |= 1;
439                 wend = i;
440             }
441         }
442 
443         /* wend is the size of the current window */
444         j = wend + 1;
445         /* add the 'bytes above' */
446         if (!start)
447             for (i = 0; i < j; i++) {
448                 if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
449                     goto err;
450             }
451 
452         /* wvalue will be an odd number < 2^window */
453         if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
454             goto err;
455 
456         /* move the 'window' down further */
457         wstart -= wend + 1;
458         start = 0;
459         if (wstart < 0)
460             break;
461     }
462     /*
463      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
464      * removes padding [if any] and makes return value suitable for public
465      * API consumer.
466      */
467 #if defined(SPARC_T4_MONT)
468     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
469         j = mont->N.top;        /* borrow j */
470         val[0]->d[0] = 1;       /* borrow val[0] */
471         for (i = 1; i < j; i++)
472             val[0]->d[i] = 0;
473         val[0]->top = j;
474         if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
475             goto err;
476     } else
477 #endif
478     if (!BN_from_montgomery(rr, r, mont, ctx))
479         goto err;
480     ret = 1;
481  err:
482     if (in_mont == NULL)
483         BN_MONT_CTX_free(mont);
484     BN_CTX_end(ctx);
485     bn_check_top(rr);
486     return ret;
487 }
488 
bn_get_bits(const BIGNUM * a,int bitpos)489 static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
490 {
491     BN_ULONG ret = 0;
492     int wordpos;
493 
494     wordpos = bitpos / BN_BITS2;
495     bitpos %= BN_BITS2;
496     if (wordpos >= 0 && wordpos < a->top) {
497         ret = a->d[wordpos] & BN_MASK2;
498         if (bitpos) {
499             ret >>= bitpos;
500             if (++wordpos < a->top)
501                 ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
502         }
503     }
504 
505     return ret & BN_MASK2;
506 }
507 
508 /*
509  * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
510  * layout so that accessing any of these table values shows the same access
511  * pattern as far as cache lines are concerned.  The following functions are
512  * used to transfer a BIGNUM from/to that table.
513  */
514 
MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM * b,int top,unsigned char * buf,int idx,int window)515 static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
516                                         unsigned char *buf, int idx,
517                                         int window)
518 {
519     int i, j;
520     int width = 1 << window;
521     BN_ULONG *table = (BN_ULONG *)buf;
522 
523     if (top > b->top)
524         top = b->top;           /* this works because 'buf' is explicitly
525                                  * zeroed */
526     for (i = 0, j = idx; i < top; i++, j += width) {
527         table[j] = b->d[i];
528     }
529 
530     return 1;
531 }
532 
MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM * b,int top,unsigned char * buf,int idx,int window)533 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
534                                           unsigned char *buf, int idx,
535                                           int window)
536 {
537     int i, j;
538     int width = 1 << window;
539     /*
540      * We declare table 'volatile' in order to discourage compiler
541      * from reordering loads from the table. Concern is that if
542      * reordered in specific manner loads might give away the
543      * information we are trying to conceal. Some would argue that
544      * compiler can reorder them anyway, but it can as well be
545      * argued that doing so would be violation of standard...
546      */
547     volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
548 
549     if (bn_wexpand(b, top) == NULL)
550         return 0;
551 
552     if (window <= 3) {
553         for (i = 0; i < top; i++, table += width) {
554             BN_ULONG acc = 0;
555 
556             for (j = 0; j < width; j++) {
557                 acc |= table[j] &
558                        ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
559             }
560 
561             b->d[i] = acc;
562         }
563     } else {
564         int xstride = 1 << (window - 2);
565         BN_ULONG y0, y1, y2, y3;
566 
567         i = idx >> (window - 2);        /* equivalent of idx / xstride */
568         idx &= xstride - 1;             /* equivalent of idx % xstride */
569 
570         y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
571         y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
572         y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
573         y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
574 
575         for (i = 0; i < top; i++, table += width) {
576             BN_ULONG acc = 0;
577 
578             for (j = 0; j < xstride; j++) {
579                 acc |= ( (table[j + 0 * xstride] & y0) |
580                          (table[j + 1 * xstride] & y1) |
581                          (table[j + 2 * xstride] & y2) |
582                          (table[j + 3 * xstride] & y3) )
583                        & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
584             }
585 
586             b->d[i] = acc;
587         }
588     }
589 
590     b->top = top;
591     b->flags |= BN_FLG_FIXED_TOP;
592     return 1;
593 }
594 
595 /*
596  * Given a pointer value, compute the next address that is a cache line
597  * multiple.
598  */
599 #define MOD_EXP_CTIME_ALIGN(x_) \
600         ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
601 
602 /*
603  * This variant of BN_mod_exp_mont() uses fixed windows and the special
604  * precomputation memory layout to limit data-dependency to a minimum to
605  * protect secret exponents (cf. the hyper-threading timing attacks pointed
606  * out by Colin Percival,
607  * http://www.daemonology.net/hyperthreading-considered-harmful/)
608  */
bn_mod_exp_mont_fixed_top(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)609 int bn_mod_exp_mont_fixed_top(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
610                               const BIGNUM *m, BN_CTX *ctx,
611                               BN_MONT_CTX *in_mont)
612 {
613     int i, bits, ret = 0, window, wvalue, wmask, window0;
614     int top;
615     BN_MONT_CTX *mont = NULL;
616 
617     int numPowers;
618     unsigned char *powerbufFree = NULL;
619     int powerbufLen = 0;
620     unsigned char *powerbuf = NULL;
621     BIGNUM tmp, am;
622 #if defined(SPARC_T4_MONT)
623     unsigned int t4 = 0;
624 #endif
625 
626     if (!BN_is_odd(m)) {
627         ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
628         return 0;
629     }
630 
631     top = m->top;
632 
633     if (top > BN_CONSTTIME_SIZE_LIMIT) {
634         /* Prevent overflowing the powerbufLen computation below */
635         return BN_mod_exp_mont(rr, a, p, m, ctx, in_mont);
636     }
637 
638     /*
639      * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
640      * whether the top bits are zero.
641      */
642     bits = p->top * BN_BITS2;
643     if (bits == 0) {
644         /* x**0 mod 1, or x**0 mod -1 is still zero. */
645         if (BN_abs_is_word(m, 1)) {
646             ret = 1;
647             BN_zero(rr);
648         } else {
649             ret = BN_one(rr);
650         }
651         return ret;
652     }
653 
654     BN_CTX_start(ctx);
655 
656     /*
657      * Allocate a montgomery context if it was not supplied by the caller. If
658      * this is not done, things will break in the montgomery part.
659      */
660     if (in_mont != NULL)
661         mont = in_mont;
662     else {
663         if ((mont = BN_MONT_CTX_new()) == NULL)
664             goto err;
665         if (!BN_MONT_CTX_set(mont, m, ctx))
666             goto err;
667     }
668 
669     if (a->neg || BN_ucmp(a, m) >= 0) {
670         BIGNUM *reduced = BN_CTX_get(ctx);
671         if (reduced == NULL
672             || !BN_nnmod(reduced, a, m, ctx)) {
673             goto err;
674         }
675         a = reduced;
676     }
677 
678 #ifdef RSAZ_ENABLED
679     /*
680      * If the size of the operands allow it, perform the optimized
681      * RSAZ exponentiation. For further information see
682      * crypto/bn/rsaz_exp.c and accompanying assembly modules.
683      */
684     if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
685         && rsaz_avx2_eligible()) {
686         if (NULL == bn_wexpand(rr, 16))
687             goto err;
688         RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
689                                mont->n0[0]);
690         rr->top = 16;
691         rr->neg = 0;
692         bn_correct_top(rr);
693         ret = 1;
694         goto err;
695     } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
696         if (NULL == bn_wexpand(rr, 8))
697             goto err;
698         RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
699         rr->top = 8;
700         rr->neg = 0;
701         bn_correct_top(rr);
702         ret = 1;
703         goto err;
704     }
705 #endif
706 
707     /* Get the window size to use with size of p. */
708     window = BN_window_bits_for_ctime_exponent_size(bits);
709 #if defined(SPARC_T4_MONT)
710     if (window >= 5 && (top & 15) == 0 && top <= 64 &&
711         (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
712         (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
713         window = 5;
714     else
715 #endif
716 #if defined(OPENSSL_BN_ASM_MONT5)
717     if (window >= 5 && top <= BN_SOFT_LIMIT) {
718         window = 5;             /* ~5% improvement for RSA2048 sign, and even
719                                  * for RSA4096 */
720         /* reserve space for mont->N.d[] copy */
721         powerbufLen += top * sizeof(mont->N.d[0]);
722     }
723 #endif
724     (void)0;
725 
726     /*
727      * Allocate a buffer large enough to hold all of the pre-computed powers
728      * of am, am itself and tmp.
729      */
730     numPowers = 1 << window;
731     powerbufLen += sizeof(m->d[0]) * (top * numPowers +
732                                       ((2 * top) >
733                                        numPowers ? (2 * top) : numPowers));
734 #ifdef alloca
735     if (powerbufLen < 3072)
736         powerbufFree =
737             alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
738     else
739 #endif
740         if ((powerbufFree =
741              OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
742             == NULL)
743         goto err;
744 
745     powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
746     memset(powerbuf, 0, powerbufLen);
747 
748 #ifdef alloca
749     if (powerbufLen < 3072)
750         powerbufFree = NULL;
751 #endif
752 
753     /* lay down tmp and am right after powers table */
754     tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
755     am.d = tmp.d + top;
756     tmp.top = am.top = 0;
757     tmp.dmax = am.dmax = top;
758     tmp.neg = am.neg = 0;
759     tmp.flags = am.flags = BN_FLG_STATIC_DATA;
760 
761     /* prepare a^0 in Montgomery domain */
762 #if 1                           /* by Shay Gueron's suggestion */
763     if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
764         /* 2^(top*BN_BITS2) - m */
765         tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
766         for (i = 1; i < top; i++)
767             tmp.d[i] = (~m->d[i]) & BN_MASK2;
768         tmp.top = top;
769     } else
770 #endif
771     if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
772         goto err;
773 
774     /* prepare a^1 in Montgomery domain */
775     if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
776         goto err;
777 
778     if (top > BN_SOFT_LIMIT)
779         goto fallback;
780 
781 #if defined(SPARC_T4_MONT)
782     if (t4) {
783         typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
784                                        const BN_ULONG *n0, const void *table,
785                                        int power, int bits);
786         int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
787                               const BN_ULONG *n0, const void *table,
788                               int power, int bits);
789         int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
790                                const BN_ULONG *n0, const void *table,
791                                int power, int bits);
792         int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
793                                const BN_ULONG *n0, const void *table,
794                                int power, int bits);
795         int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
796                                const BN_ULONG *n0, const void *table,
797                                int power, int bits);
798         static const bn_pwr5_mont_f pwr5_funcs[4] = {
799             bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
800             bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
801         };
802         bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
803 
804         typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
805                                       const void *bp, const BN_ULONG *np,
806                                       const BN_ULONG *n0);
807         int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
808                              const BN_ULONG *np, const BN_ULONG *n0);
809         int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
810                               const void *bp, const BN_ULONG *np,
811                               const BN_ULONG *n0);
812         int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
813                               const void *bp, const BN_ULONG *np,
814                               const BN_ULONG *n0);
815         int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
816                               const void *bp, const BN_ULONG *np,
817                               const BN_ULONG *n0);
818         static const bn_mul_mont_f mul_funcs[4] = {
819             bn_mul_mont_t4_8, bn_mul_mont_t4_16,
820             bn_mul_mont_t4_24, bn_mul_mont_t4_32
821         };
822         bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
823 
824         void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
825                               const void *bp, const BN_ULONG *np,
826                               const BN_ULONG *n0, int num);
827         void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
828                             const void *bp, const BN_ULONG *np,
829                             const BN_ULONG *n0, int num);
830         void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
831                                     const void *table, const BN_ULONG *np,
832                                     const BN_ULONG *n0, int num, int power);
833         void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
834                                    void *table, size_t power);
835         void bn_gather5_t4(BN_ULONG *out, size_t num,
836                            void *table, size_t power);
837         void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
838 
839         BN_ULONG *np = mont->N.d, *n0 = mont->n0;
840         int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
841                                                 * than 32 */
842 
843         /*
844          * BN_to_montgomery can contaminate words above .top [in
845          * BN_DEBUG build...
846          */
847         for (i = am.top; i < top; i++)
848             am.d[i] = 0;
849         for (i = tmp.top; i < top; i++)
850             tmp.d[i] = 0;
851 
852         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
853         bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
854         if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
855             !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
856             bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
857         bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
858 
859         for (i = 3; i < 32; i++) {
860             /* Calculate a^i = a^(i-1) * a */
861             if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
862                 !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
863                 bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
864             bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
865         }
866 
867         /* switch to 64-bit domain */
868         np = alloca(top * sizeof(BN_ULONG));
869         top /= 2;
870         bn_flip_t4(np, mont->N.d, top);
871 
872         /*
873          * The exponent may not have a whole number of fixed-size windows.
874          * To simplify the main loop, the initial window has between 1 and
875          * full-window-size bits such that what remains is always a whole
876          * number of windows
877          */
878         window0 = (bits - 1) % 5 + 1;
879         wmask = (1 << window0) - 1;
880         bits -= window0;
881         wvalue = bn_get_bits(p, bits) & wmask;
882         bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
883 
884         /*
885          * Scan the exponent one window at a time starting from the most
886          * significant bits.
887          */
888         while (bits > 0) {
889             if (bits < stride)
890                 stride = bits;
891             bits -= stride;
892             wvalue = bn_get_bits(p, bits);
893 
894             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
895                 continue;
896             /* retry once and fall back */
897             if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
898                 continue;
899 
900             bits += stride - 5;
901             wvalue >>= stride - 5;
902             wvalue &= 31;
903             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
904             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
905             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
906             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
907             bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
908             bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
909                                    wvalue);
910         }
911 
912         bn_flip_t4(tmp.d, tmp.d, top);
913         top *= 2;
914         /* back to 32-bit domain */
915         tmp.top = top;
916         bn_correct_top(&tmp);
917         OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
918     } else
919 #endif
920 #if defined(OPENSSL_BN_ASM_MONT5)
921     if (window == 5 && top > 1) {
922         /*
923          * This optimization uses ideas from https://eprint.iacr.org/2011/239,
924          * specifically optimization of cache-timing attack countermeasures,
925          * pre-computation optimization, and Almost Montgomery Multiplication.
926          *
927          * The paper discusses a 4-bit window to optimize 512-bit modular
928          * exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer
929          * important.
930          *
931          * |bn_mul_mont_gather5| and |bn_power5| implement the "almost"
932          * reduction variant, so the values here may not be fully reduced.
933          * They are bounded by R (i.e. they fit in |top| words), not |m|.
934          * Additionally, we pass these "almost" reduced inputs into
935          * |bn_mul_mont|, which implements the normal reduction variant.
936          * Given those inputs, |bn_mul_mont| may not give reduced
937          * output, but it will still produce "almost" reduced output.
938          */
939         void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
940                                  const void *table, const BN_ULONG *np,
941                                  const BN_ULONG *n0, int num, int power);
942         void bn_scatter5(const BN_ULONG *inp, size_t num,
943                          void *table, size_t power);
944         void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
945         void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
946                        const void *table, const BN_ULONG *np,
947                        const BN_ULONG *n0, int num, int power);
948         int bn_get_bits5(const BN_ULONG *ap, int off);
949 
950         BN_ULONG *n0 = mont->n0, *np;
951 
952         /*
953          * BN_to_montgomery can contaminate words above .top [in
954          * BN_DEBUG build...
955          */
956         for (i = am.top; i < top; i++)
957             am.d[i] = 0;
958         for (i = tmp.top; i < top; i++)
959             tmp.d[i] = 0;
960 
961         /*
962          * copy mont->N.d[] to improve cache locality
963          */
964         for (np = am.d + top, i = 0; i < top; i++)
965             np[i] = mont->N.d[i];
966 
967         bn_scatter5(tmp.d, top, powerbuf, 0);
968         bn_scatter5(am.d, am.top, powerbuf, 1);
969         bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
970         bn_scatter5(tmp.d, top, powerbuf, 2);
971 
972 # if 0
973         for (i = 3; i < 32; i++) {
974             /* Calculate a^i = a^(i-1) * a */
975             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
976             bn_scatter5(tmp.d, top, powerbuf, i);
977         }
978 # else
979         /* same as above, but uses squaring for 1/2 of operations */
980         for (i = 4; i < 32; i *= 2) {
981             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
982             bn_scatter5(tmp.d, top, powerbuf, i);
983         }
984         for (i = 3; i < 8; i += 2) {
985             int j;
986             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
987             bn_scatter5(tmp.d, top, powerbuf, i);
988             for (j = 2 * i; j < 32; j *= 2) {
989                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
990                 bn_scatter5(tmp.d, top, powerbuf, j);
991             }
992         }
993         for (; i < 16; i += 2) {
994             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
995             bn_scatter5(tmp.d, top, powerbuf, i);
996             bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
997             bn_scatter5(tmp.d, top, powerbuf, 2 * i);
998         }
999         for (; i < 32; i += 2) {
1000             bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1001             bn_scatter5(tmp.d, top, powerbuf, i);
1002         }
1003 # endif
1004         /*
1005          * The exponent may not have a whole number of fixed-size windows.
1006          * To simplify the main loop, the initial window has between 1 and
1007          * full-window-size bits such that what remains is always a whole
1008          * number of windows
1009          */
1010         window0 = (bits - 1) % 5 + 1;
1011         wmask = (1 << window0) - 1;
1012         bits -= window0;
1013         wvalue = bn_get_bits(p, bits) & wmask;
1014         bn_gather5(tmp.d, top, powerbuf, wvalue);
1015 
1016         /*
1017          * Scan the exponent one window at a time starting from the most
1018          * significant bits.
1019          */
1020         if (top & 7) {
1021             while (bits > 0) {
1022                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1023                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1024                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1025                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1026                 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1027                 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
1028                                     bn_get_bits5(p->d, bits -= 5));
1029             }
1030         } else {
1031             while (bits > 0) {
1032                 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
1033                           bn_get_bits5(p->d, bits -= 5));
1034             }
1035         }
1036 
1037         tmp.top = top;
1038         /*
1039          * The result is now in |tmp| in Montgomery form, but it may not be
1040          * fully reduced. This is within bounds for |BN_from_montgomery|
1041          * (tmp < R <= m*R) so it will, when converting from Montgomery form,
1042          * produce a fully reduced result.
1043          *
1044          * This differs from Figure 2 of the paper, which uses AMM(h, 1) to
1045          * convert from Montgomery form with unreduced output, followed by an
1046          * extra reduction step. In the paper's terminology, we replace
1047          * steps 9 and 10 with MM(h, 1).
1048          */
1049     } else
1050 #endif
1051     {
1052  fallback:
1053         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
1054             goto err;
1055         if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
1056             goto err;
1057 
1058         /*
1059          * If the window size is greater than 1, then calculate
1060          * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
1061          * powers could instead be computed as (a^(i/2))^2 to use the slight
1062          * performance advantage of sqr over mul).
1063          */
1064         if (window > 1) {
1065             if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
1066                 goto err;
1067             if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
1068                                               window))
1069                 goto err;
1070             for (i = 3; i < numPowers; i++) {
1071                 /* Calculate a^i = a^(i-1) * a */
1072                 if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
1073                     goto err;
1074                 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
1075                                                   window))
1076                     goto err;
1077             }
1078         }
1079 
1080         /*
1081          * The exponent may not have a whole number of fixed-size windows.
1082          * To simplify the main loop, the initial window has between 1 and
1083          * full-window-size bits such that what remains is always a whole
1084          * number of windows
1085          */
1086         window0 = (bits - 1) % window + 1;
1087         wmask = (1 << window0) - 1;
1088         bits -= window0;
1089         wvalue = bn_get_bits(p, bits) & wmask;
1090         if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
1091                                             window))
1092             goto err;
1093 
1094         wmask = (1 << window) - 1;
1095         /*
1096          * Scan the exponent one window at a time starting from the most
1097          * significant bits.
1098          */
1099         while (bits > 0) {
1100 
1101             /* Square the result window-size times */
1102             for (i = 0; i < window; i++)
1103                 if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
1104                     goto err;
1105 
1106             /*
1107              * Get a window's worth of bits from the exponent
1108              * This avoids calling BN_is_bit_set for each bit, which
1109              * is not only slower but also makes each bit vulnerable to
1110              * EM (and likely other) side-channel attacks like One&Done
1111              * (for details see "One&Done: A Single-Decryption EM-Based
1112              *  Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
1113              *  H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
1114              *  M. Prvulovic, in USENIX Security'18)
1115              */
1116             bits -= window;
1117             wvalue = bn_get_bits(p, bits) & wmask;
1118             /*
1119              * Fetch the appropriate pre-computed value from the pre-buf
1120              */
1121             if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
1122                                                 window))
1123                 goto err;
1124 
1125             /* Multiply the result into the intermediate result */
1126             if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
1127                 goto err;
1128         }
1129     }
1130 
1131     /*
1132      * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
1133      * removes padding [if any] and makes return value suitable for public
1134      * API consumer.
1135      */
1136 #if defined(SPARC_T4_MONT)
1137     if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
1138         am.d[0] = 1;            /* borrow am */
1139         for (i = 1; i < top; i++)
1140             am.d[i] = 0;
1141         if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
1142             goto err;
1143     } else
1144 #endif
1145     if (!bn_from_mont_fixed_top(rr, &tmp, mont, ctx))
1146         goto err;
1147     ret = 1;
1148  err:
1149     if (in_mont == NULL)
1150         BN_MONT_CTX_free(mont);
1151     if (powerbuf != NULL) {
1152         OPENSSL_cleanse(powerbuf, powerbufLen);
1153         OPENSSL_free(powerbufFree);
1154     }
1155     BN_CTX_end(ctx);
1156     return ret;
1157 }
1158 
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1159 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
1160                               const BIGNUM *m, BN_CTX *ctx,
1161                               BN_MONT_CTX *in_mont)
1162 {
1163     bn_check_top(a);
1164     bn_check_top(p);
1165     bn_check_top(m);
1166     if (!bn_mod_exp_mont_fixed_top(rr, a, p, m, ctx, in_mont))
1167         return 0;
1168     bn_correct_top(rr);
1169     return 1;
1170 }
1171 
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1172 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1173                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1174 {
1175     BN_MONT_CTX *mont = NULL;
1176     int b, bits, ret = 0;
1177     int r_is_one;
1178     BN_ULONG w, next_w;
1179     BIGNUM *r, *t;
1180     BIGNUM *swap_tmp;
1181 #define BN_MOD_MUL_WORD(r, w, m) \
1182                 (BN_mul_word(r, (w)) && \
1183                 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/  \
1184                         (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1185     /*
1186      * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1187      * probably more overhead than always using BN_mod (which uses BN_copy if
1188      * a similar test returns true).
1189      */
1190     /*
1191      * We can use BN_mod and do not need BN_nnmod because our accumulator is
1192      * never negative (the result of BN_mod does not depend on the sign of
1193      * the modulus).
1194      */
1195 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1196                 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1197 
1198     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1199             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1200         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1201         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1202         return 0;
1203     }
1204 
1205     bn_check_top(p);
1206     bn_check_top(m);
1207 
1208     if (!BN_is_odd(m)) {
1209         ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
1210         return 0;
1211     }
1212     if (m->top == 1)
1213         a %= m->d[0];           /* make sure that 'a' is reduced */
1214 
1215     bits = BN_num_bits(p);
1216     if (bits == 0) {
1217         /* x**0 mod 1, or x**0 mod -1 is still zero. */
1218         if (BN_abs_is_word(m, 1)) {
1219             ret = 1;
1220             BN_zero(rr);
1221         } else {
1222             ret = BN_one(rr);
1223         }
1224         return ret;
1225     }
1226     if (a == 0) {
1227         BN_zero(rr);
1228         ret = 1;
1229         return ret;
1230     }
1231 
1232     BN_CTX_start(ctx);
1233     r = BN_CTX_get(ctx);
1234     t = BN_CTX_get(ctx);
1235     if (t == NULL)
1236         goto err;
1237 
1238     if (in_mont != NULL)
1239         mont = in_mont;
1240     else {
1241         if ((mont = BN_MONT_CTX_new()) == NULL)
1242             goto err;
1243         if (!BN_MONT_CTX_set(mont, m, ctx))
1244             goto err;
1245     }
1246 
1247     r_is_one = 1;               /* except for Montgomery factor */
1248 
1249     /* bits-1 >= 0 */
1250 
1251     /* The result is accumulated in the product r*w. */
1252     w = a;                      /* bit 'bits-1' of 'p' is always set */
1253     for (b = bits - 2; b >= 0; b--) {
1254         /* First, square r*w. */
1255         next_w = w * w;
1256         if ((next_w / w) != w) { /* overflow */
1257             if (r_is_one) {
1258                 if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1259                     goto err;
1260                 r_is_one = 0;
1261             } else {
1262                 if (!BN_MOD_MUL_WORD(r, w, m))
1263                     goto err;
1264             }
1265             next_w = 1;
1266         }
1267         w = next_w;
1268         if (!r_is_one) {
1269             if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
1270                 goto err;
1271         }
1272 
1273         /* Second, multiply r*w by 'a' if exponent bit is set. */
1274         if (BN_is_bit_set(p, b)) {
1275             next_w = w * a;
1276             if ((next_w / a) != w) { /* overflow */
1277                 if (r_is_one) {
1278                     if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1279                         goto err;
1280                     r_is_one = 0;
1281                 } else {
1282                     if (!BN_MOD_MUL_WORD(r, w, m))
1283                         goto err;
1284                 }
1285                 next_w = a;
1286             }
1287             w = next_w;
1288         }
1289     }
1290 
1291     /* Finally, set r:=r*w. */
1292     if (w != 1) {
1293         if (r_is_one) {
1294             if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
1295                 goto err;
1296             r_is_one = 0;
1297         } else {
1298             if (!BN_MOD_MUL_WORD(r, w, m))
1299                 goto err;
1300         }
1301     }
1302 
1303     if (r_is_one) {             /* can happen only if a == 1 */
1304         if (!BN_one(rr))
1305             goto err;
1306     } else {
1307         if (!BN_from_montgomery(rr, r, mont, ctx))
1308             goto err;
1309     }
1310     ret = 1;
1311  err:
1312     if (in_mont == NULL)
1313         BN_MONT_CTX_free(mont);
1314     BN_CTX_end(ctx);
1315     bn_check_top(rr);
1316     return ret;
1317 }
1318 
1319 /* The old fallback, simple version :-) */
BN_mod_exp_simple(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)1320 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1321                       const BIGNUM *m, BN_CTX *ctx)
1322 {
1323     int i, j, bits, ret = 0, wstart, wend, window;
1324     int start = 1;
1325     BIGNUM *d;
1326     /* Table of variables obtained from 'ctx' */
1327     BIGNUM *val[TABLE_SIZE];
1328 
1329     if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
1330             || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
1331             || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
1332         /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1333         ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1334         return 0;
1335     }
1336 
1337     if (r == m) {
1338         ERR_raise(ERR_LIB_BN, ERR_R_PASSED_INVALID_ARGUMENT);
1339         return 0;
1340     }
1341 
1342     bits = BN_num_bits(p);
1343     if (bits == 0) {
1344         /* x**0 mod 1, or x**0 mod -1 is still zero. */
1345         if (BN_abs_is_word(m, 1)) {
1346             ret = 1;
1347             BN_zero(r);
1348         } else {
1349             ret = BN_one(r);
1350         }
1351         return ret;
1352     }
1353 
1354     BN_CTX_start(ctx);
1355     d = BN_CTX_get(ctx);
1356     val[0] = BN_CTX_get(ctx);
1357     if (val[0] == NULL)
1358         goto err;
1359 
1360     if (!BN_nnmod(val[0], a, m, ctx))
1361         goto err;               /* 1 */
1362     if (BN_is_zero(val[0])) {
1363         BN_zero(r);
1364         ret = 1;
1365         goto err;
1366     }
1367 
1368     window = BN_window_bits_for_exponent_size(bits);
1369     if (window > 1) {
1370         if (!BN_mod_mul(d, val[0], val[0], m, ctx))
1371             goto err;           /* 2 */
1372         j = 1 << (window - 1);
1373         for (i = 1; i < j; i++) {
1374             if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
1375                 !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
1376                 goto err;
1377         }
1378     }
1379 
1380     start = 1;                  /* This is used to avoid multiplication etc
1381                                  * when there is only the value '1' in the
1382                                  * buffer. */
1383     wstart = bits - 1;          /* The top bit of the window */
1384     wend = 0;                   /* The bottom bit of the window */
1385 
1386     if (r == p) {
1387         BIGNUM *p_dup = BN_CTX_get(ctx);
1388 
1389         if (p_dup == NULL || BN_copy(p_dup, p) == NULL)
1390             goto err;
1391         p = p_dup;
1392     }
1393 
1394     if (!BN_one(r))
1395         goto err;
1396 
1397     for (;;) {
1398         int wvalue;             /* The 'value' of the window */
1399 
1400         if (BN_is_bit_set(p, wstart) == 0) {
1401             if (!start)
1402                 if (!BN_mod_mul(r, r, r, m, ctx))
1403                     goto err;
1404             if (wstart == 0)
1405                 break;
1406             wstart--;
1407             continue;
1408         }
1409         /*
1410          * We now have wstart on a 'set' bit, we now need to work out how bit
1411          * a window to do.  To do this we need to scan forward until the last
1412          * set bit before the end of the window
1413          */
1414         wvalue = 1;
1415         wend = 0;
1416         for (i = 1; i < window; i++) {
1417             if (wstart - i < 0)
1418                 break;
1419             if (BN_is_bit_set(p, wstart - i)) {
1420                 wvalue <<= (i - wend);
1421                 wvalue |= 1;
1422                 wend = i;
1423             }
1424         }
1425 
1426         /* wend is the size of the current window */
1427         j = wend + 1;
1428         /* add the 'bytes above' */
1429         if (!start)
1430             for (i = 0; i < j; i++) {
1431                 if (!BN_mod_mul(r, r, r, m, ctx))
1432                     goto err;
1433             }
1434 
1435         /* wvalue will be an odd number < 2^window */
1436         if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
1437             goto err;
1438 
1439         /* move the 'window' down further */
1440         wstart -= wend + 1;
1441         start = 0;
1442         if (wstart < 0)
1443             break;
1444     }
1445     ret = 1;
1446  err:
1447     BN_CTX_end(ctx);
1448     bn_check_top(r);
1449     return ret;
1450 }
1451 
1452 /*
1453  * This is a variant of modular exponentiation optimization that does
1454  * parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
1455  * or AVX_IFMA ISA in 52-bit binary redundant representation.
1456  * If such instructions are not available, or input data size is not supported,
1457  * it falls back to two BN_mod_exp_mont_consttime() calls.
1458  */
BN_mod_exp_mont_consttime_x2(BIGNUM * rr1,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * m1,BN_MONT_CTX * in_mont1,BIGNUM * rr2,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m2,BN_MONT_CTX * in_mont2,BN_CTX * ctx)1459 int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
1460                                  const BIGNUM *m1, BN_MONT_CTX *in_mont1,
1461                                  BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
1462                                  const BIGNUM *m2, BN_MONT_CTX *in_mont2,
1463                                  BN_CTX *ctx)
1464 {
1465     int ret = 0;
1466 
1467 #ifdef RSAZ_ENABLED
1468     BN_MONT_CTX *mont1 = NULL;
1469     BN_MONT_CTX *mont2 = NULL;
1470 
1471     if ((ossl_rsaz_avx512ifma_eligible() || ossl_rsaz_avxifma_eligible()) &&
1472         (((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
1473           (a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024)) ||
1474          ((a1->top == 24) && (p1->top == 24) && (BN_num_bits(m1) == 1536) &&
1475           (a2->top == 24) && (p2->top == 24) && (BN_num_bits(m2) == 1536)) ||
1476          ((a1->top == 32) && (p1->top == 32) && (BN_num_bits(m1) == 2048) &&
1477           (a2->top == 32) && (p2->top == 32) && (BN_num_bits(m2) == 2048)))) {
1478 
1479         int topn = a1->top;
1480         /* Modulus bits of |m1| and |m2| are equal */
1481         int mod_bits = BN_num_bits(m1);
1482 
1483         if (bn_wexpand(rr1, topn) == NULL)
1484             goto err;
1485         if (bn_wexpand(rr2, topn) == NULL)
1486             goto err;
1487 
1488         /*  Ensure that montgomery contexts are initialized */
1489         if (in_mont1 != NULL) {
1490             mont1 = in_mont1;
1491         } else {
1492             if ((mont1 = BN_MONT_CTX_new()) == NULL)
1493                 goto err;
1494             if (!BN_MONT_CTX_set(mont1, m1, ctx))
1495                 goto err;
1496         }
1497         if (in_mont2 != NULL) {
1498             mont2 = in_mont2;
1499         } else {
1500             if ((mont2 = BN_MONT_CTX_new()) == NULL)
1501                 goto err;
1502             if (!BN_MONT_CTX_set(mont2, m2, ctx))
1503                 goto err;
1504         }
1505 
1506         ret = ossl_rsaz_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d,
1507                                           mont1->RR.d, mont1->n0[0],
1508                                           rr2->d, a2->d, p2->d, m2->d,
1509                                           mont2->RR.d, mont2->n0[0],
1510                                           mod_bits);
1511 
1512         rr1->top = topn;
1513         rr1->neg = 0;
1514         bn_correct_top(rr1);
1515         bn_check_top(rr1);
1516 
1517         rr2->top = topn;
1518         rr2->neg = 0;
1519         bn_correct_top(rr2);
1520         bn_check_top(rr2);
1521 
1522         goto err;
1523     }
1524 #endif
1525 
1526     /* rr1 = a1^p1 mod m1 */
1527     ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1);
1528     /* rr2 = a2^p2 mod m2 */
1529     ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2);
1530 
1531 #ifdef RSAZ_ENABLED
1532 err:
1533     if (in_mont2 == NULL)
1534         BN_MONT_CTX_free(mont2);
1535     if (in_mont1 == NULL)
1536         BN_MONT_CTX_free(mont1);
1537 #endif
1538 
1539     return ret;
1540 }
1541