xref: /PHP-8.3/ext/calendar/jewish.c (revision e3015de7)
1 /* $selId: jewish.c,v 2.0 1995/10/24 01:13:06 lees Exp $
2  * Copyright 1993-1995, Scott E. Lee, all rights reserved.
3  * Permission granted to use, copy, modify, distribute and sell so long as
4  * the above copyright and this permission statement are retained in all
5  * copies.  THERE IS NO WARRANTY - USE AT YOUR OWN RISK.
6  */
7 
8 /**************************************************************************
9  *
10  * These are the externally visible components of this file:
11  *
12  *     void
13  *     SdnToJewish(
14  *         long int sdn,
15  *         int *pYear,
16  *         int *pMonth,
17  *         int *pDay);
18  *
19  * Convert a SDN to a Jewish calendar date.  If the input SDN is before the
20  * first day of year 1, the three output values will all be set to zero,
21  * otherwise *pYear will be > 0; *pMonth will be in the range 1 to 13
22  * inclusive; *pDay will be in the range 1 to 30 inclusive.  Note that Adar
23  * II is assigned the month number 7 and Elul is always 13.
24  *
25  *     long int
26  *     JewishToSdn(
27  *         int year,
28  *         int month,
29  *         int day);
30  *
31  * Convert a Jewish calendar date to a SDN.  Zero is returned when the
32  * input date is detected as invalid or out of the supported range.  The
33  * return value will be > 0 for all valid, supported dates, but there are
34  * some invalid dates that will return a positive value.  To verify that a
35  * date is valid, convert it to SDN and then back and compare with the
36  * original.
37  *
38  *     char *JewishMonthName[14];
39  *
40  * Convert a Jewish month number (1 to 13) to the name of the Jewish month
41  * (null terminated).  An index of zero will return a zero length string.
42  *
43  * VALID RANGE
44  *
45  *     Although this software can handle dates all the way back to the year
46  *     1 (3761 B.C.), such use may not be meaningful.
47  *
48  *     The Jewish calendar has been in use for several thousand years, but
49  *     in the early days there was no formula to determine the start of a
50  *     month.  A new month was started when the new moon was first
51  *     observed.
52  *
53  *     It is not clear when the current rule based calendar replaced the
54  *     observation based calendar.  According to the book "Jewish Calendar
55  *     Mystery Dispelled" by George Zinberg, the patriarch Hillel II
56  *     published these rules in 358 A.D.  But, according to The
57  *     Encyclopedia Judaica, Hillel II may have only published the 19 year
58  *     rule for determining the occurrence of leap years.
59  *
60  *     I have yet to find a specific date when the current set of rules
61  *     were known to be in use.
62  *
63  * CALENDAR OVERVIEW
64  *
65  *     The Jewish calendar is based on lunar as well as solar cycles.  A
66  *     month always starts on or near a new moon and has either 29 or 30
67  *     days (a lunar cycle is about 29 1/2 days).  Twelve of these
68  *     alternating 29-30 day months gives a year of 354 days, which is
69  *     about 11 1/4 days short of a solar year.
70  *
71  *     Since a month is defined to be a lunar cycle (new moon to new moon),
72  *     this 11 1/4 day difference cannot be overcome by adding days to a
73  *     month as with the Gregorian calendar, so an entire month is
74  *     periodically added to the year, making some years 13 months long.
75  *
76  *     For astronomical as well as ceremonial reasons, the start of a new
77  *     year may be delayed until a day or two after the new moon causing
78  *     years to vary in length.  Leap years can be from 383 to 385 days and
79  *     common years can be from 353 to 355 days.  These are the months of
80  *     the year and their possible lengths:
81  *
82  *                       COMMON YEAR          LEAP YEAR
83  *          1 Tishri    30   30   30         30   30   30
84  *          2 Heshvan   29   29   30         29   29   30 (variable)
85  *          3 Kislev    29   30   30         29   30   30 (variable)
86  *          4 Tevet     29   29   29         29   29   29
87  *          5 Shevat    30   30   30         30   30   30
88  *          6 Adar I    --   --   --         30   30   30 (optional)
89  *          7 Adar (II) 29   29   29         29   29   29
90  *          8 Nisan     30   30   30         30   30   30
91  *          9 Iyyar     29   29   29         29   29   29
92  *         10 Sivan     30   30   30         30   30   30
93  *         11 Tammuz    29   29   29         29   29   29
94  *         12 Av        30   30   30         30   30   30
95  *         13 Elul      29   29   29         29   29   29
96  *                     ---  ---  ---        ---  ---  ---
97  *                     353  354  355        383  384  385
98  *
99  *     Note that the month names and other words that appear in this file
100  *     have multiple possible spellings in the Roman character set.  I have
101  *     chosen to use the spellings found in the Encyclopedia Judaica.
102  *
103  *     Adar I, the month added for leap years, is sometimes referred to as
104  *     the 13th month, but I have chosen to assign it the number 6 to keep
105  *     the months in chronological order.  This may not be consistent with
106  *     other numbering schemes.
107  *
108  *     Leap years occur in a fixed pattern of 19 years called the metonic
109  *     cycle.  The 3rd, 6th, 8th, 11th, 14th, 17th and 19th years of this
110  *     cycle are leap years.  The first metonic cycle starts with Jewish
111  *     year 1, or 3761/60 B.C.  This is believed to be the year of
112  *     creation.
113  *
114  *     To construct the calendar for a year, you must first find the length
115  *     of the year by determining the first day of the year (Tishri 1, or
116  *     Rosh Ha-Shanah) and the first day of the following year.  This
117  *     selects one of the six possible month length configurations listed
118  *     above.
119  *
120  *     Finding the first day of the year is the most difficult part.
121  *     Finding the date and time of the new moon (or molad) is the first
122  *     step.  For this purpose, the lunar cycle is assumed to be 29 days 12
123  *     hours and 793 halakim.  A halakim is 1/1080th of an hour or 3 1/3
124  *     seconds.  (This assumed value is only about 1/2 second less than the
125  *     value used by modern astronomers -- not bad for a number that was
126  *     determined so long ago.)  The first molad of year 1 occurred on
127  *     Sunday at 11:20:11 P.M.  This would actually be Monday, because the
128  *     Jewish day is considered to begin at sunset.
129  *
130  *     Since sunset varies, the day is assumed to begin at 6:00 P.M.  for
131  *     calendar calculation purposes.  So, the first molad was 5 hours 793
132  *     halakim after the start of Tishri 1, 0001 (which was Monday
133  *     September 7, 4761 B.C. by the Gregorian calendar).  All subsequent
134  *     molads can be calculated from this starting point by adding the
135  *     length of a lunar cycle.
136  *
137  *     Once the molad that starts a year is determined the actual start of
138  *     the year (Tishri 1) can be determined.  Tishri 1 will be the day of
139  *     the molad unless it is delayed by one of the following four rules
140  *     (called dehiyyot).  Each rule can delay the start of the year by one
141  *     day, and since rule #1 can combine with one of the other rules, it
142  *     can be delayed as much as two days.
143  *
144  *         1.  Tishri 1 must never be Sunday, Wednesday or Friday.  (This
145  *             is largely to prevent certain holidays from occurring on the
146  *             day before or after the Sabbath.)
147  *
148  *         2.  If the molad occurs on or after noon, Tishri 1 must be
149  *             delayed.
150  *
151  *         3.  If it is a common (not leap) year and the molad occurs on
152  *             Tuesday at or after 3:11:20 A.M., Tishri 1 must be delayed.
153  *
154  *         4.  If it is the year following a leap year and the molad occurs
155  *             on Monday at or after 9:32:43 and 1/3 sec, Tishri 1 must be
156  *             delayed.
157  *
158  * GLOSSARY
159  *
160  *     dehiyyot         The set of 4 rules that determine when the new year
161  *                      starts relative to the molad.
162  *
163  *     halakim          1/1080th of an hour or 3 1/3 seconds.
164  *
165  *     lunar cycle      The period of time between mean conjunctions of the
166  *                      sun and moon (new moon to new moon).  This is
167  *                      assumed to be 29 days 12 hours and 793 halakim for
168  *                      calendar purposes.
169  *
170  *     metonic cycle    A 19 year cycle which determines which years are
171  *                      leap years and which are common years.  The 3rd,
172  *                      6th, 8th, 11th, 14th, 17th and 19th years of this
173  *                      cycle are leap years.
174  *
175  *     molad            The date and time of the mean conjunction of the
176  *                      sun and moon (new moon).  This is the approximate
177  *                      beginning of a month.
178  *
179  *     Rosh Ha-Shanah   The first day of the Jewish year (Tishri 1).
180  *
181  *     Tishri           The first month of the Jewish year.
182  *
183  * ALGORITHMS
184  *
185  *     SERIAL DAY NUMBER TO JEWISH DATE
186  *
187  *     The simplest approach would be to use the rules stated above to find
188  *     the molad of Tishri before and after the given day number.  Then use
189  *     the molads to find Tishri 1 of the current and following years.
190  *     From this the length of the year can be determined and thus the
191  *     length of each month.  But this method is used as a last resort.
192  *
193  *     The first 59 days of the year are the same regardless of the length
194  *     of the year.  As a result, only the day number of the start of the
195  *     year is required.
196  *
197  *     Similarly, the last 6 months do not change from year to year.  And
198  *     since it can be determined whether the year is a leap year by simple
199  *     division, the lengths of Adar I and II can be easily calculated.  In
200  *     fact, all dates after the 3rd month are consistent from year to year
201  *     (once it is known whether it is a leap year).
202  *
203  *     This means that if the given day number falls in the 3rd month or on
204  *     the 30th day of the 2nd month the length of the year must be found,
205  *     but in no other case.
206  *
207  *     So, the approach used is to take the given day number and round it
208  *     to the closest molad of Tishri (first new moon of the year).  The
209  *     rounding is not really to the *closest* molad, but is such that if
210  *     the day number is before the middle of the 3rd month the molad at
211  *     the start of the year is found, otherwise the molad at the end of
212  *     the year is found.
213  *
214  *     Only if the day number is actually found to be in the ambiguous
215  *     period of 29 to 31 days is the other molad calculated.
216  *
217  *     JEWISH DATE TO SERIAL DAY NUMBER
218  *
219  *     The year number is used to find which 19 year metonic cycle contains
220  *     the date and which year within the cycle (this is a division and
221  *     modulus).  This also determines whether it is a leap year.
222  *
223  *     If the month is 1 or 2, the calculation is simple addition to the
224  *     first of the year.
225  *
226  *     If the month is 8 (Nisan) or greater, the calculation is simple
227  *     subtraction from beginning of the following year.
228  *
229  *     If the month is 4 to 7, it is considered whether it is a leap year
230  *     and then simple subtraction from the beginning of the following year
231  *     is used.
232  *
233  *     Only if it is the 3rd month is both the start and end of the year
234  *     required.
235  *
236  * TESTING
237  *
238  *     This algorithm has been tested in two ways.  First, 510 dates from a
239  *     table in "Jewish Calendar Mystery Dispelled" were calculated and
240  *     compared to the table.  Second, the calculation algorithm described
241  *     in "Jewish Calendar Mystery Dispelled" was coded and used to verify
242  *     all dates from the year 1 (3761 B.C.) to the year 13760 (10000
243  *     A.D.).
244  *
245  *     The source code of the verification program is included in this
246  *     package.
247  *
248  * REFERENCES
249  *
250  *     The Encyclopedia Judaica, the entry for "Calendar"
251  *
252  *     The Jewish Encyclopedia
253  *
254  *     Jewish Calendar Mystery Dispelled by George Zinberg, Vantage Press,
255  *     1963
256  *
257  *     The Comprehensive Hebrew Calendar by Arthur Spier, Behrman House
258  *
259  *     The Book of Calendars [note that this work contains many typos]
260  *
261  **************************************************************************/
262 
263 #if defined(PHP_WIN32)
264 #pragma setlocale("english")
265 #endif
266 
267 #include "sdncal.h"
268 
269 #define HALAKIM_PER_HOUR 1080
270 #define HALAKIM_PER_DAY 25920
271 #define HALAKIM_PER_LUNAR_CYCLE ((29 * HALAKIM_PER_DAY) + 13753)
272 #define HALAKIM_PER_METONIC_CYCLE (HALAKIM_PER_LUNAR_CYCLE * (12 * 19 + 7))
273 
274 #define JEWISH_SDN_OFFSET 347997
275 #define JEWISH_SDN_MAX 324542846L /* 12/13/887605, greater value raises integer overflow */
276 #define NEW_MOON_OF_CREATION 31524
277 
278 #define SUNDAY    0
279 #define MONDAY    1
280 #define TUESDAY   2
281 #define WEDNESDAY 3
282 #define THURSDAY  4
283 #define FRIDAY    5
284 #define SATURDAY  6
285 
286 #define NOON (18 * HALAKIM_PER_HOUR)
287 #define AM3_11_20 ((9 * HALAKIM_PER_HOUR) + 204)
288 #define AM9_32_43 ((15 * HALAKIM_PER_HOUR) + 589)
289 
290 const int monthsPerYear[19] =
291 {
292 12, 12, 13, 12, 12, 13, 12, 13, 12, 12, 13, 12, 12, 13, 12, 12, 13, 12, 13
293 };
294 
295 static const int yearOffset[19] =
296 {
297 	0, 12, 24, 37, 49, 61, 74, 86, 99, 111, 123,
298 	136, 148, 160, 173, 185, 197, 210, 222
299 };
300 
301 /* names for leap (13-month) year */
302 const char * const JewishMonthNameLeap[14] =
303 {
304 	"",
305 	"Tishri",
306 	"Heshvan",
307 	"Kislev",
308 	"Tevet",
309 	"Shevat",
310 	"Adar I",
311 	"Adar II",
312 	"Nisan",
313 	"Iyyar",
314 	"Sivan",
315 	"Tammuz",
316 	"Av",
317 	"Elul"
318 };
319 
320 /* names for regular year */
321 const char * const JewishMonthName[14] =
322 {
323 	"",
324 	"Tishri",
325 	"Heshvan",
326 	"Kislev",
327 	"Tevet",
328 	"Shevat",
329 	"",
330 	"Adar",
331 	"Nisan",
332 	"Iyyar",
333 	"Sivan",
334 	"Tammuz",
335 	"Av",
336 	"Elul"
337 };
338 
339 /* names for leap (13-month) year */
340 const char * const JewishMonthHebNameLeap[14] =
341 {
342 	"",
343 	"\xFA\xF9\xF8\xE9",
344 	"\xE7\xF9\xE5\xEF",
345 	"\xEB\xF1\xEC\xE5",
346 	"\xE8\xE1\xFA",
347 	"\xF9\xE1\xE8",
348 	"\xE0\xE3\xF8 \xE0'",
349 	"\xE0\xE3\xF8 \xE1'",
350 	"\xF0\xE9\xF1\xEF",
351 	"\xE0\xE9\xE9\xF8",
352 	"\xF1\xE9\xe5\xEF",
353 	"\xFA\xEE\xE5\xE6",
354 	"\xE0\xE1",
355 	"\xE0\xEC\xE5\xEC"
356 };
357 
358 /* names for regular year */
359 const char * const JewishMonthHebName[14] =
360 {
361 	"",
362 	"\xFA\xF9\xF8\xE9",
363 	"\xE7\xF9\xE5\xEF",
364 	"\xEB\xF1\xEC\xE5",
365 	"\xE8\xE1\xFA",
366 	"\xF9\xE1\xE8",
367 	"",
368 	"\xE0\xE3\xF8",
369 	"\xF0\xE9\xF1\xEF",
370 	"\xE0\xE9\xE9\xF8",
371 	"\xF1\xE9\xE5\xEF",
372 	"\xFA\xEE\xE5\xE6",
373 	"\xE0\xE1",
374 	"\xE0\xEC\xE5\xEC"
375 };
376 
377 /************************************************************************
378  * Given the year within the 19 year metonic cycle and the time of a molad
379  * (new moon) which starts that year, this routine will calculate what day
380  * will be the actual start of the year (Tishri 1 or Rosh Ha-Shanah).  This
381  * first day of the year will be the day of the molad unless one of 4 rules
382  * (called dehiyyot) delays it.  These 4 rules can delay the start of the
383  * year by as much as 2 days.
384  */
Tishri1(int metonicYear,zend_long moladDay,zend_long moladHalakim)385 static zend_long Tishri1(
386 						   int metonicYear,
387 						   zend_long moladDay,
388 						   zend_long moladHalakim)
389 {
390 	zend_long tishri1;
391 	int dow;
392 	int leapYear;
393 	int lastWasLeapYear;
394 
395 	tishri1 = moladDay;
396 	dow = tishri1 % 7;
397 	leapYear = metonicYear == 2 || metonicYear == 5 || metonicYear == 7
398 		|| metonicYear == 10 || metonicYear == 13 || metonicYear == 16
399 		|| metonicYear == 18;
400 	lastWasLeapYear = metonicYear == 3 || metonicYear == 6
401 		|| metonicYear == 8 || metonicYear == 11 || metonicYear == 14
402 		|| metonicYear == 17 || metonicYear == 0;
403 
404 	/* Apply rules 2, 3 and 4. */
405 	if ((moladHalakim >= NOON) ||
406 		((!leapYear) && dow == TUESDAY && moladHalakim >= AM3_11_20) ||
407 		(lastWasLeapYear && dow == MONDAY && moladHalakim >= AM9_32_43)) {
408 		tishri1++;
409 		dow++;
410 		if (dow == 7) {
411 			dow = 0;
412 		}
413 	}
414 	/* Apply rule 1 after the others because it can cause an additional
415 	 * delay of one day. */
416 	if (dow == WEDNESDAY || dow == FRIDAY || dow == SUNDAY) {
417 		tishri1++;
418 	}
419 	return (tishri1);
420 }
421 
422 /************************************************************************
423  * Given a metonic cycle number, calculate the date and time of the molad
424  * (new moon) that starts that cycle.  Since the length of a metonic cycle
425  * is a constant, this is a simple calculation, except that it requires an
426  * intermediate value which is bigger that 32 bits.  Because this
427  * intermediate value only needs 36 to 37 bits and the other numbers are
428  * constants, the process has been reduced to just a few steps.
429  */
MoladOfMetonicCycle(int metonicCycle,zend_long * pMoladDay,zend_long * pMoladHalakim)430 static void MoladOfMetonicCycle(
431 								   int metonicCycle,
432 								   zend_long *pMoladDay,
433 								   zend_long *pMoladHalakim)
434 {
435 	register zend_ulong r1, r2, d1, d2;
436 	zend_long chk;
437 
438 	/* Start with the time of the first molad after creation. */
439 	r1 = NEW_MOON_OF_CREATION;
440 	chk = (zend_long)metonicCycle;
441 
442 	if (chk > (ZEND_LONG_MAX - NEW_MOON_OF_CREATION) / (HALAKIM_PER_METONIC_CYCLE & 0xFFFF)) {
443 		*pMoladDay = 0;
444 		*pMoladHalakim = 0;
445 		return;
446 	}
447 
448 	/* Calculate metonicCycle * HALAKIM_PER_METONIC_CYCLE.  The upper 32
449 	 * bits of the result will be in r2 and the lower 16 bits will be
450 	 * in r1. */
451 	r1 += chk * (HALAKIM_PER_METONIC_CYCLE & 0xFFFF);
452 
453 	if (chk > (ZEND_LONG_MAX - (r1 >> 16)) / ((HALAKIM_PER_METONIC_CYCLE >> 16) & 0xFFFF)) {
454 		*pMoladDay = 0;
455 		*pMoladHalakim = 0;
456 		return;
457 	}
458 
459 	r2 = r1 >> 16;
460 	r2 += chk * ((HALAKIM_PER_METONIC_CYCLE >> 16) & 0xFFFF);
461 
462 	/* Calculate r2r1 / HALAKIM_PER_DAY.  The remainder will be in r1, the
463 	 * upper 16 bits of the quotient will be in d2 and the lower 16 bits
464 	 * will be in d1. */
465 	d2 = r2 / HALAKIM_PER_DAY;
466 	r2 -= d2 * HALAKIM_PER_DAY;
467 	r1 = (r2 << 16) | (r1 & 0xFFFF);
468 	d1 = r1 / HALAKIM_PER_DAY;
469 	r1 -= d1 * HALAKIM_PER_DAY;
470 
471 	*pMoladDay = (d2 << 16) | d1;
472 	*pMoladHalakim = r1;
473 }
474 
475 /************************************************************************
476  * Given a day number, find the molad of Tishri (the new moon at the start
477  * of a year) which is closest to that day number.  It's not really the
478  * *closest* molad that we want here.  If the input day is in the first two
479  * months, we want the molad at the start of the year.  If the input day is
480  * in the fourth to last months, we want the molad at the end of the year.
481  * If the input day is in the third month, it doesn't matter which molad is
482  * returned, because both will be required.  This type of "rounding" allows
483  * us to avoid calculating the length of the year in most cases.
484  */
FindTishriMolad(zend_long inputDay,int * pMetonicCycle,int * pMetonicYear,zend_long * pMoladDay,zend_long * pMoladHalakim)485 static void FindTishriMolad(
486 							   zend_long inputDay,
487 							   int *pMetonicCycle,
488 							   int *pMetonicYear,
489 							   zend_long *pMoladDay,
490 							   zend_long *pMoladHalakim)
491 {
492 	zend_long moladDay;
493 	zend_long moladHalakim;
494 	int metonicCycle;
495 	int metonicYear;
496 
497 	/* Estimate the metonic cycle number.  Note that this may be an under
498 	 * estimate because there are 6939.6896 days in a metonic cycle not
499 	 * 6940, but it will never be an over estimate.  The loop below will
500 	 * correct for any error in this estimate. */
501 	metonicCycle = (inputDay + 310) / 6940;
502 
503 	/* Calculate the time of the starting molad for this metonic cycle. */
504 	MoladOfMetonicCycle(metonicCycle, &moladDay, &moladHalakim);
505 
506 	/* If the above was an under estimate, increment the cycle number until
507 	 * the correct one is found.  For modern dates this loop is about 98.6%
508 	 * likely to not execute, even once, because the above estimate is
509 	 * really quite close. */
510 	while (moladDay < inputDay - 6940 + 310) {
511 		metonicCycle++;
512 		moladHalakim += HALAKIM_PER_METONIC_CYCLE;
513 		moladDay += moladHalakim / HALAKIM_PER_DAY;
514 		moladHalakim = moladHalakim % HALAKIM_PER_DAY;
515 	}
516 
517 	/* Find the molad of Tishri closest to this date. */
518 	for (metonicYear = 0; metonicYear < 18; metonicYear++) {
519 		if (moladDay > inputDay - 74) {
520 			break;
521 		}
522 		moladHalakim += HALAKIM_PER_LUNAR_CYCLE * monthsPerYear[metonicYear];
523 		moladDay += moladHalakim / HALAKIM_PER_DAY;
524 		moladHalakim = moladHalakim % HALAKIM_PER_DAY;
525 	}
526 
527 	*pMetonicCycle = metonicCycle;
528 	*pMetonicYear = metonicYear;
529 	*pMoladDay = moladDay;
530 	*pMoladHalakim = moladHalakim;
531 }
532 
533 /************************************************************************
534  * Given a year, find the number of the first day of that year and the date
535  * and time of the starting molad.
536  */
FindStartOfYear(int year,int * pMetonicCycle,int * pMetonicYear,zend_long * pMoladDay,zend_long * pMoladHalakim,int * pTishri1)537 static void FindStartOfYear(
538 							   int year,
539 							   int *pMetonicCycle,
540 							   int *pMetonicYear,
541 							   zend_long *pMoladDay,
542 							   zend_long *pMoladHalakim,
543 							   int *pTishri1)
544 {
545 	*pMetonicCycle = (year - 1) / 19;
546 	*pMetonicYear = (year - 1) % 19;
547 	MoladOfMetonicCycle(*pMetonicCycle, pMoladDay, pMoladHalakim);
548 
549 	*pMoladHalakim += HALAKIM_PER_LUNAR_CYCLE * yearOffset[*pMetonicYear];
550 	*pMoladDay += *pMoladHalakim / HALAKIM_PER_DAY;
551 	*pMoladHalakim = *pMoladHalakim % HALAKIM_PER_DAY;
552 
553 	*pTishri1 = Tishri1(*pMetonicYear, *pMoladDay, *pMoladHalakim);
554 }
555 
556 /************************************************************************
557  * Given a serial day number (SDN), find the corresponding year, month and
558  * day in the Jewish calendar.  The three output values will always be
559  * modified.  If the input SDN is before the first day of year 1, they will
560  * all be set to zero, otherwise *pYear will be > 0; *pMonth will be in the
561  * range 1 to 13 inclusive; *pDay will be in the range 1 to 30 inclusive.
562  */
SdnToJewish(zend_long sdn,int * pYear,int * pMonth,int * pDay)563 void SdnToJewish(
564 					zend_long sdn,
565 					int *pYear,
566 					int *pMonth,
567 					int *pDay)
568 {
569 	zend_long inputDay;
570 	zend_long day;
571 	zend_long halakim;
572 	int metonicCycle;
573 	int metonicYear;
574 	int tishri1;
575 	int tishri1After;
576 	int yearLength;
577 
578 	if (sdn <= JEWISH_SDN_OFFSET || sdn > JEWISH_SDN_MAX) {
579 		*pYear = 0;
580 		*pMonth = 0;
581 		*pDay = 0;
582 		return;
583 	}
584 	inputDay = sdn - JEWISH_SDN_OFFSET;
585 
586 	FindTishriMolad(inputDay, &metonicCycle, &metonicYear, &day, &halakim);
587 	tishri1 = Tishri1(metonicYear, day, halakim);
588 
589 	if (inputDay >= tishri1) {
590 		/* It found Tishri 1 at the start of the year. */
591 		*pYear = metonicCycle * 19 + metonicYear + 1;
592 		if (inputDay < tishri1 + 59) {
593 			if (inputDay < tishri1 + 30) {
594 				*pMonth = 1;
595 				*pDay = inputDay - tishri1 + 1;
596 			} else {
597 				*pMonth = 2;
598 				*pDay = inputDay - tishri1 - 29;
599 			}
600 			return;
601 		}
602 		/* We need the length of the year to figure this out, so find
603 		 * Tishri 1 of the next year. */
604 		halakim += HALAKIM_PER_LUNAR_CYCLE * monthsPerYear[metonicYear];
605 		day += halakim / HALAKIM_PER_DAY;
606 		halakim = halakim % HALAKIM_PER_DAY;
607 		tishri1After = Tishri1((metonicYear + 1) % 19, day, halakim);
608 	} else {
609 		/* It found Tishri 1 at the end of the year. */
610 		*pYear = metonicCycle * 19 + metonicYear;
611 		if (inputDay >= tishri1 - 177) {
612 			/* It is one of the last 6 months of the year. */
613 			if (inputDay > tishri1 - 30) {
614 				*pMonth = 13;
615 				*pDay = inputDay - tishri1 + 30;
616 			} else if (inputDay > tishri1 - 60) {
617 				*pMonth = 12;
618 				*pDay = inputDay - tishri1 + 60;
619 			} else if (inputDay > tishri1 - 89) {
620 				*pMonth = 11;
621 				*pDay = inputDay - tishri1 + 89;
622 			} else if (inputDay > tishri1 - 119) {
623 				*pMonth = 10;
624 				*pDay = inputDay - tishri1 + 119;
625 			} else if (inputDay > tishri1 - 148) {
626 				*pMonth = 9;
627 				*pDay = inputDay - tishri1 + 148;
628 			} else {
629 				*pMonth = 8;
630 				*pDay = inputDay - tishri1 + 178;
631 			}
632 			return;
633 		} else {
634 			if (monthsPerYear[(*pYear - 1) % 19] == 13) {
635 				*pMonth = 7;
636 				*pDay = inputDay - tishri1 + 207;
637 				if (*pDay > 0)
638 					return;
639 				(*pMonth)--;
640 				(*pDay) += 30;
641 				if (*pDay > 0)
642 					return;
643 				(*pMonth)--;
644 				(*pDay) += 30;
645 			} else {
646 				*pMonth = 7;
647 				*pDay = inputDay - tishri1 + 207;
648 				if (*pDay > 0)
649 					return;
650 				(*pMonth) -= 2;
651 				(*pDay) += 30;
652 			}
653 			if (*pDay > 0)
654 				return;
655 			(*pMonth)--;
656 			(*pDay) += 29;
657 			if (*pDay > 0)
658 				return;
659 
660 			/* We need the length of the year to figure this out, so find
661 			 * Tishri 1 of this year. */
662 			tishri1After = tishri1;
663 			FindTishriMolad(day - 365,
664 							&metonicCycle, &metonicYear, &day, &halakim);
665 			tishri1 = Tishri1(metonicYear, day, halakim);
666 		}
667 	}
668 
669 	yearLength = tishri1After - tishri1;
670 	day = inputDay - tishri1 - 29;
671 	if (yearLength == 355 || yearLength == 385) {
672 		/* Heshvan has 30 days */
673 		if (day <= 30) {
674 			*pMonth = 2;
675 			*pDay = day;
676 			return;
677 		}
678 		day -= 30;
679 	} else {
680 		/* Heshvan has 29 days */
681 		if (day <= 29) {
682 			*pMonth = 2;
683 			*pDay = day;
684 			return;
685 		}
686 		day -= 29;
687 	}
688 
689 	/* It has to be Kislev. */
690 	*pMonth = 3;
691 	*pDay = day;
692 }
693 
694 /************************************************************************
695  * Given a year, month and day in the Jewish calendar, find the
696  * corresponding serial day number (SDN).  Zero is returned when the input
697  * date is detected as invalid.  The return value will be > 0 for all valid
698  * dates, but there are some invalid dates that will return a positive
699  * value.  To verify that a date is valid, convert it to SDN and then back
700  * and compare with the original.
701  */
JewishToSdn(int year,int month,int day)702 zend_long JewishToSdn(
703 						int year,
704 						int month,
705 						int day)
706 {
707 	zend_long sdn;
708 	int metonicCycle;
709 	int metonicYear;
710 	int tishri1;
711 	int tishri1After;
712 	zend_long moladDay;
713 	zend_long moladHalakim;
714 	int yearLength;
715 	int lengthOfAdarIAndII;
716 
717 	if (year <= 0 || day <= 0 || day > 30) {
718 		return (0);
719 	}
720 	switch (month) {
721 		case 1:
722 		case 2:
723 			/* It is Tishri or Heshvan - don't need the year length. */
724 			FindStartOfYear(year, &metonicCycle, &metonicYear,
725 							&moladDay, &moladHalakim, &tishri1);
726 			if (month == 1) {
727 				sdn = tishri1 + day - 1;
728 			} else {
729 				sdn = tishri1 + day + 29;
730 			}
731 			break;
732 
733 		case 3:
734 			/* It is Kislev - must find the year length. */
735 
736 			/* Find the start of the year. */
737 			FindStartOfYear(year, &metonicCycle, &metonicYear,
738 							&moladDay, &moladHalakim, &tishri1);
739 
740 			/* Find the end of the year. */
741 			moladHalakim += HALAKIM_PER_LUNAR_CYCLE * monthsPerYear[metonicYear];
742 			moladDay += moladHalakim / HALAKIM_PER_DAY;
743 			moladHalakim = moladHalakim % HALAKIM_PER_DAY;
744 			tishri1After = Tishri1((metonicYear + 1) % 19, moladDay, moladHalakim);
745 
746 			yearLength = tishri1After - tishri1;
747 
748 			if (yearLength == 355 || yearLength == 385) {
749 				sdn = tishri1 + day + 59;
750 			} else {
751 				sdn = tishri1 + day + 58;
752 			}
753 			break;
754 
755 		case 4:
756 		case 5:
757 		case 6:
758 			/* It is Tevet, Shevat or Adar I - don't need the year length. */
759 
760 			FindStartOfYear(year + 1, &metonicCycle, &metonicYear,
761 							&moladDay, &moladHalakim, &tishri1After);
762 
763 			if (monthsPerYear[(year - 1) % 19] == 12) {
764 				lengthOfAdarIAndII = 29;
765 			} else {
766 				lengthOfAdarIAndII = 59;
767 			}
768 
769 			if (month == 4) {
770 				sdn = tishri1After + day - lengthOfAdarIAndII - 237;
771 			} else if (month == 5) {
772 				sdn = tishri1After + day - lengthOfAdarIAndII - 208;
773 			} else {
774 				sdn = tishri1After + day - lengthOfAdarIAndII - 178;
775 			}
776 			break;
777 
778 		default:
779 			/* It is Adar II or later - don't need the year length. */
780 			FindStartOfYear(year + 1, &metonicCycle, &metonicYear,
781 							&moladDay, &moladHalakim, &tishri1After);
782 
783 			switch (month) {
784 				case 7:
785 					sdn = tishri1After + day - 207;
786 					break;
787 				case 8:
788 					sdn = tishri1After + day - 178;
789 					break;
790 				case 9:
791 					sdn = tishri1After + day - 148;
792 					break;
793 				case 10:
794 					sdn = tishri1After + day - 119;
795 					break;
796 				case 11:
797 					sdn = tishri1After + day - 89;
798 					break;
799 				case 12:
800 					sdn = tishri1After + day - 60;
801 					break;
802 				case 13:
803 					sdn = tishri1After + day - 30;
804 					break;
805 				default:
806 					return (0);
807 			}
808 	}
809 	return (sdn + JEWISH_SDN_OFFSET);
810 }
811