1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the implementation of the page cache subsystem or "pager".
13 **
14 ** The pager is used to access a database disk file. It implements
15 ** atomic commit and rollback through the use of a journal file that
16 ** is separate from the database file. The pager also implements file
17 ** locking to prevent two processes from writing the same database
18 ** file simultaneously, or one process from reading the database while
19 ** another is writing.
20 **
21 ** @(#) $Id$
22 */
23 #include "os.h" /* Must be first to enable large file support */
24 #include "sqliteInt.h"
25 #include "pager.h"
26 #include <assert.h>
27 #include <string.h>
28
29 /*
30 ** Macros for troubleshooting. Normally turned off
31 */
32 #if 0
33 static Pager *mainPager = 0;
34 #define SET_PAGER(X) if( mainPager==0 ) mainPager = (X)
35 #define CLR_PAGER(X) if( mainPager==(X) ) mainPager = 0
36 #define TRACE1(X) if( pPager==mainPager ) fprintf(stderr,X)
37 #define TRACE2(X,Y) if( pPager==mainPager ) fprintf(stderr,X,Y)
38 #define TRACE3(X,Y,Z) if( pPager==mainPager ) fprintf(stderr,X,Y,Z)
39 #else
40 #define SET_PAGER(X)
41 #define CLR_PAGER(X)
42 #define TRACE1(X)
43 #define TRACE2(X,Y)
44 #define TRACE3(X,Y,Z)
45 #endif
46
47
48 /*
49 ** The page cache as a whole is always in one of the following
50 ** states:
51 **
52 ** SQLITE_UNLOCK The page cache is not currently reading or
53 ** writing the database file. There is no
54 ** data held in memory. This is the initial
55 ** state.
56 **
57 ** SQLITE_READLOCK The page cache is reading the database.
58 ** Writing is not permitted. There can be
59 ** multiple readers accessing the same database
60 ** file at the same time.
61 **
62 ** SQLITE_WRITELOCK The page cache is writing the database.
63 ** Access is exclusive. No other processes or
64 ** threads can be reading or writing while one
65 ** process is writing.
66 **
67 ** The page cache comes up in SQLITE_UNLOCK. The first time a
68 ** sqlite_page_get() occurs, the state transitions to SQLITE_READLOCK.
69 ** After all pages have been released using sqlite_page_unref(),
70 ** the state transitions back to SQLITE_UNLOCK. The first time
71 ** that sqlite_page_write() is called, the state transitions to
72 ** SQLITE_WRITELOCK. (Note that sqlite_page_write() can only be
73 ** called on an outstanding page which means that the pager must
74 ** be in SQLITE_READLOCK before it transitions to SQLITE_WRITELOCK.)
75 ** The sqlite_page_rollback() and sqlite_page_commit() functions
76 ** transition the state from SQLITE_WRITELOCK back to SQLITE_READLOCK.
77 */
78 #define SQLITE_UNLOCK 0
79 #define SQLITE_READLOCK 1
80 #define SQLITE_WRITELOCK 2
81
82
83 /*
84 ** Each in-memory image of a page begins with the following header.
85 ** This header is only visible to this pager module. The client
86 ** code that calls pager sees only the data that follows the header.
87 **
88 ** Client code should call sqlitepager_write() on a page prior to making
89 ** any modifications to that page. The first time sqlitepager_write()
90 ** is called, the original page contents are written into the rollback
91 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
92 ** the journal page has made it onto the disk surface, PgHdr.needSync
93 ** is cleared. The modified page cannot be written back into the original
94 ** database file until the journal pages has been synced to disk and the
95 ** PgHdr.needSync has been cleared.
96 **
97 ** The PgHdr.dirty flag is set when sqlitepager_write() is called and
98 ** is cleared again when the page content is written back to the original
99 ** database file.
100 */
101 typedef struct PgHdr PgHdr;
102 struct PgHdr {
103 Pager *pPager; /* The pager to which this page belongs */
104 Pgno pgno; /* The page number for this page */
105 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
106 int nRef; /* Number of users of this page */
107 PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
108 PgHdr *pNextAll, *pPrevAll; /* A list of all pages */
109 PgHdr *pNextCkpt, *pPrevCkpt; /* List of pages in the checkpoint journal */
110 u8 inJournal; /* TRUE if has been written to journal */
111 u8 inCkpt; /* TRUE if written to the checkpoint journal */
112 u8 dirty; /* TRUE if we need to write back changes */
113 u8 needSync; /* Sync journal before writing this page */
114 u8 alwaysRollback; /* Disable dont_rollback() for this page */
115 PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */
116 /* SQLITE_PAGE_SIZE bytes of page data follow this header */
117 /* Pager.nExtra bytes of local data follow the page data */
118 };
119
120
121 /*
122 ** A macro used for invoking the codec if there is one
123 */
124 #ifdef SQLITE_HAS_CODEC
125 # define CODEC(P,D,N,X) if( P->xCodec ){ P->xCodec(P->pCodecArg,D,N,X); }
126 #else
127 # define CODEC(P,D,N,X)
128 #endif
129
130 /*
131 ** Convert a pointer to a PgHdr into a pointer to its data
132 ** and back again.
133 */
134 #define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
135 #define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
136 #define PGHDR_TO_EXTRA(P) ((void*)&((char*)(&(P)[1]))[SQLITE_PAGE_SIZE])
137
138 /*
139 ** How big to make the hash table used for locating in-memory pages
140 ** by page number.
141 */
142 #define N_PG_HASH 2048
143
144 /*
145 ** Hash a page number
146 */
147 #define pager_hash(PN) ((PN)&(N_PG_HASH-1))
148
149 /*
150 ** A open page cache is an instance of the following structure.
151 */
152 struct Pager {
153 char *zFilename; /* Name of the database file */
154 char *zJournal; /* Name of the journal file */
155 char *zDirectory; /* Directory hold database and journal files */
156 OsFile fd, jfd; /* File descriptors for database and journal */
157 OsFile cpfd; /* File descriptor for the checkpoint journal */
158 int dbSize; /* Number of pages in the file */
159 int origDbSize; /* dbSize before the current change */
160 int ckptSize; /* Size of database (in pages) at ckpt_begin() */
161 off_t ckptJSize; /* Size of journal at ckpt_begin() */
162 int nRec; /* Number of pages written to the journal */
163 u32 cksumInit; /* Quasi-random value added to every checksum */
164 int ckptNRec; /* Number of records in the checkpoint journal */
165 int nExtra; /* Add this many bytes to each in-memory page */
166 void (*xDestructor)(void*); /* Call this routine when freeing pages */
167 int nPage; /* Total number of in-memory pages */
168 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
169 int mxPage; /* Maximum number of pages to hold in cache */
170 int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */
171 void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
172 void *pCodecArg; /* First argument to xCodec() */
173 u8 journalOpen; /* True if journal file descriptors is valid */
174 u8 journalStarted; /* True if header of journal is synced */
175 u8 useJournal; /* Use a rollback journal on this file */
176 u8 ckptOpen; /* True if the checkpoint journal is open */
177 u8 ckptInUse; /* True we are in a checkpoint */
178 u8 ckptAutoopen; /* Open ckpt journal when main journal is opened*/
179 u8 noSync; /* Do not sync the journal if true */
180 u8 fullSync; /* Do extra syncs of the journal for robustness */
181 u8 state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */
182 u8 errMask; /* One of several kinds of errors */
183 u8 tempFile; /* zFilename is a temporary file */
184 u8 readOnly; /* True for a read-only database */
185 u8 needSync; /* True if an fsync() is needed on the journal */
186 u8 dirtyFile; /* True if database file has changed in any way */
187 u8 alwaysRollback; /* Disable dont_rollback() for all pages */
188 u8 *aInJournal; /* One bit for each page in the database file */
189 u8 *aInCkpt; /* One bit for each page in the database */
190 PgHdr *pFirst, *pLast; /* List of free pages */
191 PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
192 PgHdr *pAll; /* List of all pages */
193 PgHdr *pCkpt; /* List of pages in the checkpoint journal */
194 PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */
195 };
196
197 /*
198 ** These are bits that can be set in Pager.errMask.
199 */
200 #define PAGER_ERR_FULL 0x01 /* a write() failed */
201 #define PAGER_ERR_MEM 0x02 /* malloc() failed */
202 #define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */
203 #define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */
204 #define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */
205
206 /*
207 ** The journal file contains page records in the following
208 ** format.
209 **
210 ** Actually, this structure is the complete page record for pager
211 ** formats less than 3. Beginning with format 3, this record is surrounded
212 ** by two checksums.
213 */
214 typedef struct PageRecord PageRecord;
215 struct PageRecord {
216 Pgno pgno; /* The page number */
217 char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */
218 };
219
220 /*
221 ** Journal files begin with the following magic string. The data
222 ** was obtained from /dev/random. It is used only as a sanity check.
223 **
224 ** There are three journal formats (so far). The 1st journal format writes
225 ** 32-bit integers in the byte-order of the host machine. New
226 ** formats writes integers as big-endian. All new journals use the
227 ** new format, but we have to be able to read an older journal in order
228 ** to rollback journals created by older versions of the library.
229 **
230 ** The 3rd journal format (added for 2.8.0) adds additional sanity
231 ** checking information to the journal. If the power fails while the
232 ** journal is being written, semi-random garbage data might appear in
233 ** the journal file after power is restored. If an attempt is then made
234 ** to roll the journal back, the database could be corrupted. The additional
235 ** sanity checking data is an attempt to discover the garbage in the
236 ** journal and ignore it.
237 **
238 ** The sanity checking information for the 3rd journal format consists
239 ** of a 32-bit checksum on each page of data. The checksum covers both
240 ** the page number and the SQLITE_PAGE_SIZE bytes of data for the page.
241 ** This cksum is initialized to a 32-bit random value that appears in the
242 ** journal file right after the header. The random initializer is important,
243 ** because garbage data that appears at the end of a journal is likely
244 ** data that was once in other files that have now been deleted. If the
245 ** garbage data came from an obsolete journal file, the checksums might
246 ** be correct. But by initializing the checksum to random value which
247 ** is different for every journal, we minimize that risk.
248 */
249 static const unsigned char aJournalMagic1[] = {
250 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd4,
251 };
252 static const unsigned char aJournalMagic2[] = {
253 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd5,
254 };
255 static const unsigned char aJournalMagic3[] = {
256 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd6,
257 };
258 #define JOURNAL_FORMAT_1 1
259 #define JOURNAL_FORMAT_2 2
260 #define JOURNAL_FORMAT_3 3
261
262 /*
263 ** The following integer determines what format to use when creating
264 ** new primary journal files. By default we always use format 3.
265 ** When testing, we can set this value to older journal formats in order to
266 ** make sure that newer versions of the library are able to rollback older
267 ** journal files.
268 **
269 ** Note that checkpoint journals always use format 2 and omit the header.
270 */
271 #ifdef SQLITE_TEST
272 int journal_format = 3;
273 #else
274 # define journal_format 3
275 #endif
276
277 /*
278 ** The size of the header and of each page in the journal varies according
279 ** to which journal format is being used. The following macros figure out
280 ** the sizes based on format numbers.
281 */
282 #define JOURNAL_HDR_SZ(X) \
283 (sizeof(aJournalMagic1) + sizeof(Pgno) + ((X)>=3)*2*sizeof(u32))
284 #define JOURNAL_PG_SZ(X) \
285 (SQLITE_PAGE_SIZE + sizeof(Pgno) + ((X)>=3)*sizeof(u32))
286
287 /*
288 ** Enable reference count tracking here:
289 */
290 #ifdef SQLITE_TEST
291 int pager_refinfo_enable = 0;
pager_refinfo(PgHdr * p)292 static void pager_refinfo(PgHdr *p){
293 static int cnt = 0;
294 if( !pager_refinfo_enable ) return;
295 printf(
296 "REFCNT: %4d addr=0x%08x nRef=%d\n",
297 p->pgno, (int)PGHDR_TO_DATA(p), p->nRef
298 );
299 cnt++; /* Something to set a breakpoint on */
300 }
301 # define REFINFO(X) pager_refinfo(X)
302 #else
303 # define REFINFO(X)
304 #endif
305
306 /*
307 ** Read a 32-bit integer from the given file descriptor. Store the integer
308 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an
309 ** error code is something goes wrong.
310 **
311 ** If the journal format is 2 or 3, read a big-endian integer. If the
312 ** journal format is 1, read an integer in the native byte-order of the
313 ** host machine.
314 */
read32bits(int format,OsFile * fd,u32 * pRes)315 static int read32bits(int format, OsFile *fd, u32 *pRes){
316 u32 res;
317 int rc;
318 rc = sqliteOsRead(fd, &res, sizeof(res));
319 if( rc==SQLITE_OK && format>JOURNAL_FORMAT_1 ){
320 unsigned char ac[4];
321 memcpy(ac, &res, 4);
322 res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
323 }
324 *pRes = res;
325 return rc;
326 }
327
328 /*
329 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
330 ** on success or an error code is something goes wrong.
331 **
332 ** If the journal format is 2 or 3, write the integer as 4 big-endian
333 ** bytes. If the journal format is 1, write the integer in the native
334 ** byte order. In normal operation, only formats 2 and 3 are used.
335 ** Journal format 1 is only used for testing.
336 */
write32bits(OsFile * fd,u32 val)337 static int write32bits(OsFile *fd, u32 val){
338 unsigned char ac[4];
339 if( journal_format<=1 ){
340 return sqliteOsWrite(fd, &val, 4);
341 }
342 ac[0] = (val>>24) & 0xff;
343 ac[1] = (val>>16) & 0xff;
344 ac[2] = (val>>8) & 0xff;
345 ac[3] = val & 0xff;
346 return sqliteOsWrite(fd, ac, 4);
347 }
348
349 /*
350 ** Write a 32-bit integer into a page header right before the
351 ** page data. This will overwrite the PgHdr.pDirty pointer.
352 **
353 ** The integer is big-endian for formats 2 and 3 and native byte order
354 ** for journal format 1.
355 */
store32bits(u32 val,PgHdr * p,int offset)356 static void store32bits(u32 val, PgHdr *p, int offset){
357 unsigned char *ac;
358 ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
359 if( journal_format<=1 ){
360 memcpy(ac, &val, 4);
361 }else{
362 ac[0] = (val>>24) & 0xff;
363 ac[1] = (val>>16) & 0xff;
364 ac[2] = (val>>8) & 0xff;
365 ac[3] = val & 0xff;
366 }
367 }
368
369
370 /*
371 ** Convert the bits in the pPager->errMask into an approprate
372 ** return code.
373 */
pager_errcode(Pager * pPager)374 static int pager_errcode(Pager *pPager){
375 int rc = SQLITE_OK;
376 if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL;
377 if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR;
378 if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL;
379 if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM;
380 if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
381 return rc;
382 }
383
384 /*
385 ** Add or remove a page from the list of all pages that are in the
386 ** checkpoint journal.
387 **
388 ** The Pager keeps a separate list of pages that are currently in
389 ** the checkpoint journal. This helps the sqlitepager_ckpt_commit()
390 ** routine run MUCH faster for the common case where there are many
391 ** pages in memory but only a few are in the checkpoint journal.
392 */
page_add_to_ckpt_list(PgHdr * pPg)393 static void page_add_to_ckpt_list(PgHdr *pPg){
394 Pager *pPager = pPg->pPager;
395 if( pPg->inCkpt ) return;
396 assert( pPg->pPrevCkpt==0 && pPg->pNextCkpt==0 );
397 pPg->pPrevCkpt = 0;
398 if( pPager->pCkpt ){
399 pPager->pCkpt->pPrevCkpt = pPg;
400 }
401 pPg->pNextCkpt = pPager->pCkpt;
402 pPager->pCkpt = pPg;
403 pPg->inCkpt = 1;
404 }
page_remove_from_ckpt_list(PgHdr * pPg)405 static void page_remove_from_ckpt_list(PgHdr *pPg){
406 if( !pPg->inCkpt ) return;
407 if( pPg->pPrevCkpt ){
408 assert( pPg->pPrevCkpt->pNextCkpt==pPg );
409 pPg->pPrevCkpt->pNextCkpt = pPg->pNextCkpt;
410 }else{
411 assert( pPg->pPager->pCkpt==pPg );
412 pPg->pPager->pCkpt = pPg->pNextCkpt;
413 }
414 if( pPg->pNextCkpt ){
415 assert( pPg->pNextCkpt->pPrevCkpt==pPg );
416 pPg->pNextCkpt->pPrevCkpt = pPg->pPrevCkpt;
417 }
418 pPg->pNextCkpt = 0;
419 pPg->pPrevCkpt = 0;
420 pPg->inCkpt = 0;
421 }
422
423 /*
424 ** Find a page in the hash table given its page number. Return
425 ** a pointer to the page or NULL if not found.
426 */
pager_lookup(Pager * pPager,Pgno pgno)427 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
428 PgHdr *p = pPager->aHash[pager_hash(pgno)];
429 while( p && p->pgno!=pgno ){
430 p = p->pNextHash;
431 }
432 return p;
433 }
434
435 /*
436 ** Unlock the database and clear the in-memory cache. This routine
437 ** sets the state of the pager back to what it was when it was first
438 ** opened. Any outstanding pages are invalidated and subsequent attempts
439 ** to access those pages will likely result in a coredump.
440 */
pager_reset(Pager * pPager)441 static void pager_reset(Pager *pPager){
442 PgHdr *pPg, *pNext;
443 for(pPg=pPager->pAll; pPg; pPg=pNext){
444 pNext = pPg->pNextAll;
445 sqliteFree(pPg);
446 }
447 pPager->pFirst = 0;
448 pPager->pFirstSynced = 0;
449 pPager->pLast = 0;
450 pPager->pAll = 0;
451 memset(pPager->aHash, 0, sizeof(pPager->aHash));
452 pPager->nPage = 0;
453 if( pPager->state>=SQLITE_WRITELOCK ){
454 sqlitepager_rollback(pPager);
455 }
456 sqliteOsUnlock(&pPager->fd);
457 pPager->state = SQLITE_UNLOCK;
458 pPager->dbSize = -1;
459 pPager->nRef = 0;
460 assert( pPager->journalOpen==0 );
461 }
462
463 /*
464 ** When this routine is called, the pager has the journal file open and
465 ** a write lock on the database. This routine releases the database
466 ** write lock and acquires a read lock in its place. The journal file
467 ** is deleted and closed.
468 **
469 ** TODO: Consider keeping the journal file open for temporary databases.
470 ** This might give a performance improvement on windows where opening
471 ** a file is an expensive operation.
472 */
pager_unwritelock(Pager * pPager)473 static int pager_unwritelock(Pager *pPager){
474 int rc;
475 PgHdr *pPg;
476 if( pPager->state<SQLITE_WRITELOCK ) return SQLITE_OK;
477 sqlitepager_ckpt_commit(pPager);
478 if( pPager->ckptOpen ){
479 sqliteOsClose(&pPager->cpfd);
480 pPager->ckptOpen = 0;
481 }
482 if( pPager->journalOpen ){
483 sqliteOsClose(&pPager->jfd);
484 pPager->journalOpen = 0;
485 sqliteOsDelete(pPager->zJournal);
486 sqliteFree( pPager->aInJournal );
487 pPager->aInJournal = 0;
488 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
489 pPg->inJournal = 0;
490 pPg->dirty = 0;
491 pPg->needSync = 0;
492 }
493 }else{
494 assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
495 }
496 rc = sqliteOsReadLock(&pPager->fd);
497 if( rc==SQLITE_OK ){
498 pPager->state = SQLITE_READLOCK;
499 }else{
500 /* This can only happen if a process does a BEGIN, then forks and the
501 ** child process does the COMMIT. Because of the semantics of unix
502 ** file locking, the unlock will fail.
503 */
504 pPager->state = SQLITE_UNLOCK;
505 }
506 return rc;
507 }
508
509 /*
510 ** Compute and return a checksum for the page of data.
511 **
512 ** This is not a real checksum. It is really just the sum of the
513 ** random initial value and the page number. We considered do a checksum
514 ** of the database, but that was found to be too slow.
515 */
pager_cksum(Pager * pPager,Pgno pgno,const char * aData)516 static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
517 u32 cksum = pPager->cksumInit + pgno;
518 return cksum;
519 }
520
521 /*
522 ** Read a single page from the journal file opened on file descriptor
523 ** jfd. Playback this one page.
524 **
525 ** There are three different journal formats. The format parameter determines
526 ** which format is used by the journal that is played back.
527 */
pager_playback_one_page(Pager * pPager,OsFile * jfd,int format)528 static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int format){
529 int rc;
530 PgHdr *pPg; /* An existing page in the cache */
531 PageRecord pgRec;
532 u32 cksum;
533
534 rc = read32bits(format, jfd, &pgRec.pgno);
535 if( rc!=SQLITE_OK ) return rc;
536 rc = sqliteOsRead(jfd, &pgRec.aData, sizeof(pgRec.aData));
537 if( rc!=SQLITE_OK ) return rc;
538
539 /* Sanity checking on the page. This is more important that I originally
540 ** thought. If a power failure occurs while the journal is being written,
541 ** it could cause invalid data to be written into the journal. We need to
542 ** detect this invalid data (with high probability) and ignore it.
543 */
544 if( pgRec.pgno==0 ){
545 return SQLITE_DONE;
546 }
547 if( pgRec.pgno>(unsigned)pPager->dbSize ){
548 return SQLITE_OK;
549 }
550 if( format>=JOURNAL_FORMAT_3 ){
551 rc = read32bits(format, jfd, &cksum);
552 if( rc ) return rc;
553 if( pager_cksum(pPager, pgRec.pgno, pgRec.aData)!=cksum ){
554 return SQLITE_DONE;
555 }
556 }
557
558 /* Playback the page. Update the in-memory copy of the page
559 ** at the same time, if there is one.
560 */
561 pPg = pager_lookup(pPager, pgRec.pgno);
562 TRACE2("PLAYBACK %d\n", pgRec.pgno);
563 sqliteOsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
564 rc = sqliteOsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
565 if( pPg ){
566 /* No page should ever be rolled back that is in use, except for page
567 ** 1 which is held in use in order to keep the lock on the database
568 ** active.
569 */
570 assert( pPg->nRef==0 || pPg->pgno==1 );
571 memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE);
572 memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
573 pPg->dirty = 0;
574 pPg->needSync = 0;
575 CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
576 }
577 return rc;
578 }
579
580 /*
581 ** Playback the journal and thus restore the database file to
582 ** the state it was in before we started making changes.
583 **
584 ** The journal file format is as follows:
585 **
586 ** * 8 byte prefix. One of the aJournalMagic123 vectors defined
587 ** above. The format of the journal file is determined by which
588 ** of the three prefix vectors is seen.
589 ** * 4 byte big-endian integer which is the number of valid page records
590 ** in the journal. If this value is 0xffffffff, then compute the
591 ** number of page records from the journal size. This field appears
592 ** in format 3 only.
593 ** * 4 byte big-endian integer which is the initial value for the
594 ** sanity checksum. This field appears in format 3 only.
595 ** * 4 byte integer which is the number of pages to truncate the
596 ** database to during a rollback.
597 ** * Zero or more pages instances, each as follows:
598 ** + 4 byte page number.
599 ** + SQLITE_PAGE_SIZE bytes of data.
600 ** + 4 byte checksum (format 3 only)
601 **
602 ** When we speak of the journal header, we mean the first 4 bullets above.
603 ** Each entry in the journal is an instance of the 5th bullet. Note that
604 ** bullets 2 and 3 only appear in format-3 journals.
605 **
606 ** Call the value from the second bullet "nRec". nRec is the number of
607 ** valid page entries in the journal. In most cases, you can compute the
608 ** value of nRec from the size of the journal file. But if a power
609 ** failure occurred while the journal was being written, it could be the
610 ** case that the size of the journal file had already been increased but
611 ** the extra entries had not yet made it safely to disk. In such a case,
612 ** the value of nRec computed from the file size would be too large. For
613 ** that reason, we always use the nRec value in the header.
614 **
615 ** If the nRec value is 0xffffffff it means that nRec should be computed
616 ** from the file size. This value is used when the user selects the
617 ** no-sync option for the journal. A power failure could lead to corruption
618 ** in this case. But for things like temporary table (which will be
619 ** deleted when the power is restored) we don't care.
620 **
621 ** Journal formats 1 and 2 do not have an nRec value in the header so we
622 ** have to compute nRec from the file size. This has risks (as described
623 ** above) which is why all persistent tables have been changed to use
624 ** format 3.
625 **
626 ** If the file opened as the journal file is not a well-formed
627 ** journal file then the database will likely already be
628 ** corrupted, so the PAGER_ERR_CORRUPT bit is set in pPager->errMask
629 ** and SQLITE_CORRUPT is returned. If it all works, then this routine
630 ** returns SQLITE_OK.
631 */
pager_playback(Pager * pPager,int useJournalSize)632 static int pager_playback(Pager *pPager, int useJournalSize){
633 off_t szJ; /* Size of the journal file in bytes */
634 int nRec; /* Number of Records in the journal */
635 int i; /* Loop counter */
636 Pgno mxPg = 0; /* Size of the original file in pages */
637 int format; /* Format of the journal file. */
638 unsigned char aMagic[sizeof(aJournalMagic1)];
639 int rc;
640
641 /* Figure out how many records are in the journal. Abort early if
642 ** the journal is empty.
643 */
644 assert( pPager->journalOpen );
645 sqliteOsSeek(&pPager->jfd, 0);
646 rc = sqliteOsFileSize(&pPager->jfd, &szJ);
647 if( rc!=SQLITE_OK ){
648 goto end_playback;
649 }
650
651 /* If the journal file is too small to contain a complete header,
652 ** it must mean that the process that created the journal was just
653 ** beginning to write the journal file when it died. In that case,
654 ** the database file should have still been completely unchanged.
655 ** Nothing needs to be rolled back. We can safely ignore this journal.
656 */
657 if( szJ < sizeof(aMagic)+sizeof(Pgno) ){
658 goto end_playback;
659 }
660
661 /* Read the beginning of the journal and truncate the
662 ** database file back to its original size.
663 */
664 rc = sqliteOsRead(&pPager->jfd, aMagic, sizeof(aMagic));
665 if( rc!=SQLITE_OK ){
666 rc = SQLITE_PROTOCOL;
667 goto end_playback;
668 }
669 if( memcmp(aMagic, aJournalMagic3, sizeof(aMagic))==0 ){
670 format = JOURNAL_FORMAT_3;
671 }else if( memcmp(aMagic, aJournalMagic2, sizeof(aMagic))==0 ){
672 format = JOURNAL_FORMAT_2;
673 }else if( memcmp(aMagic, aJournalMagic1, sizeof(aMagic))==0 ){
674 format = JOURNAL_FORMAT_1;
675 }else{
676 rc = SQLITE_PROTOCOL;
677 goto end_playback;
678 }
679 if( format>=JOURNAL_FORMAT_3 ){
680 if( szJ < sizeof(aMagic) + 3*sizeof(u32) ){
681 /* Ignore the journal if it is too small to contain a complete
682 ** header. We already did this test once above, but at the prior
683 ** test, we did not know the journal format and so we had to assume
684 ** the smallest possible header. Now we know the header is bigger
685 ** than the minimum so we test again.
686 */
687 goto end_playback;
688 }
689 rc = read32bits(format, &pPager->jfd, (u32*)&nRec);
690 if( rc ) goto end_playback;
691 rc = read32bits(format, &pPager->jfd, &pPager->cksumInit);
692 if( rc ) goto end_playback;
693 if( nRec==0xffffffff || useJournalSize ){
694 nRec = (szJ - JOURNAL_HDR_SZ(3))/JOURNAL_PG_SZ(3);
695 }
696 }else{
697 nRec = (szJ - JOURNAL_HDR_SZ(2))/JOURNAL_PG_SZ(2);
698 assert( nRec*JOURNAL_PG_SZ(2)+JOURNAL_HDR_SZ(2)==szJ );
699 }
700 rc = read32bits(format, &pPager->jfd, &mxPg);
701 if( rc!=SQLITE_OK ){
702 goto end_playback;
703 }
704 assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
705 rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)mxPg);
706 if( rc!=SQLITE_OK ){
707 goto end_playback;
708 }
709 pPager->dbSize = mxPg;
710
711 /* Copy original pages out of the journal and back into the database file.
712 */
713 for(i=0; i<nRec; i++){
714 rc = pager_playback_one_page(pPager, &pPager->jfd, format);
715 if( rc!=SQLITE_OK ){
716 if( rc==SQLITE_DONE ){
717 rc = SQLITE_OK;
718 }
719 break;
720 }
721 }
722
723 /* Pages that have been written to the journal but never synced
724 ** where not restored by the loop above. We have to restore those
725 ** pages by reading them back from the original database.
726 */
727 if( rc==SQLITE_OK ){
728 PgHdr *pPg;
729 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
730 char zBuf[SQLITE_PAGE_SIZE];
731 if( !pPg->dirty ) continue;
732 if( (int)pPg->pgno <= pPager->origDbSize ){
733 sqliteOsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
734 rc = sqliteOsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
735 TRACE2("REFETCH %d\n", pPg->pgno);
736 CODEC(pPager, zBuf, pPg->pgno, 2);
737 if( rc ) break;
738 }else{
739 memset(zBuf, 0, SQLITE_PAGE_SIZE);
740 }
741 if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
742 memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
743 memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
744 }
745 pPg->needSync = 0;
746 pPg->dirty = 0;
747 }
748 }
749
750 end_playback:
751 if( rc!=SQLITE_OK ){
752 pager_unwritelock(pPager);
753 pPager->errMask |= PAGER_ERR_CORRUPT;
754 rc = SQLITE_CORRUPT;
755 }else{
756 rc = pager_unwritelock(pPager);
757 }
758 return rc;
759 }
760
761 /*
762 ** Playback the checkpoint journal.
763 **
764 ** This is similar to playing back the transaction journal but with
765 ** a few extra twists.
766 **
767 ** (1) The number of pages in the database file at the start of
768 ** the checkpoint is stored in pPager->ckptSize, not in the
769 ** journal file itself.
770 **
771 ** (2) In addition to playing back the checkpoint journal, also
772 ** playback all pages of the transaction journal beginning
773 ** at offset pPager->ckptJSize.
774 */
pager_ckpt_playback(Pager * pPager)775 static int pager_ckpt_playback(Pager *pPager){
776 off_t szJ; /* Size of the full journal */
777 int nRec; /* Number of Records */
778 int i; /* Loop counter */
779 int rc;
780
781 /* Truncate the database back to its original size.
782 */
783 rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)pPager->ckptSize);
784 pPager->dbSize = pPager->ckptSize;
785
786 /* Figure out how many records are in the checkpoint journal.
787 */
788 assert( pPager->ckptInUse && pPager->journalOpen );
789 sqliteOsSeek(&pPager->cpfd, 0);
790 nRec = pPager->ckptNRec;
791
792 /* Copy original pages out of the checkpoint journal and back into the
793 ** database file. Note that the checkpoint journal always uses format
794 ** 2 instead of format 3 since it does not need to be concerned with
795 ** power failures corrupting the journal and can thus omit the checksums.
796 */
797 for(i=nRec-1; i>=0; i--){
798 rc = pager_playback_one_page(pPager, &pPager->cpfd, 2);
799 assert( rc!=SQLITE_DONE );
800 if( rc!=SQLITE_OK ) goto end_ckpt_playback;
801 }
802
803 /* Figure out how many pages need to be copied out of the transaction
804 ** journal.
805 */
806 rc = sqliteOsSeek(&pPager->jfd, pPager->ckptJSize);
807 if( rc!=SQLITE_OK ){
808 goto end_ckpt_playback;
809 }
810 rc = sqliteOsFileSize(&pPager->jfd, &szJ);
811 if( rc!=SQLITE_OK ){
812 goto end_ckpt_playback;
813 }
814 nRec = (szJ - pPager->ckptJSize)/JOURNAL_PG_SZ(journal_format);
815 for(i=nRec-1; i>=0; i--){
816 rc = pager_playback_one_page(pPager, &pPager->jfd, journal_format);
817 if( rc!=SQLITE_OK ){
818 assert( rc!=SQLITE_DONE );
819 goto end_ckpt_playback;
820 }
821 }
822
823 end_ckpt_playback:
824 if( rc!=SQLITE_OK ){
825 pPager->errMask |= PAGER_ERR_CORRUPT;
826 rc = SQLITE_CORRUPT;
827 }
828 return rc;
829 }
830
831 /*
832 ** Change the maximum number of in-memory pages that are allowed.
833 **
834 ** The maximum number is the absolute value of the mxPage parameter.
835 ** If mxPage is negative, the noSync flag is also set. noSync bypasses
836 ** calls to sqliteOsSync(). The pager runs much faster with noSync on,
837 ** but if the operating system crashes or there is an abrupt power
838 ** failure, the database file might be left in an inconsistent and
839 ** unrepairable state.
840 */
sqlitepager_set_cachesize(Pager * pPager,int mxPage)841 void sqlitepager_set_cachesize(Pager *pPager, int mxPage){
842 if( mxPage>=0 ){
843 pPager->noSync = pPager->tempFile;
844 if( pPager->noSync==0 ) pPager->needSync = 0;
845 }else{
846 pPager->noSync = 1;
847 mxPage = -mxPage;
848 }
849 if( mxPage>10 ){
850 pPager->mxPage = mxPage;
851 }
852 }
853
854 /*
855 ** Adjust the robustness of the database to damage due to OS crashes
856 ** or power failures by changing the number of syncs()s when writing
857 ** the rollback journal. There are three levels:
858 **
859 ** OFF sqliteOsSync() is never called. This is the default
860 ** for temporary and transient files.
861 **
862 ** NORMAL The journal is synced once before writes begin on the
863 ** database. This is normally adequate protection, but
864 ** it is theoretically possible, though very unlikely,
865 ** that an inopertune power failure could leave the journal
866 ** in a state which would cause damage to the database
867 ** when it is rolled back.
868 **
869 ** FULL The journal is synced twice before writes begin on the
870 ** database (with some additional information - the nRec field
871 ** of the journal header - being written in between the two
872 ** syncs). If we assume that writing a
873 ** single disk sector is atomic, then this mode provides
874 ** assurance that the journal will not be corrupted to the
875 ** point of causing damage to the database during rollback.
876 **
877 ** Numeric values associated with these states are OFF==1, NORMAL=2,
878 ** and FULL=3.
879 */
sqlitepager_set_safety_level(Pager * pPager,int level)880 void sqlitepager_set_safety_level(Pager *pPager, int level){
881 pPager->noSync = level==1 || pPager->tempFile;
882 pPager->fullSync = level==3 && !pPager->tempFile;
883 if( pPager->noSync==0 ) pPager->needSync = 0;
884 }
885
886 /*
887 ** Open a temporary file. Write the name of the file into zName
888 ** (zName must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write
889 ** the file descriptor into *fd. Return SQLITE_OK on success or some
890 ** other error code if we fail.
891 **
892 ** The OS will automatically delete the temporary file when it is
893 ** closed.
894 */
sqlitepager_opentemp(char * zFile,OsFile * fd)895 static int sqlitepager_opentemp(char *zFile, OsFile *fd){
896 int cnt = 8;
897 int rc;
898 do{
899 cnt--;
900 sqliteOsTempFileName(zFile);
901 rc = sqliteOsOpenExclusive(zFile, fd, 1);
902 }while( cnt>0 && rc!=SQLITE_OK );
903 return rc;
904 }
905
906 /*
907 ** Create a new page cache and put a pointer to the page cache in *ppPager.
908 ** The file to be cached need not exist. The file is not locked until
909 ** the first call to sqlitepager_get() and is only held open until the
910 ** last page is released using sqlitepager_unref().
911 **
912 ** If zFilename is NULL then a randomly-named temporary file is created
913 ** and used as the file to be cached. The file will be deleted
914 ** automatically when it is closed.
915 */
sqlitepager_open(Pager ** ppPager,const char * zFilename,int mxPage,int nExtra,int useJournal)916 int sqlitepager_open(
917 Pager **ppPager, /* Return the Pager structure here */
918 const char *zFilename, /* Name of the database file to open */
919 int mxPage, /* Max number of in-memory cache pages */
920 int nExtra, /* Extra bytes append to each in-memory page */
921 int useJournal /* TRUE to use a rollback journal on this file */
922 ){
923 Pager *pPager;
924 char *zFullPathname;
925 int nameLen;
926 OsFile fd;
927 int rc, i;
928 int tempFile;
929 int readOnly = 0;
930 char zTemp[SQLITE_TEMPNAME_SIZE];
931
932 *ppPager = 0;
933 if( sqlite_malloc_failed ){
934 return SQLITE_NOMEM;
935 }
936 if( zFilename && zFilename[0] ){
937 zFullPathname = sqliteOsFullPathname(zFilename);
938 rc = sqliteOsOpenReadWrite(zFullPathname, &fd, &readOnly);
939 tempFile = 0;
940 }else{
941 rc = sqlitepager_opentemp(zTemp, &fd);
942 zFilename = zTemp;
943 zFullPathname = sqliteOsFullPathname(zFilename);
944 tempFile = 1;
945 }
946 if( sqlite_malloc_failed ){
947 return SQLITE_NOMEM;
948 }
949 if( rc!=SQLITE_OK ){
950 sqliteFree(zFullPathname);
951 return SQLITE_CANTOPEN;
952 }
953 nameLen = strlen(zFullPathname);
954 pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
955 if( pPager==0 ){
956 sqliteOsClose(&fd);
957 sqliteFree(zFullPathname);
958 return SQLITE_NOMEM;
959 }
960 SET_PAGER(pPager);
961 pPager->zFilename = (char*)&pPager[1];
962 pPager->zDirectory = &pPager->zFilename[nameLen+1];
963 pPager->zJournal = &pPager->zDirectory[nameLen+1];
964 strcpy(pPager->zFilename, zFullPathname);
965 strcpy(pPager->zDirectory, zFullPathname);
966 for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
967 if( i>0 ) pPager->zDirectory[i-1] = 0;
968 strcpy(pPager->zJournal, zFullPathname);
969 sqliteFree(zFullPathname);
970 strcpy(&pPager->zJournal[nameLen], "-journal");
971 pPager->fd = fd;
972 pPager->journalOpen = 0;
973 pPager->useJournal = useJournal;
974 pPager->ckptOpen = 0;
975 pPager->ckptInUse = 0;
976 pPager->nRef = 0;
977 pPager->dbSize = -1;
978 pPager->ckptSize = 0;
979 pPager->ckptJSize = 0;
980 pPager->nPage = 0;
981 pPager->mxPage = mxPage>5 ? mxPage : 10;
982 pPager->state = SQLITE_UNLOCK;
983 pPager->errMask = 0;
984 pPager->tempFile = tempFile;
985 pPager->readOnly = readOnly;
986 pPager->needSync = 0;
987 pPager->noSync = pPager->tempFile || !useJournal;
988 pPager->pFirst = 0;
989 pPager->pFirstSynced = 0;
990 pPager->pLast = 0;
991 pPager->nExtra = nExtra;
992 memset(pPager->aHash, 0, sizeof(pPager->aHash));
993 *ppPager = pPager;
994 return SQLITE_OK;
995 }
996
997 /*
998 ** Set the destructor for this pager. If not NULL, the destructor is called
999 ** when the reference count on each page reaches zero. The destructor can
1000 ** be used to clean up information in the extra segment appended to each page.
1001 **
1002 ** The destructor is not called as a result sqlitepager_close().
1003 ** Destructors are only called by sqlitepager_unref().
1004 */
sqlitepager_set_destructor(Pager * pPager,void (* xDesc)(void *))1005 void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
1006 pPager->xDestructor = xDesc;
1007 }
1008
1009 /*
1010 ** Return the total number of pages in the disk file associated with
1011 ** pPager.
1012 */
sqlitepager_pagecount(Pager * pPager)1013 int sqlitepager_pagecount(Pager *pPager){
1014 off_t n;
1015 assert( pPager!=0 );
1016 if( pPager->dbSize>=0 ){
1017 return pPager->dbSize;
1018 }
1019 if( sqliteOsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
1020 pPager->errMask |= PAGER_ERR_DISK;
1021 return 0;
1022 }
1023 n /= SQLITE_PAGE_SIZE;
1024 if( pPager->state!=SQLITE_UNLOCK ){
1025 pPager->dbSize = n;
1026 }
1027 return n;
1028 }
1029
1030 /*
1031 ** Forward declaration
1032 */
1033 static int syncJournal(Pager*);
1034
1035 /*
1036 ** Truncate the file to the number of pages specified.
1037 */
sqlitepager_truncate(Pager * pPager,Pgno nPage)1038 int sqlitepager_truncate(Pager *pPager, Pgno nPage){
1039 int rc;
1040 if( pPager->dbSize<0 ){
1041 sqlitepager_pagecount(pPager);
1042 }
1043 if( pPager->errMask!=0 ){
1044 rc = pager_errcode(pPager);
1045 return rc;
1046 }
1047 if( nPage>=(unsigned)pPager->dbSize ){
1048 return SQLITE_OK;
1049 }
1050 syncJournal(pPager);
1051 rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)nPage);
1052 if( rc==SQLITE_OK ){
1053 pPager->dbSize = nPage;
1054 }
1055 return rc;
1056 }
1057
1058 /*
1059 ** Shutdown the page cache. Free all memory and close all files.
1060 **
1061 ** If a transaction was in progress when this routine is called, that
1062 ** transaction is rolled back. All outstanding pages are invalidated
1063 ** and their memory is freed. Any attempt to use a page associated
1064 ** with this page cache after this function returns will likely
1065 ** result in a coredump.
1066 */
sqlitepager_close(Pager * pPager)1067 int sqlitepager_close(Pager *pPager){
1068 PgHdr *pPg, *pNext;
1069 switch( pPager->state ){
1070 case SQLITE_WRITELOCK: {
1071 sqlitepager_rollback(pPager);
1072 sqliteOsUnlock(&pPager->fd);
1073 assert( pPager->journalOpen==0 );
1074 break;
1075 }
1076 case SQLITE_READLOCK: {
1077 sqliteOsUnlock(&pPager->fd);
1078 break;
1079 }
1080 default: {
1081 /* Do nothing */
1082 break;
1083 }
1084 }
1085 for(pPg=pPager->pAll; pPg; pPg=pNext){
1086 pNext = pPg->pNextAll;
1087 sqliteFree(pPg);
1088 }
1089 sqliteOsClose(&pPager->fd);
1090 assert( pPager->journalOpen==0 );
1091 /* Temp files are automatically deleted by the OS
1092 ** if( pPager->tempFile ){
1093 ** sqliteOsDelete(pPager->zFilename);
1094 ** }
1095 */
1096 CLR_PAGER(pPager);
1097 if( pPager->zFilename!=(char*)&pPager[1] ){
1098 assert( 0 ); /* Cannot happen */
1099 sqliteFree(pPager->zFilename);
1100 sqliteFree(pPager->zJournal);
1101 sqliteFree(pPager->zDirectory);
1102 }
1103 sqliteFree(pPager);
1104 return SQLITE_OK;
1105 }
1106
1107 /*
1108 ** Return the page number for the given page data.
1109 */
sqlitepager_pagenumber(void * pData)1110 Pgno sqlitepager_pagenumber(void *pData){
1111 PgHdr *p = DATA_TO_PGHDR(pData);
1112 return p->pgno;
1113 }
1114
1115 /*
1116 ** Increment the reference count for a page. If the page is
1117 ** currently on the freelist (the reference count is zero) then
1118 ** remove it from the freelist.
1119 */
1120 #define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
_page_ref(PgHdr * pPg)1121 static void _page_ref(PgHdr *pPg){
1122 if( pPg->nRef==0 ){
1123 /* The page is currently on the freelist. Remove it. */
1124 if( pPg==pPg->pPager->pFirstSynced ){
1125 PgHdr *p = pPg->pNextFree;
1126 while( p && p->needSync ){ p = p->pNextFree; }
1127 pPg->pPager->pFirstSynced = p;
1128 }
1129 if( pPg->pPrevFree ){
1130 pPg->pPrevFree->pNextFree = pPg->pNextFree;
1131 }else{
1132 pPg->pPager->pFirst = pPg->pNextFree;
1133 }
1134 if( pPg->pNextFree ){
1135 pPg->pNextFree->pPrevFree = pPg->pPrevFree;
1136 }else{
1137 pPg->pPager->pLast = pPg->pPrevFree;
1138 }
1139 pPg->pPager->nRef++;
1140 }
1141 pPg->nRef++;
1142 REFINFO(pPg);
1143 }
1144
1145 /*
1146 ** Increment the reference count for a page. The input pointer is
1147 ** a reference to the page data.
1148 */
sqlitepager_ref(void * pData)1149 int sqlitepager_ref(void *pData){
1150 PgHdr *pPg = DATA_TO_PGHDR(pData);
1151 page_ref(pPg);
1152 return SQLITE_OK;
1153 }
1154
1155 /*
1156 ** Sync the journal. In other words, make sure all the pages that have
1157 ** been written to the journal have actually reached the surface of the
1158 ** disk. It is not safe to modify the original database file until after
1159 ** the journal has been synced. If the original database is modified before
1160 ** the journal is synced and a power failure occurs, the unsynced journal
1161 ** data would be lost and we would be unable to completely rollback the
1162 ** database changes. Database corruption would occur.
1163 **
1164 ** This routine also updates the nRec field in the header of the journal.
1165 ** (See comments on the pager_playback() routine for additional information.)
1166 ** If the sync mode is FULL, two syncs will occur. First the whole journal
1167 ** is synced, then the nRec field is updated, then a second sync occurs.
1168 **
1169 ** For temporary databases, we do not care if we are able to rollback
1170 ** after a power failure, so sync occurs.
1171 **
1172 ** This routine clears the needSync field of every page current held in
1173 ** memory.
1174 */
syncJournal(Pager * pPager)1175 static int syncJournal(Pager *pPager){
1176 PgHdr *pPg;
1177 int rc = SQLITE_OK;
1178
1179 /* Sync the journal before modifying the main database
1180 ** (assuming there is a journal and it needs to be synced.)
1181 */
1182 if( pPager->needSync ){
1183 if( !pPager->tempFile ){
1184 assert( pPager->journalOpen );
1185 /* assert( !pPager->noSync ); // noSync might be set if synchronous
1186 ** was turned off after the transaction was started. Ticket #615 */
1187 #ifndef NDEBUG
1188 {
1189 /* Make sure the pPager->nRec counter we are keeping agrees
1190 ** with the nRec computed from the size of the journal file.
1191 */
1192 off_t hdrSz, pgSz, jSz;
1193 hdrSz = JOURNAL_HDR_SZ(journal_format);
1194 pgSz = JOURNAL_PG_SZ(journal_format);
1195 rc = sqliteOsFileSize(&pPager->jfd, &jSz);
1196 if( rc!=0 ) return rc;
1197 assert( pPager->nRec*pgSz+hdrSz==jSz );
1198 }
1199 #endif
1200 if( journal_format>=3 ){
1201 /* Write the nRec value into the journal file header */
1202 off_t szJ;
1203 if( pPager->fullSync ){
1204 TRACE1("SYNC\n");
1205 rc = sqliteOsSync(&pPager->jfd);
1206 if( rc!=0 ) return rc;
1207 }
1208 sqliteOsSeek(&pPager->jfd, sizeof(aJournalMagic1));
1209 rc = write32bits(&pPager->jfd, pPager->nRec);
1210 if( rc ) return rc;
1211 szJ = JOURNAL_HDR_SZ(journal_format) +
1212 pPager->nRec*JOURNAL_PG_SZ(journal_format);
1213 sqliteOsSeek(&pPager->jfd, szJ);
1214 }
1215 TRACE1("SYNC\n");
1216 rc = sqliteOsSync(&pPager->jfd);
1217 if( rc!=0 ) return rc;
1218 pPager->journalStarted = 1;
1219 }
1220 pPager->needSync = 0;
1221
1222 /* Erase the needSync flag from every page.
1223 */
1224 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
1225 pPg->needSync = 0;
1226 }
1227 pPager->pFirstSynced = pPager->pFirst;
1228 }
1229
1230 #ifndef NDEBUG
1231 /* If the Pager.needSync flag is clear then the PgHdr.needSync
1232 ** flag must also be clear for all pages. Verify that this
1233 ** invariant is true.
1234 */
1235 else{
1236 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
1237 assert( pPg->needSync==0 );
1238 }
1239 assert( pPager->pFirstSynced==pPager->pFirst );
1240 }
1241 #endif
1242
1243 return rc;
1244 }
1245
1246 /*
1247 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write
1248 ** every one of those pages out to the database file and mark them all
1249 ** as clean.
1250 */
pager_write_pagelist(PgHdr * pList)1251 static int pager_write_pagelist(PgHdr *pList){
1252 Pager *pPager;
1253 int rc;
1254
1255 if( pList==0 ) return SQLITE_OK;
1256 pPager = pList->pPager;
1257 while( pList ){
1258 assert( pList->dirty );
1259 sqliteOsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
1260 CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
1261 TRACE2("STORE %d\n", pList->pgno);
1262 rc = sqliteOsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
1263 CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
1264 if( rc ) return rc;
1265 pList->dirty = 0;
1266 pList = pList->pDirty;
1267 }
1268 return SQLITE_OK;
1269 }
1270
1271 /*
1272 ** Collect every dirty page into a dirty list and
1273 ** return a pointer to the head of that list. All pages are
1274 ** collected even if they are still in use.
1275 */
pager_get_all_dirty_pages(Pager * pPager)1276 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
1277 PgHdr *p, *pList;
1278 pList = 0;
1279 for(p=pPager->pAll; p; p=p->pNextAll){
1280 if( p->dirty ){
1281 p->pDirty = pList;
1282 pList = p;
1283 }
1284 }
1285 return pList;
1286 }
1287
1288 /*
1289 ** Acquire a page.
1290 **
1291 ** A read lock on the disk file is obtained when the first page is acquired.
1292 ** This read lock is dropped when the last page is released.
1293 **
1294 ** A _get works for any page number greater than 0. If the database
1295 ** file is smaller than the requested page, then no actual disk
1296 ** read occurs and the memory image of the page is initialized to
1297 ** all zeros. The extra data appended to a page is always initialized
1298 ** to zeros the first time a page is loaded into memory.
1299 **
1300 ** The acquisition might fail for several reasons. In all cases,
1301 ** an appropriate error code is returned and *ppPage is set to NULL.
1302 **
1303 ** See also sqlitepager_lookup(). Both this routine and _lookup() attempt
1304 ** to find a page in the in-memory cache first. If the page is not already
1305 ** in memory, this routine goes to disk to read it in whereas _lookup()
1306 ** just returns 0. This routine acquires a read-lock the first time it
1307 ** has to go to disk, and could also playback an old journal if necessary.
1308 ** Since _lookup() never goes to disk, it never has to deal with locks
1309 ** or journal files.
1310 */
sqlitepager_get(Pager * pPager,Pgno pgno,void ** ppPage)1311 int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){
1312 PgHdr *pPg;
1313 int rc;
1314
1315 /* Make sure we have not hit any critical errors.
1316 */
1317 assert( pPager!=0 );
1318 assert( pgno!=0 );
1319 *ppPage = 0;
1320 if( pPager->errMask & ~(PAGER_ERR_FULL) ){
1321 return pager_errcode(pPager);
1322 }
1323
1324 /* If this is the first page accessed, then get a read lock
1325 ** on the database file.
1326 */
1327 if( pPager->nRef==0 ){
1328 rc = sqliteOsReadLock(&pPager->fd);
1329 if( rc!=SQLITE_OK ){
1330 return rc;
1331 }
1332 pPager->state = SQLITE_READLOCK;
1333
1334 /* If a journal file exists, try to play it back.
1335 */
1336 if( pPager->useJournal && sqliteOsFileExists(pPager->zJournal) ){
1337 int rc;
1338
1339 /* Get a write lock on the database
1340 */
1341 rc = sqliteOsWriteLock(&pPager->fd);
1342 if( rc!=SQLITE_OK ){
1343 if( sqliteOsUnlock(&pPager->fd)!=SQLITE_OK ){
1344 /* This should never happen! */
1345 rc = SQLITE_INTERNAL;
1346 }
1347 return rc;
1348 }
1349 pPager->state = SQLITE_WRITELOCK;
1350
1351 /* Open the journal for reading only. Return SQLITE_BUSY if
1352 ** we are unable to open the journal file.
1353 **
1354 ** The journal file does not need to be locked itself. The
1355 ** journal file is never open unless the main database file holds
1356 ** a write lock, so there is never any chance of two or more
1357 ** processes opening the journal at the same time.
1358 */
1359 rc = sqliteOsOpenReadOnly(pPager->zJournal, &pPager->jfd);
1360 if( rc!=SQLITE_OK ){
1361 rc = sqliteOsUnlock(&pPager->fd);
1362 assert( rc==SQLITE_OK );
1363 return SQLITE_BUSY;
1364 }
1365 pPager->journalOpen = 1;
1366 pPager->journalStarted = 0;
1367
1368 /* Playback and delete the journal. Drop the database write
1369 ** lock and reacquire the read lock.
1370 */
1371 rc = pager_playback(pPager, 0);
1372 if( rc!=SQLITE_OK ){
1373 return rc;
1374 }
1375 }
1376 pPg = 0;
1377 }else{
1378 /* Search for page in cache */
1379 pPg = pager_lookup(pPager, pgno);
1380 }
1381 if( pPg==0 ){
1382 /* The requested page is not in the page cache. */
1383 int h;
1384 pPager->nMiss++;
1385 if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 ){
1386 /* Create a new page */
1387 pPg = sqliteMallocRaw( sizeof(*pPg) + SQLITE_PAGE_SIZE
1388 + sizeof(u32) + pPager->nExtra );
1389 if( pPg==0 ){
1390 pager_unwritelock(pPager);
1391 pPager->errMask |= PAGER_ERR_MEM;
1392 return SQLITE_NOMEM;
1393 }
1394 memset(pPg, 0, sizeof(*pPg));
1395 pPg->pPager = pPager;
1396 pPg->pNextAll = pPager->pAll;
1397 if( pPager->pAll ){
1398 pPager->pAll->pPrevAll = pPg;
1399 }
1400 pPg->pPrevAll = 0;
1401 pPager->pAll = pPg;
1402 pPager->nPage++;
1403 }else{
1404 /* Find a page to recycle. Try to locate a page that does not
1405 ** require us to do an fsync() on the journal.
1406 */
1407 pPg = pPager->pFirstSynced;
1408
1409 /* If we could not find a page that does not require an fsync()
1410 ** on the journal file then fsync the journal file. This is a
1411 ** very slow operation, so we work hard to avoid it. But sometimes
1412 ** it can't be helped.
1413 */
1414 if( pPg==0 ){
1415 int rc = syncJournal(pPager);
1416 if( rc!=0 ){
1417 sqlitepager_rollback(pPager);
1418 return SQLITE_IOERR;
1419 }
1420 pPg = pPager->pFirst;
1421 }
1422 assert( pPg->nRef==0 );
1423
1424 /* Write the page to the database file if it is dirty.
1425 */
1426 if( pPg->dirty ){
1427 assert( pPg->needSync==0 );
1428 pPg->pDirty = 0;
1429 rc = pager_write_pagelist( pPg );
1430 if( rc!=SQLITE_OK ){
1431 sqlitepager_rollback(pPager);
1432 return SQLITE_IOERR;
1433 }
1434 }
1435 assert( pPg->dirty==0 );
1436
1437 /* If the page we are recycling is marked as alwaysRollback, then
1438 ** set the global alwaysRollback flag, thus disabling the
1439 ** sqlite_dont_rollback() optimization for the rest of this transaction.
1440 ** It is necessary to do this because the page marked alwaysRollback
1441 ** might be reloaded at a later time but at that point we won't remember
1442 ** that is was marked alwaysRollback. This means that all pages must
1443 ** be marked as alwaysRollback from here on out.
1444 */
1445 if( pPg->alwaysRollback ){
1446 pPager->alwaysRollback = 1;
1447 }
1448
1449 /* Unlink the old page from the free list and the hash table
1450 */
1451 if( pPg==pPager->pFirstSynced ){
1452 PgHdr *p = pPg->pNextFree;
1453 while( p && p->needSync ){ p = p->pNextFree; }
1454 pPager->pFirstSynced = p;
1455 }
1456 if( pPg->pPrevFree ){
1457 pPg->pPrevFree->pNextFree = pPg->pNextFree;
1458 }else{
1459 assert( pPager->pFirst==pPg );
1460 pPager->pFirst = pPg->pNextFree;
1461 }
1462 if( pPg->pNextFree ){
1463 pPg->pNextFree->pPrevFree = pPg->pPrevFree;
1464 }else{
1465 assert( pPager->pLast==pPg );
1466 pPager->pLast = pPg->pPrevFree;
1467 }
1468 pPg->pNextFree = pPg->pPrevFree = 0;
1469 if( pPg->pNextHash ){
1470 pPg->pNextHash->pPrevHash = pPg->pPrevHash;
1471 }
1472 if( pPg->pPrevHash ){
1473 pPg->pPrevHash->pNextHash = pPg->pNextHash;
1474 }else{
1475 h = pager_hash(pPg->pgno);
1476 assert( pPager->aHash[h]==pPg );
1477 pPager->aHash[h] = pPg->pNextHash;
1478 }
1479 pPg->pNextHash = pPg->pPrevHash = 0;
1480 pPager->nOvfl++;
1481 }
1482 pPg->pgno = pgno;
1483 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
1484 sqliteCheckMemory(pPager->aInJournal, pgno/8);
1485 assert( pPager->journalOpen );
1486 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
1487 pPg->needSync = 0;
1488 }else{
1489 pPg->inJournal = 0;
1490 pPg->needSync = 0;
1491 }
1492 if( pPager->aInCkpt && (int)pgno<=pPager->ckptSize
1493 && (pPager->aInCkpt[pgno/8] & (1<<(pgno&7)))!=0 ){
1494 page_add_to_ckpt_list(pPg);
1495 }else{
1496 page_remove_from_ckpt_list(pPg);
1497 }
1498 pPg->dirty = 0;
1499 pPg->nRef = 1;
1500 REFINFO(pPg);
1501 pPager->nRef++;
1502 h = pager_hash(pgno);
1503 pPg->pNextHash = pPager->aHash[h];
1504 pPager->aHash[h] = pPg;
1505 if( pPg->pNextHash ){
1506 assert( pPg->pNextHash->pPrevHash==0 );
1507 pPg->pNextHash->pPrevHash = pPg;
1508 }
1509 if( pPager->nExtra>0 ){
1510 memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
1511 }
1512 if( pPager->dbSize<0 ) sqlitepager_pagecount(pPager);
1513 if( pPager->errMask!=0 ){
1514 sqlitepager_unref(PGHDR_TO_DATA(pPg));
1515 rc = pager_errcode(pPager);
1516 return rc;
1517 }
1518 if( pPager->dbSize<(int)pgno ){
1519 memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
1520 }else{
1521 int rc;
1522 sqliteOsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
1523 rc = sqliteOsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
1524 TRACE2("FETCH %d\n", pPg->pgno);
1525 CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
1526 if( rc!=SQLITE_OK ){
1527 off_t fileSize;
1528 if( sqliteOsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
1529 || fileSize>=pgno*SQLITE_PAGE_SIZE ){
1530 sqlitepager_unref(PGHDR_TO_DATA(pPg));
1531 return rc;
1532 }else{
1533 memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
1534 }
1535 }
1536 }
1537 }else{
1538 /* The requested page is in the page cache. */
1539 pPager->nHit++;
1540 page_ref(pPg);
1541 }
1542 *ppPage = PGHDR_TO_DATA(pPg);
1543 return SQLITE_OK;
1544 }
1545
1546 /*
1547 ** Acquire a page if it is already in the in-memory cache. Do
1548 ** not read the page from disk. Return a pointer to the page,
1549 ** or 0 if the page is not in cache.
1550 **
1551 ** See also sqlitepager_get(). The difference between this routine
1552 ** and sqlitepager_get() is that _get() will go to the disk and read
1553 ** in the page if the page is not already in cache. This routine
1554 ** returns NULL if the page is not in cache or if a disk I/O error
1555 ** has ever happened.
1556 */
sqlitepager_lookup(Pager * pPager,Pgno pgno)1557 void *sqlitepager_lookup(Pager *pPager, Pgno pgno){
1558 PgHdr *pPg;
1559
1560 assert( pPager!=0 );
1561 assert( pgno!=0 );
1562 if( pPager->errMask & ~(PAGER_ERR_FULL) ){
1563 return 0;
1564 }
1565 /* if( pPager->nRef==0 ){
1566 ** return 0;
1567 ** }
1568 */
1569 pPg = pager_lookup(pPager, pgno);
1570 if( pPg==0 ) return 0;
1571 page_ref(pPg);
1572 return PGHDR_TO_DATA(pPg);
1573 }
1574
1575 /*
1576 ** Release a page.
1577 **
1578 ** If the number of references to the page drop to zero, then the
1579 ** page is added to the LRU list. When all references to all pages
1580 ** are released, a rollback occurs and the lock on the database is
1581 ** removed.
1582 */
sqlitepager_unref(void * pData)1583 int sqlitepager_unref(void *pData){
1584 PgHdr *pPg;
1585
1586 /* Decrement the reference count for this page
1587 */
1588 pPg = DATA_TO_PGHDR(pData);
1589 assert( pPg->nRef>0 );
1590 pPg->nRef--;
1591 REFINFO(pPg);
1592
1593 /* When the number of references to a page reach 0, call the
1594 ** destructor and add the page to the freelist.
1595 */
1596 if( pPg->nRef==0 ){
1597 Pager *pPager;
1598 pPager = pPg->pPager;
1599 pPg->pNextFree = 0;
1600 pPg->pPrevFree = pPager->pLast;
1601 pPager->pLast = pPg;
1602 if( pPg->pPrevFree ){
1603 pPg->pPrevFree->pNextFree = pPg;
1604 }else{
1605 pPager->pFirst = pPg;
1606 }
1607 if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
1608 pPager->pFirstSynced = pPg;
1609 }
1610 if( pPager->xDestructor ){
1611 pPager->xDestructor(pData);
1612 }
1613
1614 /* When all pages reach the freelist, drop the read lock from
1615 ** the database file.
1616 */
1617 pPager->nRef--;
1618 assert( pPager->nRef>=0 );
1619 if( pPager->nRef==0 ){
1620 pager_reset(pPager);
1621 }
1622 }
1623 return SQLITE_OK;
1624 }
1625
1626 /*
1627 ** Create a journal file for pPager. There should already be a write
1628 ** lock on the database file when this routine is called.
1629 **
1630 ** Return SQLITE_OK if everything. Return an error code and release the
1631 ** write lock if anything goes wrong.
1632 */
pager_open_journal(Pager * pPager)1633 static int pager_open_journal(Pager *pPager){
1634 int rc;
1635 assert( pPager->state==SQLITE_WRITELOCK );
1636 assert( pPager->journalOpen==0 );
1637 assert( pPager->useJournal );
1638 sqlitepager_pagecount(pPager);
1639 pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
1640 if( pPager->aInJournal==0 ){
1641 sqliteOsReadLock(&pPager->fd);
1642 pPager->state = SQLITE_READLOCK;
1643 return SQLITE_NOMEM;
1644 }
1645 rc = sqliteOsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
1646 if( rc!=SQLITE_OK ){
1647 sqliteFree(pPager->aInJournal);
1648 pPager->aInJournal = 0;
1649 sqliteOsReadLock(&pPager->fd);
1650 pPager->state = SQLITE_READLOCK;
1651 return SQLITE_CANTOPEN;
1652 }
1653 sqliteOsOpenDirectory(pPager->zDirectory, &pPager->jfd);
1654 pPager->journalOpen = 1;
1655 pPager->journalStarted = 0;
1656 pPager->needSync = 0;
1657 pPager->alwaysRollback = 0;
1658 pPager->nRec = 0;
1659 if( pPager->errMask!=0 ){
1660 rc = pager_errcode(pPager);
1661 return rc;
1662 }
1663 pPager->origDbSize = pPager->dbSize;
1664 if( journal_format==JOURNAL_FORMAT_3 ){
1665 rc = sqliteOsWrite(&pPager->jfd, aJournalMagic3, sizeof(aJournalMagic3));
1666 if( rc==SQLITE_OK ){
1667 rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
1668 }
1669 if( rc==SQLITE_OK ){
1670 sqliteRandomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
1671 rc = write32bits(&pPager->jfd, pPager->cksumInit);
1672 }
1673 }else if( journal_format==JOURNAL_FORMAT_2 ){
1674 rc = sqliteOsWrite(&pPager->jfd, aJournalMagic2, sizeof(aJournalMagic2));
1675 }else{
1676 assert( journal_format==JOURNAL_FORMAT_1 );
1677 rc = sqliteOsWrite(&pPager->jfd, aJournalMagic1, sizeof(aJournalMagic1));
1678 }
1679 if( rc==SQLITE_OK ){
1680 rc = write32bits(&pPager->jfd, pPager->dbSize);
1681 }
1682 if( pPager->ckptAutoopen && rc==SQLITE_OK ){
1683 rc = sqlitepager_ckpt_begin(pPager);
1684 }
1685 if( rc!=SQLITE_OK ){
1686 rc = pager_unwritelock(pPager);
1687 if( rc==SQLITE_OK ){
1688 rc = SQLITE_FULL;
1689 }
1690 }
1691 return rc;
1692 }
1693
1694 /*
1695 ** Acquire a write-lock on the database. The lock is removed when
1696 ** the any of the following happen:
1697 **
1698 ** * sqlitepager_commit() is called.
1699 ** * sqlitepager_rollback() is called.
1700 ** * sqlitepager_close() is called.
1701 ** * sqlitepager_unref() is called to on every outstanding page.
1702 **
1703 ** The parameter to this routine is a pointer to any open page of the
1704 ** database file. Nothing changes about the page - it is used merely
1705 ** to acquire a pointer to the Pager structure and as proof that there
1706 ** is already a read-lock on the database.
1707 **
1708 ** A journal file is opened if this is not a temporary file. For
1709 ** temporary files, the opening of the journal file is deferred until
1710 ** there is an actual need to write to the journal.
1711 **
1712 ** If the database is already write-locked, this routine is a no-op.
1713 */
sqlitepager_begin(void * pData)1714 int sqlitepager_begin(void *pData){
1715 PgHdr *pPg = DATA_TO_PGHDR(pData);
1716 Pager *pPager = pPg->pPager;
1717 int rc = SQLITE_OK;
1718 assert( pPg->nRef>0 );
1719 assert( pPager->state!=SQLITE_UNLOCK );
1720 if( pPager->state==SQLITE_READLOCK ){
1721 assert( pPager->aInJournal==0 );
1722 rc = sqliteOsWriteLock(&pPager->fd);
1723 if( rc!=SQLITE_OK ){
1724 return rc;
1725 }
1726 pPager->state = SQLITE_WRITELOCK;
1727 pPager->dirtyFile = 0;
1728 TRACE1("TRANSACTION\n");
1729 if( pPager->useJournal && !pPager->tempFile ){
1730 rc = pager_open_journal(pPager);
1731 }
1732 }
1733 return rc;
1734 }
1735
1736 /*
1737 ** Mark a data page as writeable. The page is written into the journal
1738 ** if it is not there already. This routine must be called before making
1739 ** changes to a page.
1740 **
1741 ** The first time this routine is called, the pager creates a new
1742 ** journal and acquires a write lock on the database. If the write
1743 ** lock could not be acquired, this routine returns SQLITE_BUSY. The
1744 ** calling routine must check for that return value and be careful not to
1745 ** change any page data until this routine returns SQLITE_OK.
1746 **
1747 ** If the journal file could not be written because the disk is full,
1748 ** then this routine returns SQLITE_FULL and does an immediate rollback.
1749 ** All subsequent write attempts also return SQLITE_FULL until there
1750 ** is a call to sqlitepager_commit() or sqlitepager_rollback() to
1751 ** reset.
1752 */
sqlitepager_write(void * pData)1753 int sqlitepager_write(void *pData){
1754 PgHdr *pPg = DATA_TO_PGHDR(pData);
1755 Pager *pPager = pPg->pPager;
1756 int rc = SQLITE_OK;
1757
1758 /* Check for errors
1759 */
1760 if( pPager->errMask ){
1761 return pager_errcode(pPager);
1762 }
1763 if( pPager->readOnly ){
1764 return SQLITE_PERM;
1765 }
1766
1767 /* Mark the page as dirty. If the page has already been written
1768 ** to the journal then we can return right away.
1769 */
1770 pPg->dirty = 1;
1771 if( pPg->inJournal && (pPg->inCkpt || pPager->ckptInUse==0) ){
1772 pPager->dirtyFile = 1;
1773 return SQLITE_OK;
1774 }
1775
1776 /* If we get this far, it means that the page needs to be
1777 ** written to the transaction journal or the ckeckpoint journal
1778 ** or both.
1779 **
1780 ** First check to see that the transaction journal exists and
1781 ** create it if it does not.
1782 */
1783 assert( pPager->state!=SQLITE_UNLOCK );
1784 rc = sqlitepager_begin(pData);
1785 if( rc!=SQLITE_OK ){
1786 return rc;
1787 }
1788 assert( pPager->state==SQLITE_WRITELOCK );
1789 if( !pPager->journalOpen && pPager->useJournal ){
1790 rc = pager_open_journal(pPager);
1791 if( rc!=SQLITE_OK ) return rc;
1792 }
1793 assert( pPager->journalOpen || !pPager->useJournal );
1794 pPager->dirtyFile = 1;
1795
1796 /* The transaction journal now exists and we have a write lock on the
1797 ** main database file. Write the current page to the transaction
1798 ** journal if it is not there already.
1799 */
1800 if( !pPg->inJournal && pPager->useJournal ){
1801 if( (int)pPg->pgno <= pPager->origDbSize ){
1802 int szPg;
1803 u32 saved;
1804 if( journal_format>=JOURNAL_FORMAT_3 ){
1805 u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
1806 saved = *(u32*)PGHDR_TO_EXTRA(pPg);
1807 store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
1808 szPg = SQLITE_PAGE_SIZE+8;
1809 }else{
1810 szPg = SQLITE_PAGE_SIZE+4;
1811 }
1812 store32bits(pPg->pgno, pPg, -4);
1813 CODEC(pPager, pData, pPg->pgno, 7);
1814 rc = sqliteOsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
1815 TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
1816 CODEC(pPager, pData, pPg->pgno, 0);
1817 if( journal_format>=JOURNAL_FORMAT_3 ){
1818 *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
1819 }
1820 if( rc!=SQLITE_OK ){
1821 sqlitepager_rollback(pPager);
1822 pPager->errMask |= PAGER_ERR_FULL;
1823 return rc;
1824 }
1825 pPager->nRec++;
1826 assert( pPager->aInJournal!=0 );
1827 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
1828 pPg->needSync = !pPager->noSync;
1829 pPg->inJournal = 1;
1830 if( pPager->ckptInUse ){
1831 pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
1832 page_add_to_ckpt_list(pPg);
1833 }
1834 }else{
1835 pPg->needSync = !pPager->journalStarted && !pPager->noSync;
1836 TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
1837 }
1838 if( pPg->needSync ){
1839 pPager->needSync = 1;
1840 }
1841 }
1842
1843 /* If the checkpoint journal is open and the page is not in it,
1844 ** then write the current page to the checkpoint journal. Note that
1845 ** the checkpoint journal always uses the simplier format 2 that lacks
1846 ** checksums. The header is also omitted from the checkpoint journal.
1847 */
1848 if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
1849 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
1850 store32bits(pPg->pgno, pPg, -4);
1851 CODEC(pPager, pData, pPg->pgno, 7);
1852 rc = sqliteOsWrite(&pPager->cpfd, &((char*)pData)[-4], SQLITE_PAGE_SIZE+4);
1853 TRACE2("CKPT-JOURNAL %d\n", pPg->pgno);
1854 CODEC(pPager, pData, pPg->pgno, 0);
1855 if( rc!=SQLITE_OK ){
1856 sqlitepager_rollback(pPager);
1857 pPager->errMask |= PAGER_ERR_FULL;
1858 return rc;
1859 }
1860 pPager->ckptNRec++;
1861 assert( pPager->aInCkpt!=0 );
1862 pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
1863 page_add_to_ckpt_list(pPg);
1864 }
1865
1866 /* Update the database size and return.
1867 */
1868 if( pPager->dbSize<(int)pPg->pgno ){
1869 pPager->dbSize = pPg->pgno;
1870 }
1871 return rc;
1872 }
1873
1874 /*
1875 ** Return TRUE if the page given in the argument was previously passed
1876 ** to sqlitepager_write(). In other words, return TRUE if it is ok
1877 ** to change the content of the page.
1878 */
sqlitepager_iswriteable(void * pData)1879 int sqlitepager_iswriteable(void *pData){
1880 PgHdr *pPg = DATA_TO_PGHDR(pData);
1881 return pPg->dirty;
1882 }
1883
1884 /*
1885 ** Replace the content of a single page with the information in the third
1886 ** argument.
1887 */
sqlitepager_overwrite(Pager * pPager,Pgno pgno,void * pData)1888 int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void *pData){
1889 void *pPage;
1890 int rc;
1891
1892 rc = sqlitepager_get(pPager, pgno, &pPage);
1893 if( rc==SQLITE_OK ){
1894 rc = sqlitepager_write(pPage);
1895 if( rc==SQLITE_OK ){
1896 memcpy(pPage, pData, SQLITE_PAGE_SIZE);
1897 }
1898 sqlitepager_unref(pPage);
1899 }
1900 return rc;
1901 }
1902
1903 /*
1904 ** A call to this routine tells the pager that it is not necessary to
1905 ** write the information on page "pgno" back to the disk, even though
1906 ** that page might be marked as dirty.
1907 **
1908 ** The overlying software layer calls this routine when all of the data
1909 ** on the given page is unused. The pager marks the page as clean so
1910 ** that it does not get written to disk.
1911 **
1912 ** Tests show that this optimization, together with the
1913 ** sqlitepager_dont_rollback() below, more than double the speed
1914 ** of large INSERT operations and quadruple the speed of large DELETEs.
1915 **
1916 ** When this routine is called, set the alwaysRollback flag to true.
1917 ** Subsequent calls to sqlitepager_dont_rollback() for the same page
1918 ** will thereafter be ignored. This is necessary to avoid a problem
1919 ** where a page with data is added to the freelist during one part of
1920 ** a transaction then removed from the freelist during a later part
1921 ** of the same transaction and reused for some other purpose. When it
1922 ** is first added to the freelist, this routine is called. When reused,
1923 ** the dont_rollback() routine is called. But because the page contains
1924 ** critical data, we still need to be sure it gets rolled back in spite
1925 ** of the dont_rollback() call.
1926 */
sqlitepager_dont_write(Pager * pPager,Pgno pgno)1927 void sqlitepager_dont_write(Pager *pPager, Pgno pgno){
1928 PgHdr *pPg;
1929
1930 pPg = pager_lookup(pPager, pgno);
1931 pPg->alwaysRollback = 1;
1932 if( pPg && pPg->dirty && !pPager->ckptInUse ){
1933 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
1934 /* If this pages is the last page in the file and the file has grown
1935 ** during the current transaction, then do NOT mark the page as clean.
1936 ** When the database file grows, we must make sure that the last page
1937 ** gets written at least once so that the disk file will be the correct
1938 ** size. If you do not write this page and the size of the file
1939 ** on the disk ends up being too small, that can lead to database
1940 ** corruption during the next transaction.
1941 */
1942 }else{
1943 TRACE2("DONT_WRITE %d\n", pgno);
1944 pPg->dirty = 0;
1945 }
1946 }
1947 }
1948
1949 /*
1950 ** A call to this routine tells the pager that if a rollback occurs,
1951 ** it is not necessary to restore the data on the given page. This
1952 ** means that the pager does not have to record the given page in the
1953 ** rollback journal.
1954 */
sqlitepager_dont_rollback(void * pData)1955 void sqlitepager_dont_rollback(void *pData){
1956 PgHdr *pPg = DATA_TO_PGHDR(pData);
1957 Pager *pPager = pPg->pPager;
1958
1959 if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
1960 if( pPg->alwaysRollback || pPager->alwaysRollback ) return;
1961 if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
1962 assert( pPager->aInJournal!=0 );
1963 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
1964 pPg->inJournal = 1;
1965 if( pPager->ckptInUse ){
1966 pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
1967 page_add_to_ckpt_list(pPg);
1968 }
1969 TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
1970 }
1971 if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
1972 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
1973 assert( pPager->aInCkpt!=0 );
1974 pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
1975 page_add_to_ckpt_list(pPg);
1976 }
1977 }
1978
1979 /*
1980 ** Commit all changes to the database and release the write lock.
1981 **
1982 ** If the commit fails for any reason, a rollback attempt is made
1983 ** and an error code is returned. If the commit worked, SQLITE_OK
1984 ** is returned.
1985 */
sqlitepager_commit(Pager * pPager)1986 int sqlitepager_commit(Pager *pPager){
1987 int rc;
1988 PgHdr *pPg;
1989
1990 if( pPager->errMask==PAGER_ERR_FULL ){
1991 rc = sqlitepager_rollback(pPager);
1992 if( rc==SQLITE_OK ){
1993 rc = SQLITE_FULL;
1994 }
1995 return rc;
1996 }
1997 if( pPager->errMask!=0 ){
1998 rc = pager_errcode(pPager);
1999 return rc;
2000 }
2001 if( pPager->state!=SQLITE_WRITELOCK ){
2002 return SQLITE_ERROR;
2003 }
2004 TRACE1("COMMIT\n");
2005 if( pPager->dirtyFile==0 ){
2006 /* Exit early (without doing the time-consuming sqliteOsSync() calls)
2007 ** if there have been no changes to the database file. */
2008 assert( pPager->needSync==0 );
2009 rc = pager_unwritelock(pPager);
2010 pPager->dbSize = -1;
2011 return rc;
2012 }
2013 assert( pPager->journalOpen );
2014 rc = syncJournal(pPager);
2015 if( rc!=SQLITE_OK ){
2016 goto commit_abort;
2017 }
2018 pPg = pager_get_all_dirty_pages(pPager);
2019 if( pPg ){
2020 rc = pager_write_pagelist(pPg);
2021 if( rc || (!pPager->noSync && sqliteOsSync(&pPager->fd)!=SQLITE_OK) ){
2022 goto commit_abort;
2023 }
2024 }
2025 rc = pager_unwritelock(pPager);
2026 pPager->dbSize = -1;
2027 return rc;
2028
2029 /* Jump here if anything goes wrong during the commit process.
2030 */
2031 commit_abort:
2032 rc = sqlitepager_rollback(pPager);
2033 if( rc==SQLITE_OK ){
2034 rc = SQLITE_FULL;
2035 }
2036 return rc;
2037 }
2038
2039 /*
2040 ** Rollback all changes. The database falls back to read-only mode.
2041 ** All in-memory cache pages revert to their original data contents.
2042 ** The journal is deleted.
2043 **
2044 ** This routine cannot fail unless some other process is not following
2045 ** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
2046 ** process is writing trash into the journal file (SQLITE_CORRUPT) or
2047 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
2048 ** codes are returned for all these occasions. Otherwise,
2049 ** SQLITE_OK is returned.
2050 */
sqlitepager_rollback(Pager * pPager)2051 int sqlitepager_rollback(Pager *pPager){
2052 int rc;
2053 TRACE1("ROLLBACK\n");
2054 if( !pPager->dirtyFile || !pPager->journalOpen ){
2055 rc = pager_unwritelock(pPager);
2056 pPager->dbSize = -1;
2057 return rc;
2058 }
2059
2060 if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
2061 if( pPager->state>=SQLITE_WRITELOCK ){
2062 pager_playback(pPager, 1);
2063 }
2064 return pager_errcode(pPager);
2065 }
2066 if( pPager->state!=SQLITE_WRITELOCK ){
2067 return SQLITE_OK;
2068 }
2069 rc = pager_playback(pPager, 1);
2070 if( rc!=SQLITE_OK ){
2071 rc = SQLITE_CORRUPT;
2072 pPager->errMask |= PAGER_ERR_CORRUPT;
2073 }
2074 pPager->dbSize = -1;
2075 return rc;
2076 }
2077
2078 /*
2079 ** Return TRUE if the database file is opened read-only. Return FALSE
2080 ** if the database is (in theory) writable.
2081 */
sqlitepager_isreadonly(Pager * pPager)2082 int sqlitepager_isreadonly(Pager *pPager){
2083 return pPager->readOnly;
2084 }
2085
2086 /*
2087 ** This routine is used for testing and analysis only.
2088 */
sqlitepager_stats(Pager * pPager)2089 int *sqlitepager_stats(Pager *pPager){
2090 static int a[9];
2091 a[0] = pPager->nRef;
2092 a[1] = pPager->nPage;
2093 a[2] = pPager->mxPage;
2094 a[3] = pPager->dbSize;
2095 a[4] = pPager->state;
2096 a[5] = pPager->errMask;
2097 a[6] = pPager->nHit;
2098 a[7] = pPager->nMiss;
2099 a[8] = pPager->nOvfl;
2100 return a;
2101 }
2102
2103 /*
2104 ** Set the checkpoint.
2105 **
2106 ** This routine should be called with the transaction journal already
2107 ** open. A new checkpoint journal is created that can be used to rollback
2108 ** changes of a single SQL command within a larger transaction.
2109 */
sqlitepager_ckpt_begin(Pager * pPager)2110 int sqlitepager_ckpt_begin(Pager *pPager){
2111 int rc;
2112 char zTemp[SQLITE_TEMPNAME_SIZE];
2113 if( !pPager->journalOpen ){
2114 pPager->ckptAutoopen = 1;
2115 return SQLITE_OK;
2116 }
2117 assert( pPager->journalOpen );
2118 assert( !pPager->ckptInUse );
2119 pPager->aInCkpt = sqliteMalloc( pPager->dbSize/8 + 1 );
2120 if( pPager->aInCkpt==0 ){
2121 sqliteOsReadLock(&pPager->fd);
2122 return SQLITE_NOMEM;
2123 }
2124 #ifndef NDEBUG
2125 rc = sqliteOsFileSize(&pPager->jfd, &pPager->ckptJSize);
2126 if( rc ) goto ckpt_begin_failed;
2127 assert( pPager->ckptJSize ==
2128 pPager->nRec*JOURNAL_PG_SZ(journal_format)+JOURNAL_HDR_SZ(journal_format) );
2129 #endif
2130 pPager->ckptJSize = pPager->nRec*JOURNAL_PG_SZ(journal_format)
2131 + JOURNAL_HDR_SZ(journal_format);
2132 pPager->ckptSize = pPager->dbSize;
2133 if( !pPager->ckptOpen ){
2134 rc = sqlitepager_opentemp(zTemp, &pPager->cpfd);
2135 if( rc ) goto ckpt_begin_failed;
2136 pPager->ckptOpen = 1;
2137 pPager->ckptNRec = 0;
2138 }
2139 pPager->ckptInUse = 1;
2140 return SQLITE_OK;
2141
2142 ckpt_begin_failed:
2143 if( pPager->aInCkpt ){
2144 sqliteFree(pPager->aInCkpt);
2145 pPager->aInCkpt = 0;
2146 }
2147 return rc;
2148 }
2149
2150 /*
2151 ** Commit a checkpoint.
2152 */
sqlitepager_ckpt_commit(Pager * pPager)2153 int sqlitepager_ckpt_commit(Pager *pPager){
2154 if( pPager->ckptInUse ){
2155 PgHdr *pPg, *pNext;
2156 sqliteOsSeek(&pPager->cpfd, 0);
2157 /* sqliteOsTruncate(&pPager->cpfd, 0); */
2158 pPager->ckptNRec = 0;
2159 pPager->ckptInUse = 0;
2160 sqliteFree( pPager->aInCkpt );
2161 pPager->aInCkpt = 0;
2162 for(pPg=pPager->pCkpt; pPg; pPg=pNext){
2163 pNext = pPg->pNextCkpt;
2164 assert( pPg->inCkpt );
2165 pPg->inCkpt = 0;
2166 pPg->pPrevCkpt = pPg->pNextCkpt = 0;
2167 }
2168 pPager->pCkpt = 0;
2169 }
2170 pPager->ckptAutoopen = 0;
2171 return SQLITE_OK;
2172 }
2173
2174 /*
2175 ** Rollback a checkpoint.
2176 */
sqlitepager_ckpt_rollback(Pager * pPager)2177 int sqlitepager_ckpt_rollback(Pager *pPager){
2178 int rc;
2179 if( pPager->ckptInUse ){
2180 rc = pager_ckpt_playback(pPager);
2181 sqlitepager_ckpt_commit(pPager);
2182 }else{
2183 rc = SQLITE_OK;
2184 }
2185 pPager->ckptAutoopen = 0;
2186 return rc;
2187 }
2188
2189 /*
2190 ** Return the full pathname of the database file.
2191 */
sqlitepager_filename(Pager * pPager)2192 const char *sqlitepager_filename(Pager *pPager){
2193 return pPager->zFilename;
2194 }
2195
2196 /*
2197 ** Set the codec for this pager
2198 */
sqlitepager_set_codec(Pager * pPager,void (* xCodec)(void *,void *,Pgno,int),void * pCodecArg)2199 void sqlitepager_set_codec(
2200 Pager *pPager,
2201 void (*xCodec)(void*,void*,Pgno,int),
2202 void *pCodecArg
2203 ){
2204 pPager->xCodec = xCodec;
2205 pPager->pCodecArg = pCodecArg;
2206 }
2207
2208 #ifdef SQLITE_TEST
2209 /*
2210 ** Print a listing of all referenced pages and their ref count.
2211 */
sqlitepager_refdump(Pager * pPager)2212 void sqlitepager_refdump(Pager *pPager){
2213 PgHdr *pPg;
2214 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2215 if( pPg->nRef<=0 ) continue;
2216 printf("PAGE %3d addr=0x%08x nRef=%d\n",
2217 pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
2218 }
2219 }
2220 #endif
2221