Searched refs:square (Results 1 – 10 of 10) sorted by relevance
/openssl/test/ |
H A D | bntests.pl | 56 my $square = bn($s{'Square'}); 58 return if $square == $a->bmul($a);
|
H A D | bntest.c | 1433 BIGNUM *a = NULL, *square = NULL, *zero = NULL, *ret = NULL; in file_square() local 1438 || !TEST_ptr(square = getBN(s, "Square")) in file_square() 1446 || !equalBN("A^2", square, ret) in file_square() 1448 || !equalBN("A * A", square, ret) in file_square() 1449 || !TEST_true(BN_div(ret, remainder, square, a, ctx)) in file_square() 1456 if (!TEST_true(BN_sqrt(ret, square, ctx)) in file_square() 1461 if (!TEST_BN_eq_zero(square)) { in file_square() 1463 || !TEST_true(BN_copy(tmp, square))) in file_square() 1483 BN_free(square); in file_square()
|
/openssl/crypto/bn/ |
H A D | bn_prime.c | 30 #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) macro 519 && square(primes[i]) > BN_get_word(rnd) + delta) in probable_prime() 598 && square(primes[i]) > BN_get_word(rnd) + delta) in probable_prime_dh()
|
/openssl/doc/man3/ |
H A D | BN_add.pod | 60 BN_sqr() takes the square of I<a> and places the result in I<r> 89 BN_mod_sqr() takes the square of I<a> modulo B<m> and places the 92 BN_mod_sqrt() returns the modular square root of I<a> such that
|
H A D | OSSL_HTTP_parse_url.pod | 56 where IPv6 addresses must be enclosed in square brackets C<[> and C<]>.
|
/openssl/doc/man5/ |
H A D | config.pod | 89 begins with the section name in square brackets, and ends when a new 103 detail below. As a reminder, the square brackets shown in this example
|
/openssl/crypto/err/ |
H A D | openssl.txt | 190 BN_R_NOT_A_SQUARE:111:not a square 426 CONF_R_MISSING_CLOSE_SQUARE_BRACKET:100:missing close square bracket
|
/openssl/Configurations/ |
H A D | README.md | 465 The expression in square brackets is interpreted as a string in perl,
|
/openssl/ |
H A D | INSTALL.md | 106 One or several words in square brackets separated by pipe characters 127 **Optional Arguments** are enclosed in square brackets.
|
H A D | CHANGES.md | 12791 is really the square of the return value. (Previously, 15426 * New function BN_mod_sqrt for computing square roots modulo a prime
|
Completed in 99 milliseconds