xref: /php-src/ext/pcre/pcre2lib/sljit/sljitLir.h (revision ae5beff6)
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
29 
30 /*
31    ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33    ------------------------------------------------------------------------
34 
35    Short description
36     Advantages:
37       - The execution can be continued from any LIR instruction. In other
38         words, it is possible to jump to any label from anywhere, even from
39         a code fragment, which is compiled later, as long as the compiling
40         context is the same. See sljit_emit_enter for more details.
41       - Supports self modifying code: target of any jump and call
42         instructions and some constant values can be dynamically modified
43         during runtime. See SLJIT_REWRITABLE_JUMP.
44         - although it is not suggested to do it frequently
45         - can be used for inline caching: save an important value once
46           in the instruction stream
47       - A fixed stack space can be allocated for local variables
48       - The compiler is thread-safe
49       - The compiler is highly configurable through preprocessor macros.
50         You can disable unneeded features (multithreading in single
51         threaded applications), and you can use your own system functions
52         (including memory allocators). See sljitConfig.h.
53     Disadvantages:
54       - The compiler is more like a platform independent assembler, so
55         there is no built-in variable management. Registers and stack must
56         be managed manually (the name of the compiler refers to this).
57     In practice:
58       - This approach is very effective for interpreters
59         - One of the saved registers typically points to a stack interface
60         - It can jump to any exception handler anytime (even if it belongs
61           to another function)
62         - Hot paths can be modified during runtime reflecting the changes
63           of the fastest execution path of the dynamic language
64         - SLJIT supports complex memory addressing modes
65         - mainly position and context independent code (except some cases)
66 
67     For valgrind users:
68       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
69 */
70 
71 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
72 #include "sljitConfigPre.h"
73 #endif /* SLJIT_HAVE_CONFIG_PRE */
74 
75 #include "sljitConfigCPU.h"
76 #include "sljitConfig.h"
77 
78 /* The following header file defines useful macros for fine tuning
79 SLJIT based code generators. They are listed in the beginning
80 of sljitConfigInternal.h */
81 
82 #include "sljitConfigInternal.h"
83 
84 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
85 #include "sljitConfigPost.h"
86 #endif /* SLJIT_HAVE_CONFIG_POST */
87 
88 #ifdef __cplusplus
89 extern "C" {
90 #endif
91 
92 /* Version numbers. */
93 #define SLJIT_MAJOR_VERSION	0
94 #define SLJIT_MINOR_VERSION	95
95 
96 /* --------------------------------------------------------------------- */
97 /*  Error codes                                                          */
98 /* --------------------------------------------------------------------- */
99 
100 /* Indicates no error. */
101 #define SLJIT_SUCCESS			0
102 /* After the call of sljit_generate_code(), the error code of the compiler
103    is set to this value to avoid further code generation.
104    The complier should be freed after sljit_generate_code(). */
105 #define SLJIT_ERR_COMPILED		1
106 /* Cannot allocate non-executable memory. */
107 #define SLJIT_ERR_ALLOC_FAILED		2
108 /* Cannot allocate executable memory.
109    Only sljit_generate_code() returns with this error code. */
110 #define SLJIT_ERR_EX_ALLOC_FAILED	3
111 /* Unsupported instruction form. */
112 #define SLJIT_ERR_UNSUPPORTED		4
113 /* An invalid argument is passed to any SLJIT function. */
114 #define SLJIT_ERR_BAD_ARGUMENT		5
115 
116 /* --------------------------------------------------------------------- */
117 /*  Registers                                                            */
118 /* --------------------------------------------------------------------- */
119 
120 /*
121   Scratch (R) registers: registers which may not preserve their values
122   across function calls.
123 
124   Saved (S) registers: registers which preserve their values across
125   function calls.
126 
127   The scratch and saved register sets overlap. The last scratch register
128   is the first saved register, the one before the last is the second saved
129   register, and so on.
130 
131   For example, in an architecture with only five registers (A-E), if two
132   are scratch and three saved registers, they will be defined as follows:
133 
134     A |   R0   |      |  R0 always represent scratch register A
135     B |   R1   |      |  R1 always represent scratch register B
136     C |  [R2]  |  S2  |  R2 and S2 represent the same physical register C
137     D |  [R3]  |  S1  |  R3 and S1 represent the same physical register D
138     E |  [R4]  |  S0  |  R4 and S0 represent the same physical register E
139 
140   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS will be 2 and
141         SLJIT_NUMBER_OF_SAVED_REGISTERS will be 3.
142 
143   Note: For all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
144         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
145         are virtual on x86-32. See below.
146 
147   The purpose of this definition is convenience: saved registers can
148   be used as extra scratch registers. For example, building in the
149   previous example, four registers can be specified as scratch registers
150   and the fifth one as saved register, allowing any user code which requires
151   four scratch registers to run unmodified. The SLJIT compiler automatically
152   saves the content of the two extra scratch register on the stack. Scratch
153   registers can also be preserved by saving their value on the stack but
154   that needs to be done manually.
155 
156   Note: To emphasize that registers assigned to R2-R4 are saved
157         registers, they are enclosed by square brackets.
158 
159   Note: sljit_emit_enter and sljit_set_context define whether a register
160         is S or R register. E.g: if in the previous example 3 scratches and
161         1 saved are mapped by sljit_emit_enter, the allowed register set
162         will be: R0-R2 and S0. Although S2 is mapped to the same register
163         than R2, it is not available in that configuration. Furthermore
164         the S1 register cannot be used at all.
165 */
166 
167 /* Scratch registers. */
168 #define SLJIT_R0	1
169 #define SLJIT_R1	2
170 #define SLJIT_R2	3
171 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
172    are allocated on the stack). These registers are called virtual
173    and cannot be used for memory addressing (cannot be part of
174    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
175    limitation on other CPUs. See sljit_get_register_index(). */
176 #define SLJIT_R3	4
177 #define SLJIT_R4	5
178 #define SLJIT_R5	6
179 #define SLJIT_R6	7
180 #define SLJIT_R7	8
181 #define SLJIT_R8	9
182 #define SLJIT_R9	10
183 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
184    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
185 #define SLJIT_R(i)	(1 + (i))
186 
187 /* Saved registers. */
188 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
189 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
190 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
191 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
192    are allocated on the stack). These registers are called virtual
193    and cannot be used for memory addressing (cannot be part of
194    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
195    limitation on other CPUs. See sljit_get_register_index(). */
196 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
197 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
198 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
199 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
200 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
201 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
202 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
203 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
204    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
205 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
206 
207 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
208 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
209 
210 /* The SLJIT_SP provides direct access to the linear stack space allocated by
211    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
212    The immediate offset is extended by the relative stack offset automatically.
213    sljit_get_local_base can be used to obtain the real address of a value. */
214 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
215 
216 /* Return with machine word. */
217 
218 #define SLJIT_RETURN_REG	SLJIT_R0
219 
220 /* --------------------------------------------------------------------- */
221 /*  Floating point registers                                             */
222 /* --------------------------------------------------------------------- */
223 
224 /* Each floating point register can store a 32 or a 64 bit precision
225    value. The FR and FS register sets overlap in the same way as R
226    and S register sets. See above. */
227 
228 /* Floating point scratch registers. */
229 #define SLJIT_FR0	1
230 #define SLJIT_FR1	2
231 #define SLJIT_FR2	3
232 #define SLJIT_FR3	4
233 #define SLJIT_FR4	5
234 #define SLJIT_FR5	6
235 #define SLJIT_FR6	7
236 #define SLJIT_FR7	8
237 #define SLJIT_FR8	9
238 #define SLJIT_FR9	10
239 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
240    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
241 #define SLJIT_FR(i)	(1 + (i))
242 
243 /* Floating point saved registers. */
244 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
245 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
246 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
247 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
248 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
249 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
250 #define SLJIT_FS6	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 6)
251 #define SLJIT_FS7	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 7)
252 #define SLJIT_FS8	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 8)
253 #define SLJIT_FS9	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 9)
254 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257 
258 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260 
261 /* Return with floating point arg. */
262 
263 #define SLJIT_RETURN_FREG	SLJIT_FR0
264 
265 /* --------------------------------------------------------------------- */
266 /*  Argument type definitions                                            */
267 /* --------------------------------------------------------------------- */
268 
269 /* The following argument type definitions are used by sljit_emit_enter,
270    sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
271 
272    For sljit_emit_call and sljit_emit_icall, the first integer argument
273    must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
274    Similarly the first floating point argument must be placed into SLJIT_FR0,
275    the second one into SLJIT_FR1, and so on.
276 
277    For sljit_emit_enter, the integer arguments can be stored in scratch
278    or saved registers. Scratch registers are identified by a _R suffix.
279 
280    If only saved registers are used, then the allocation mirrors what is
281    done for the "call" functions but using saved registers, meaning that
282    the first integer argument goes to SLJIT_S0, the second one goes into
283    SLJIT_S1, and so on.
284 
285    If scratch registers are used, then the way the integer registers are
286    allocated changes so that SLJIT_S0, SLJIT_S1, etc; will be assigned
287    only for the arguments not using scratch registers, while SLJIT_R<n>
288    will be used for the ones using scratch registers.
289 
290    Furthermore, the index (shown as "n" above) that will be used for the
291    scratch register depends on how many previous integer registers
292    (scratch or saved) were used already, starting with SLJIT_R0.
293    Eventhough some indexes will be likely skipped, they still need to be
294    accounted for in the scratches parameter of sljit_emit_enter. See below
295    for some examples.
296 
297    The floating point arguments always use scratch registers (but not the
298    _R suffix like the integer arguments) and must use SLJIT_FR0, SLJIT_FR1,
299    just like in the "call" functions.
300 
301    Note: the mapping for scratch registers is part of the compiler context
302          and therefore a new context after sljit_emit_call/sljit_emit_icall
303          could remove access to some scratch registers that were used as
304          arguments.
305 
306    Example function definition:
307      sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
308          sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
309 
310    Argument type definition:
311      SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
312         | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
313         | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)
314 
315    Short form of argument type definition:
316      SLJIT_ARGS4(F32, P, F64, 32, F32)
317 
318    Argument passing:
319      arg_a must be placed in SLJIT_R0
320      arg_b must be placed in SLJIT_FR0
321      arg_c must be placed in SLJIT_R1
322      arg_d must be placed in SLJIT_FR1
323 
324    Examples for argument processing by sljit_emit_enter:
325      SLJIT_ARGS4V(P, 32_R, F32, W)
326      Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1
327      The type of the result is void.
328 
329      SLJIT_ARGS4(F32, W, W_R, W, W_R)
330      Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3
331      The type of the result is sljit_f32.
332 
333      SLJIT_ARGS4(P, W, F32, P_R)
334      Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1
335      The type of the result is pointer.
336 
337      Note: it is recommended to pass the scratch arguments first
338      followed by the saved arguments:
339 
340        SLJIT_ARGS4(W, W_R, W_R, W, W)
341        Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
342        The type of the result is sljit_sw / sljit_uw.
343 */
344 
345 /* The following flag is only allowed for the integer arguments of
346    sljit_emit_enter. When the flag is set, the integer argument is
347    stored in a scratch register instead of a saved register. */
348 #define SLJIT_ARG_TYPE_SCRATCH_REG 0x8
349 
350 /* No return value, only supported by SLJIT_ARG_RETURN. */
351 #define SLJIT_ARG_TYPE_RET_VOID		0
352 /* Machine word sized integer argument or result. */
353 #define SLJIT_ARG_TYPE_W		1
354 #define SLJIT_ARG_TYPE_W_R	(SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
355 /* 32 bit integer argument or result. */
356 #define SLJIT_ARG_TYPE_32		2
357 #define SLJIT_ARG_TYPE_32_R	(SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
358 /* Pointer sized integer argument or result. */
359 #define SLJIT_ARG_TYPE_P		3
360 #define SLJIT_ARG_TYPE_P_R	(SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
361 /* 64 bit floating point argument or result. */
362 #define SLJIT_ARG_TYPE_F64		4
363 /* 32 bit floating point argument or result. */
364 #define SLJIT_ARG_TYPE_F32		5
365 
366 #define SLJIT_ARG_SHIFT 4
367 #define SLJIT_ARG_RETURN(type) (type)
368 #define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))
369 
370 /* Simplified argument list definitions.
371 
372    The following definition:
373        SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)
374 
375    can be shortened to:
376        SLJIT_ARGS1(W, F32)
377 
378    Another example where no value is returned:
379        SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_RET_VOID) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_W_R, 1)
380 
381    can be shortened to:
382        SLJIT_ARGS1V(W_R)
383 */
384 
385 #define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type
386 
387 #define SLJIT_ARGS0(ret) \
388 	SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))
389 #define SLJIT_ARGS0V() \
390 	SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_RET_VOID)
391 
392 #define SLJIT_ARGS1(ret, arg1) \
393 	(SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
394 #define SLJIT_ARGS1V(arg1) \
395 	(SLJIT_ARGS0V() | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
396 
397 #define SLJIT_ARGS2(ret, arg1, arg2) \
398 	(SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
399 #define SLJIT_ARGS2V(arg1, arg2) \
400 	(SLJIT_ARGS1V(arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
401 
402 #define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
403 	(SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
404 #define SLJIT_ARGS3V(arg1, arg2, arg3) \
405 	(SLJIT_ARGS2V(arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
406 
407 #define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
408 	(SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
409 #define SLJIT_ARGS4V(arg1, arg2, arg3, arg4) \
410 	(SLJIT_ARGS3V(arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
411 
412 /* --------------------------------------------------------------------- */
413 /*  Main structures and functions                                        */
414 /* --------------------------------------------------------------------- */
415 
416 /*
417 	The following structures are private, and can be changed in the
418 	future. Keeping them here allows code inlining.
419 */
420 
421 struct sljit_memory_fragment {
422 	struct sljit_memory_fragment *next;
423 	sljit_uw used_size;
424 	/* Must be aligned to sljit_sw. */
425 	sljit_u8 memory[1];
426 };
427 
428 struct sljit_label {
429 	struct sljit_label *next;
430 	sljit_uw addr;
431 	/* The maximum size difference. */
432 	sljit_uw size;
433 };
434 
435 struct sljit_jump {
436 	struct sljit_jump *next;
437 	sljit_uw addr;
438 	/* Architecture dependent flags. */
439 	sljit_uw flags;
440 	union {
441 		sljit_uw target;
442 		struct sljit_label *label;
443 	} u;
444 };
445 
446 struct sljit_put_label {
447 	struct sljit_put_label *next;
448 	struct sljit_label *label;
449 	sljit_uw addr;
450 	sljit_uw flags;
451 };
452 
453 struct sljit_const {
454 	struct sljit_const *next;
455 	sljit_uw addr;
456 };
457 
458 struct sljit_compiler {
459 	sljit_s32 error;
460 	sljit_s32 options;
461 
462 	struct sljit_label *labels;
463 	struct sljit_jump *jumps;
464 	struct sljit_put_label *put_labels;
465 	struct sljit_const *consts;
466 	struct sljit_label *last_label;
467 	struct sljit_jump *last_jump;
468 	struct sljit_const *last_const;
469 	struct sljit_put_label *last_put_label;
470 
471 	void *allocator_data;
472 	void *exec_allocator_data;
473 	struct sljit_memory_fragment *buf;
474 	struct sljit_memory_fragment *abuf;
475 
476 	/* Available scratch registers. */
477 	sljit_s32 scratches;
478 	/* Available saved registers. */
479 	sljit_s32 saveds;
480 	/* Available float scratch registers. */
481 	sljit_s32 fscratches;
482 	/* Available float saved registers. */
483 	sljit_s32 fsaveds;
484 	/* Local stack size. */
485 	sljit_s32 local_size;
486 	/* Maximum code size. */
487 	sljit_uw size;
488 	/* Relative offset of the executable mapping from the writable mapping. */
489 	sljit_sw executable_offset;
490 	/* Executable size for statistical purposes. */
491 	sljit_uw executable_size;
492 
493 #if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
494 	sljit_s32 status_flags_state;
495 #endif
496 
497 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
498 	sljit_s32 args_size;
499 #endif
500 
501 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
502 	sljit_s32 mode32;
503 #endif
504 
505 #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6)
506 	/* Constant pool handling. */
507 	sljit_uw *cpool;
508 	sljit_u8 *cpool_unique;
509 	sljit_uw cpool_diff;
510 	sljit_uw cpool_fill;
511 	/* Other members. */
512 	/* Contains pointer, "ldr pc, [...]" pairs. */
513 	sljit_uw patches;
514 #endif
515 
516 #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
517 	/* Temporary fields. */
518 	sljit_uw shift_imm;
519 #endif /* SLJIT_CONFIG_ARM_V6 || SLJIT_CONFIG_ARM_V6 */
520 
521 #if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
522 	sljit_uw args_size;
523 #endif
524 
525 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
526 	sljit_u32 imm;
527 #endif
528 
529 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
530 	sljit_s32 delay_slot;
531 	sljit_s32 cache_arg;
532 	sljit_sw cache_argw;
533 #endif
534 
535 #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
536 	sljit_uw args_size;
537 #endif
538 
539 #if (defined SLJIT_CONFIG_RISCV && SLJIT_CONFIG_RISCV)
540 	sljit_s32 cache_arg;
541 	sljit_sw cache_argw;
542 #endif
543 
544 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
545 	/* Need to allocate register save area to make calls. */
546 	sljit_s32 mode;
547 #endif
548 
549 #if (defined SLJIT_CONFIG_LOONGARCH && SLJIT_CONFIG_LOONGARCH)
550 	sljit_s32 cache_arg;
551 	sljit_sw cache_argw;
552 #endif
553 
554 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
555 	FILE* verbose;
556 #endif
557 
558 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
559 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
560 	/* Flags specified by the last arithmetic instruction.
561 	   It contains the type of the variable flag. */
562 	sljit_s32 last_flags;
563 	/* Return value type set by entry functions. */
564 	sljit_s32 last_return;
565 	/* Local size passed to entry functions. */
566 	sljit_s32 logical_local_size;
567 #endif
568 
569 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
570 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
571 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
572 	/* Trust arguments when an API function is called.
573 	   Used internally for calling API functions. */
574 	sljit_s32 skip_checks;
575 #endif
576 };
577 
578 /* --------------------------------------------------------------------- */
579 /*  Main functions                                                       */
580 /* --------------------------------------------------------------------- */
581 
582 /* Creates an SLJIT compiler. The allocator_data is required by some
583    custom memory managers. This pointer is passed to SLJIT_MALLOC
584    and SLJIT_FREE macros. Most allocators (including the default
585    one) ignores this value, and it is recommended to pass NULL
586    as a dummy value for allocator_data. The exec_allocator_data
587    has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
588    SLJIT_MALLOC_FREE functions.
589 
590    Returns NULL if failed. */
591 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
592 
593 /* Frees everything except the compiled machine code. */
594 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
595 
596 /* Returns the current error code. If an error occurres, future calls
597    which uses the same compiler argument returns early with the same
598    error code. Thus there is no need for checking the error after every
599    call, it is enough to do it after the code is compiled. Removing
600    these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)601 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
602 
603 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
604    if an error was detected before. After the error code is set
605    the compiler behaves as if the allocation failure happened
606    during an SLJIT function call. This can greatly simplify error
607    checking, since it is enough to check the compiler status
608    after the code is compiled. */
609 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
610 
611 /* Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
612    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
613    compiler, and freed by sljit_free_compiler. The returned pointer is
614    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
615    compiling, and no need to worry about freeing them. The size is enough
616    to contain at most 16 pointers. If the size is outside of the range,
617    the function will return with NULL. However, this return value does not
618    indicate that there is no more memory (does not set the current error code
619    of the compiler to out-of-memory status). */
620 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
621 
622 /* Returns the allocator data passed to sljit_create_compiler. These pointers
623    may contain context data even if the normal/exec allocator ignores it. */
sljit_get_allocator_data(struct sljit_compiler * compiler)624 static SLJIT_INLINE void* sljit_get_allocator_data(struct sljit_compiler *compiler) { return compiler->allocator_data; }
sljit_get_exec_allocator_data(struct sljit_compiler * compiler)625 static SLJIT_INLINE void* sljit_get_exec_allocator_data(struct sljit_compiler *compiler) { return compiler->exec_allocator_data; }
626 
627 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
628 /* Passing NULL disables verbose. */
629 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
630 #endif
631 
632 /* Create executable code from the instruction stream. This is the final step
633    of the code generation so no more instructions can be emitted after this call. */
634 
635 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
636 
637 /* Free executable code. */
638 
639 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
640 
641 /* When the protected executable allocator is used the JIT code is mapped
642    twice. The first mapping has read/write and the second mapping has read/exec
643    permissions. This function returns with the relative offset of the executable
644    mapping using the writable mapping as the base after the machine code is
645    successfully generated. The returned value is always 0 for the normal executable
646    allocator, since it uses only one mapping with read/write/exec permissions.
647    Dynamic code modifications requires this value.
648 
649    Before a successful code generation, this function returns with 0. */
sljit_get_executable_offset(struct sljit_compiler * compiler)650 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
651 
652 /* The executable memory consumption of the generated code can be retrieved by
653    this function. The returned value can be used for statistical purposes.
654 
655    Before a successful code generation, this function returns with 0. */
sljit_get_generated_code_size(struct sljit_compiler * compiler)656 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
657 
658 /* Returns with non-zero if the feature or limitation type passed as its
659    argument is present on the current CPU. The return value is one, if a
660    feature is fully supported, and it is two, if partially supported.
661 
662    Some features (e.g. floating point operations) require hardware (CPU)
663    support while others (e.g. move with update) are emulated if not available.
664    However, even when a feature is emulated, specialized code paths may be
665    faster than the emulation. Some limitations are emulated as well so their
666    general case is supported but it has extra performance costs. */
667 
668 /* [Not emulated] Floating-point support is available. */
669 #define SLJIT_HAS_FPU			0
670 /* [Limitation] Some registers are virtual registers. */
671 #define SLJIT_HAS_VIRTUAL_REGISTERS	1
672 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
673 #define SLJIT_HAS_ZERO_REGISTER		2
674 /* [Emulated] Count leading zero is supported. */
675 #define SLJIT_HAS_CLZ			3
676 /* [Emulated] Count trailing zero is supported. */
677 #define SLJIT_HAS_CTZ			4
678 /* [Emulated] Reverse the order of bytes is supported. */
679 #define SLJIT_HAS_REV			5
680 /* [Emulated] Rotate left/right is supported. */
681 #define SLJIT_HAS_ROT			6
682 /* [Emulated] Conditional move is supported. */
683 #define SLJIT_HAS_CMOV			7
684 /* [Emulated] Prefetch instruction is available (emulated as a nop). */
685 #define SLJIT_HAS_PREFETCH		8
686 /* [Emulated] Copy from/to f32 operation is available (see sljit_emit_fcopy). */
687 #define SLJIT_HAS_COPY_F32		9
688 /* [Emulated] Copy from/to f64 operation is available (see sljit_emit_fcopy). */
689 #define SLJIT_HAS_COPY_F64		10
690 /* [Not emulated] The 64 bit floating point registers can be used as
691    two separate 32 bit floating point registers (e.g. ARM32). The
692    second 32 bit part can be accessed by SLJIT_F64_SECOND. */
693 #define SLJIT_HAS_F64_AS_F32_PAIR	11
694 /* [Not emulated] Some SIMD operations are supported by the compiler. */
695 #define SLJIT_HAS_SIMD			12
696 /* [Not emulated] SIMD registers are mapped to a pair of double precision
697    floating point registers. E.g. passing either SLJIT_FR0 or SLJIT_FR1 to
698    a simd operation represents the same 128 bit register, and both SLJIT_FR0
699    and SLJIT_FR1 are overwritten. */
700 #define SLJIT_SIMD_REGS_ARE_PAIRS	13
701 /* [Not emulated] Atomic support is available (fine-grained). */
702 #define SLJIT_HAS_ATOMIC      14
703 
704 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
705 /* [Not emulated] AVX support is available on x86. */
706 #define SLJIT_HAS_AVX			100
707 /* [Not emulated] AVX2 support is available on x86. */
708 #define SLJIT_HAS_AVX2			101
709 #endif
710 
711 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
712 
713 /* If type is between SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL,
714    sljit_cmp_info returns with:
715      zero - if the cpu supports the floating point comparison type
716      one - if the comparison requires two machine instructions
717      two - if the comparison requires more than two machine instructions
718 
719    When the result is non-zero, it is recommended to avoid
720    using the specified comparison type if it is easy to do so.
721 
722    Otherwise it returns zero. */
723 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type);
724 
725 /* The following functions generate machine code. If there is no
726    error, they return with SLJIT_SUCCESS, otherwise they return
727    with an error code. */
728 
729 /*
730    The executable code is a function from the viewpoint of the C
731    language. The function calls must conform to the ABI (Application
732    Binary Interface) of the platform, which specify the purpose of
733    machine registers and stack handling among other things. The
734    sljit_emit_enter function emits the necessary instructions for
735    setting up a new context for the executable code. This is often
736    called as function prologue. Furthermore the options argument
737    can be used to pass configuration options to the compiler. The
738    available options are listed before sljit_emit_enter.
739 
740    The function argument list is specified by the SLJIT_ARGSx
741    (SLJIT_ARGS0 .. SLJIT_ARGS4) macros. Currently maximum four
742    arguments are supported. See the description of SLJIT_ARGSx
743    macros about argument passing. Furthermore the register set
744    used by the function must be declared as well. The number of
745    scratch and saved registers available to the function must
746    be passed to sljit_emit_enter. Only R registers between R0
747    and "scratches" argument can be used later. E.g. if "scratches"
748    is set to two, the scratch register set will be limited to
749    SLJIT_R0 and SLJIT_R1. The S registers and the floating point
750    registers ("fscratches" and "fsaveds") are specified in a
751    similar manner. The sljit_emit_enter is also capable of
752    allocating a stack space for local data. The "local_size"
753    argument contains the size in bytes of this local area, and
754    it can be accessed using SLJIT_MEM1(SLJIT_SP). The memory
755    area between SLJIT_SP (inclusive) and SLJIT_SP + local_size
756    (exclusive) can be modified freely until the function returns.
757    The stack space is not initialized to zero.
758 
759    Note: the following conditions must met:
760          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
761          0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
762          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
763          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
764          0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
765          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
766 
767    Note: the compiler can use saved registers as scratch registers,
768          but the opposite is not supported
769 
770    Note: every call of sljit_emit_enter and sljit_set_context
771          overwrites the previous context.
772 */
773 
774 /* Saved registers between SLJIT_S0 and SLJIT_S(n - 1) (inclusive)
775    are not saved / restored on function enter / return. Instead,
776    these registers can be used to pass / return data (such as
777    global / local context pointers) across function calls. The
778    value of n must be between 1 and 3. This option is only
779    supported by SLJIT_ENTER_REG_ARG calling convention. */
780 #define SLJIT_ENTER_KEEP(n)	(n)
781 
782 /* The compiled function uses an SLJIT specific register argument
783    calling convention. This is a lightweight function call type where
784    both the caller and the called functions must be compiled by
785    SLJIT. The type argument of the call must be SLJIT_CALL_REG_ARG
786    and all arguments must be stored in scratch registers. */
787 #define SLJIT_ENTER_REG_ARG	0x00000004
788 
789 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
790 #define SLJIT_MAX_LOCAL_SIZE	1048576
791 
792 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
793 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
794 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
795 
796 /* The SLJIT compiler has a current context (which contains the local
797    stack space size, number of used registers, etc.) which is initialized
798    by sljit_emit_enter. Several functions (such as sljit_emit_return)
799    requires this context to be able to generate the appropriate code.
800    However, some code fragments (compiled separately) may have no
801    normal entry point so their context is unknown to the compiler.
802 
803    sljit_set_context and sljit_emit_enter have the same arguments,
804    but sljit_set_context does not generate any machine code.
805 
806    Note: every call of sljit_emit_enter and sljit_set_context overwrites
807          the previous context. */
808 
809 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
810 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
811 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
812 
813 /* Return to the caller function. The sljit_emit_return_void function
814    does not return with any value. The sljit_emit_return function returns
815    with a single value loaded from its source operand. The load operation
816    can be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1) and
817    SLJIT_MOV_F32/SLJIT_MOV_F64 (see sljit_emit_fop1) depending on the
818    return value specified by sljit_emit_enter/sljit_set_context. */
819 
820 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);
821 
822 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
823 	sljit_s32 src, sljit_sw srcw);
824 
825 /* Restores the saved registers and free the stack area, then the execution
826    continues from the address specified by the source operand. This
827    operation is similar to sljit_emit_return, but it ignores the return
828    address. The code where the exection continues should use the same context
829    as the caller function (see sljit_set_context). A word (pointer) value
830    can be passed in the SLJIT_RETURN_REG register. This function can be used
831    to jump to exception handlers. */
832 
833 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler,
834 	sljit_s32 src, sljit_sw srcw);
835 
836 /*
837    Source and destination operands for arithmetical instructions
838     imm              - a simple immediate value (cannot be used as a destination)
839     reg              - any of the available registers (immediate argument must be 0)
840     [imm]            - absolute memory address
841     [reg+imm]        - indirect memory address
842     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
843                        useful for accessing arrays (fully supported by both x86 and
844                        ARM architectures, and cheap operation on others)
845 */
846 
847 /*
848    IMPORTANT NOTE: memory accesses MUST be naturally aligned unless
849                    SLJIT_UNALIGNED macro is defined and its value is 1.
850 
851      length | alignment
852    ---------+-----------
853      byte   | 1 byte (any physical_address is accepted)
854      half   | 2 byte (physical_address & 0x1 == 0)
855      int    | 4 byte (physical_address & 0x3 == 0)
856      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
857             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
858     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
859             | on 64 bit machines)
860 
861    Note:   Different architectures have different addressing limitations.
862            A single instruction is enough for the following addressing
863            modes. Other addressing modes are emulated by instruction
864            sequences. This information could help to improve those code
865            generators which focuses only a few architectures.
866 
867    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
868            [reg+(reg<<imm)] is supported
869            [imm], -2^32+1 <= imm <= 2^32-1 is supported
870            Write-back is not supported
871    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
872                 bytes, any halfs or floating point values)
873            [reg+(reg<<imm)] is supported
874            Write-back is supported
875    arm-t2: [reg+imm], -255 <= imm <= 4095
876            [reg+(reg<<imm)] is supported
877            Write back is supported only for [reg+imm], where -255 <= imm <= 255
878    arm64:  [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
879            [reg+(reg<<imm)] is supported
880            Write back is supported only for [reg+imm], where -256 <= imm <= 255
881    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
882                 signed load on 64 bit requires immediates divisible by 4.
883                 [reg+imm] is not supported for signed 8 bit values.
884            [reg+reg] is supported
885            Write-back is supported except for one instruction: 32 bit signed
886                 load with [reg+imm] addressing mode on 64 bit.
887    mips:   [reg+imm], -65536 <= imm <= 65535
888            Write-back is not supported
889    riscv:  [reg+imm], -2048 <= imm <= 2047
890            Write-back is not supported
891    s390x:  [reg+imm], -2^19 <= imm < 2^19
892            [reg+reg] is supported
893            Write-back is not supported
894    loongarch:  [reg+imm], -2048 <= imm <= 2047
895            [reg+reg] is supported
896            Write-back is not supported
897 */
898 
899 /* Macros for specifying operand types. */
900 #define SLJIT_MEM		0x80
901 #define SLJIT_MEM0()		(SLJIT_MEM)
902 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
903 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
904 #define SLJIT_IMM		0x7f
905 #define SLJIT_REG_PAIR(r1, r2)	((r1) | ((r2) << 8))
906 
907 /* Macros for checking operand types (only for valid arguments). */
908 #define SLJIT_IS_REG(arg)	((arg) > 0 && (arg) < SLJIT_IMM)
909 #define SLJIT_IS_MEM(arg)	((arg) & SLJIT_MEM)
910 #define SLJIT_IS_MEM0(arg)	((arg) == SLJIT_MEM)
911 #define SLJIT_IS_MEM1(arg)	((arg) > SLJIT_MEM && (arg) < (SLJIT_MEM << 1))
912 #define SLJIT_IS_MEM2(arg)	(((arg) & SLJIT_MEM) && (arg) >= (SLJIT_MEM << 1))
913 #define SLJIT_IS_IMM(arg)	((arg) == SLJIT_IMM)
914 #define SLJIT_IS_REG_PAIR(arg)	(!((arg) & SLJIT_MEM) && (arg) >= (SLJIT_MEM << 1))
915 
916 /* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
917    32 bit CPUs. When this option is set for an arithmetic operation, only
918    the lower 32 bits of the input registers are used, and the CPU status
919    flags are set according to the 32 bit result. Although the higher 32 bit
920    of the input and the result registers are not defined by SLJIT, it might
921    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
922    requirements all source registers must be the result of those operations
923    where this option was also set. Memory loads read 32 bit values rather
924    than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
925    mixed. The only exception is SLJIT_MOV32 which source register can hold
926    any 32 or 64 bit value, and it is converted to a 32 bit compatible format
927    first. When the source and destination registers are the same, this
928    conversion is free (no instructions are emitted) on most CPUs. A 32 bit
929    value can also be converted to a 64 bit value by SLJIT_MOV_S32
930    (sign extension) or SLJIT_MOV_U32 (zero extension).
931 
932    As for floating-point operations, this option sets 32 bit single
933    precision mode. Similar to the integer operations, all register arguments
934    must be the result of those operations where this option was also set.
935 
936    Note: memory addressing always uses 64 bit values on 64 bit systems so
937          the result of a 32 bit operation must not be used with SLJIT_MEMx
938          macros.
939 
940    This option is part of the instruction name, so there is no need to
941    manually set it. E.g:
942 
943      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
944 #define SLJIT_32		0x100
945 
946 /* Many CPUs (x86, ARM, PPC) have status flag bits which can be set according
947    to the result of an operation. Other CPUs (MIPS) do not have status
948    flag bits, and results must be stored in registers. To cover both
949    architecture types efficiently only two flags are defined by SLJIT:
950 
951     * Zero (equal) flag: it is set if the result is zero
952     * Variable flag: its value is defined by the arithmetic operation
953 
954    SLJIT instructions can set any or both of these flags. The value of
955    these flags is undefined if the instruction does not specify their
956    value. The description of each instruction contains the list of
957    allowed flag types.
958 
959    Note: the logical or operation can be used to set flags.
960 
961    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
962 
963      sljit_op2(..., SLJIT_ADD, ...)
964        Both the zero and variable flags are undefined so they can
965        have any value after the operation is completed.
966 
967      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
968        Sets the zero flag if the result is zero, clears it otherwise.
969        The variable flag is undefined.
970 
971      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
972        Sets the variable flag if an integer overflow occurs, clears
973        it otherwise. The zero flag is undefined.
974 
975      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
976        Sets the zero flag if the result is zero, clears it otherwise.
977        Sets the variable flag if unsigned overflow (carry) occurs,
978        clears it otherwise.
979 
980    Certain instructions (e.g. SLJIT_MOV) does not modify flags, so
981    status flags are unchanged.
982 
983    Example:
984 
985      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
986      sljit_op1(..., SLJIT_MOV, ...)
987        Zero flag is set according to the result of SLJIT_ADD.
988 
989      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
990      sljit_op2(..., SLJIT_ADD, ...)
991        Zero flag has unknown value.
992 
993    These flags can be used for code optimization. E.g. a fast loop can be
994    implemented by decreasing a counter register and set the zero flag
995    using a single instruction. The zero register can be used by a
996    conditional jump to restart the loop. A single comparison can set a
997    zero and less flags to check if a value is less, equal, or greater
998    than another value.
999 
1000    Motivation: although some CPUs can set a large number of flag bits,
1001    usually their values are ignored or only a few of them are used. Emulating
1002    a large number of flags on systems without a flag register is complicated
1003    so SLJIT instructions must specify the flag they want to use and only
1004    that flag is computed. The last arithmetic instruction can be repeated if
1005    multiple flags need to be checked.
1006 */
1007 
1008 /* Set Zero status flag. */
1009 #define SLJIT_SET_Z			0x0200
1010 /* Set the variable status flag if condition is true.
1011    See comparison types (e.g. SLJIT_SET_LESS, SLJIT_SET_F_EQUAL). */
1012 #define SLJIT_SET(condition)			((condition) << 10)
1013 
1014 /* Starting index of opcodes for sljit_emit_op0. */
1015 #define SLJIT_OP0_BASE			0
1016 
1017 /* Flags: - (does not modify flags)
1018    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
1019          It falls back to SLJIT_NOP in those cases. */
1020 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
1021 /* Flags: - (does not modify flags)
1022    Note: may or may not cause an extra cycle wait
1023          it can even decrease the runtime in a few cases. */
1024 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
1025 /* Flags: - (may destroy flags)
1026    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
1027    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
1028 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
1029 /* Flags: - (may destroy flags)
1030    Signed multiplication of SLJIT_R0 and SLJIT_R1.
1031    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
1032 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
1033 /* Flags: - (may destroy flags)
1034    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1035    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
1036    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
1037 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
1038 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_32)
1039 /* Flags: - (may destroy flags)
1040    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1041    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
1042    Note: if SLJIT_R1 is 0, the behaviour is undefined.
1043    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
1044          the behaviour is undefined. */
1045 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
1046 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_32)
1047 /* Flags: - (may destroy flags)
1048    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1049    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
1050    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
1051 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
1052 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_32)
1053 /* Flags: - (may destroy flags)
1054    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1055    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
1056    Note: if SLJIT_R1 is 0, the behaviour is undefined.
1057    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
1058          the behaviour is undefined. */
1059 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
1060 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_32)
1061 /* Flags: - (does not modify flags)
1062    ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
1063    when Intel Control-flow Enforcement Technology (CET) is enabled.
1064    No instructions are emitted for other architectures. */
1065 #define SLJIT_ENDBR			(SLJIT_OP0_BASE + 8)
1066 /* Flags: - (may destroy flags)
1067    Skip stack frames before return when Intel Control-flow
1068    Enforcement Technology (CET) is enabled. No instructions
1069    are emitted for other architectures. */
1070 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN	(SLJIT_OP0_BASE + 9)
1071 
1072 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
1073 
1074 /* Starting index of opcodes for sljit_emit_op1. */
1075 #define SLJIT_OP1_BASE			32
1076 
1077 /* The MOV instruction transfers data from source to destination.
1078 
1079    MOV instruction suffixes:
1080 
1081    U8  - unsigned 8 bit data transfer
1082    S8  - signed 8 bit data transfer
1083    U16 - unsigned 16 bit data transfer
1084    S16 - signed 16 bit data transfer
1085    U32 - unsigned int (32 bit) data transfer
1086    S32 - signed int (32 bit) data transfer
1087    P   - pointer (sljit_p) data transfer
1088 */
1089 
1090 /* Flags: - (does not modify flags) */
1091 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
1092 /* Flags: - (does not modify flags) */
1093 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
1094 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_32)
1095 /* Flags: - (does not modify flags) */
1096 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
1097 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_32)
1098 /* Flags: - (does not modify flags) */
1099 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
1100 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_32)
1101 /* Flags: - (does not modify flags) */
1102 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
1103 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_32)
1104 /* Flags: - (does not modify flags)
1105    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
1106 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
1107 /* Flags: - (does not modify flags)
1108    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
1109 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
1110 /* Flags: - (does not modify flags) */
1111 #define SLJIT_MOV32			(SLJIT_OP1_BASE + 7)
1112 /* Flags: - (does not modify flags)
1113    Note: loads a pointer sized data, useful on x32 mode (a 64 bit mode
1114          on x86-64 which uses 32 bit pointers) or similar compiling modes */
1115 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 8)
1116 /* Count leading zeroes
1117    Flags: - (may destroy flags)
1118    Note: immediate source argument is not supported */
1119 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 9)
1120 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_32)
1121 /* Count trailing zeroes
1122    Flags: - (may destroy flags)
1123    Note: immediate source argument is not supported */
1124 #define SLJIT_CTZ			(SLJIT_OP1_BASE + 10)
1125 #define SLJIT_CTZ32			(SLJIT_CTZ | SLJIT_32)
1126 /* Reverse the order of bytes
1127    Flags: - (may destroy flags)
1128    Note: converts between little and big endian formats
1129    Note: immediate source argument is not supported */
1130 #define SLJIT_REV			(SLJIT_OP1_BASE + 11)
1131 #define SLJIT_REV32			(SLJIT_REV | SLJIT_32)
1132 /* Reverse the order of bytes in the lower 16 bit and extend as unsigned
1133    Flags: - (may destroy flags)
1134    Note: converts between little and big endian formats
1135    Note: immediate source argument is not supported */
1136 #define SLJIT_REV_U16			(SLJIT_OP1_BASE + 12)
1137 #define SLJIT_REV32_U16			(SLJIT_REV_U16 | SLJIT_32)
1138 /* Reverse the order of bytes in the lower 16 bit and extend as signed
1139    Flags: - (may destroy flags)
1140    Note: converts between little and big endian formats
1141    Note: immediate source argument is not supported */
1142 #define SLJIT_REV_S16			(SLJIT_OP1_BASE + 13)
1143 #define SLJIT_REV32_S16			(SLJIT_REV_S16 | SLJIT_32)
1144 /* Reverse the order of bytes in the lower 32 bit and extend as unsigned
1145    Flags: - (may destroy flags)
1146    Note: converts between little and big endian formats
1147    Note: immediate source argument is not supported */
1148 #define SLJIT_REV_U32			(SLJIT_OP1_BASE + 14)
1149 /* Reverse the order of bytes in the lower 32 bit and extend as signed
1150    Flags: - (may destroy flags)
1151    Note: converts between little and big endian formats
1152    Note: immediate source argument is not supported */
1153 #define SLJIT_REV_S32			(SLJIT_OP1_BASE + 15)
1154 
1155 /* The following unary operations are supported by using sljit_emit_op2:
1156      - binary not: SLJIT_XOR with immedate -1 as src1 or src2
1157      - negate: SLJIT_SUB with immedate 0 as src1
1158    Note: these operations are optimized by the compiler if the
1159      target CPU has specialized instruction forms for them. */
1160 
1161 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
1162 	sljit_s32 dst, sljit_sw dstw,
1163 	sljit_s32 src, sljit_sw srcw);
1164 
1165 /* Starting index of opcodes for sljit_emit_op2. */
1166 #define SLJIT_OP2_BASE			64
1167 
1168 /* Flags: Z | OVERFLOW | CARRY */
1169 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
1170 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_32)
1171 /* Flags: CARRY */
1172 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
1173 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_32)
1174 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
1175           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
1176           SIG_LESS_EQUAL | OVERFLOW | CARRY */
1177 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
1178 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_32)
1179 /* Flags: CARRY */
1180 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
1181 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_32)
1182 /* Note: integer mul
1183    Flags: OVERFLOW */
1184 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
1185 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_32)
1186 /* Flags: Z */
1187 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
1188 #define SLJIT_AND32			(SLJIT_AND | SLJIT_32)
1189 /* Flags: Z */
1190 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
1191 #define SLJIT_OR32			(SLJIT_OR | SLJIT_32)
1192 /* Flags: Z */
1193 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
1194 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_32)
1195 /* Flags: Z
1196    Let bit_length be the length of the shift operation: 32 or 64.
1197    If src2 is immediate, src2w is masked by (bit_length - 1).
1198    Otherwise, if the content of src2 is outside the range from 0
1199    to bit_length - 1, the result is undefined. */
1200 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
1201 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_32)
1202 /* Flags: Z
1203    Same as SLJIT_SHL, except the the second operand is
1204    always masked by the length of the shift operation. */
1205 #define SLJIT_MSHL			(SLJIT_OP2_BASE + 9)
1206 #define SLJIT_MSHL32			(SLJIT_MSHL | SLJIT_32)
1207 /* Flags: Z
1208    Let bit_length be the length of the shift operation: 32 or 64.
1209    If src2 is immediate, src2w is masked by (bit_length - 1).
1210    Otherwise, if the content of src2 is outside the range from 0
1211    to bit_length - 1, the result is undefined. */
1212 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 10)
1213 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_32)
1214 /* Flags: Z
1215    Same as SLJIT_LSHR, except the the second operand is
1216    always masked by the length of the shift operation. */
1217 #define SLJIT_MLSHR			(SLJIT_OP2_BASE + 11)
1218 #define SLJIT_MLSHR32			(SLJIT_MLSHR | SLJIT_32)
1219 /* Flags: Z
1220    Let bit_length be the length of the shift operation: 32 or 64.
1221    If src2 is immediate, src2w is masked by (bit_length - 1).
1222    Otherwise, if the content of src2 is outside the range from 0
1223    to bit_length - 1, the result is undefined. */
1224 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 12)
1225 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_32)
1226 /* Flags: Z
1227    Same as SLJIT_ASHR, except the the second operand is
1228    always masked by the length of the shift operation. */
1229 #define SLJIT_MASHR			(SLJIT_OP2_BASE + 13)
1230 #define SLJIT_MASHR32			(SLJIT_MASHR | SLJIT_32)
1231 /* Flags: - (may destroy flags)
1232    Let bit_length be the length of the rotate operation: 32 or 64.
1233    The second operand is always masked by (bit_length - 1). */
1234 #define SLJIT_ROTL			(SLJIT_OP2_BASE + 14)
1235 #define SLJIT_ROTL32			(SLJIT_ROTL | SLJIT_32)
1236 /* Flags: - (may destroy flags)
1237    Let bit_length be the length of the rotate operation: 32 or 64.
1238    The second operand is always masked by (bit_length - 1). */
1239 #define SLJIT_ROTR			(SLJIT_OP2_BASE + 15)
1240 #define SLJIT_ROTR32			(SLJIT_ROTR | SLJIT_32)
1241 
1242 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1243 	sljit_s32 dst, sljit_sw dstw,
1244 	sljit_s32 src1, sljit_sw src1w,
1245 	sljit_s32 src2, sljit_sw src2w);
1246 
1247 /* The sljit_emit_op2u function is the same as sljit_emit_op2
1248    except the result is discarded. */
1249 
1250 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
1251 	sljit_s32 src1, sljit_sw src1w,
1252 	sljit_s32 src2, sljit_sw src2w);
1253 
1254 /* Emit a left or right shift operation, where the bits shifted
1255    in comes from a separate source operand. All operands are
1256    interpreted as unsigned integers.
1257 
1258    In the followings the value_mask variable is 31 for 32 bit
1259      operations and word_size - 1 otherwise.
1260 
1261    op must be one of the following operations:
1262      SLJIT_SHL or SLJIT_SHL32:
1263        dst_reg = src1_reg << src3_reg
1264        dst_reg |= ((src2_reg >> 1) >> (src3 ^ value_mask))
1265      SLJIT_MSHL or SLJIT_MSHL32:
1266        src3 &= value_mask
1267        perform the SLJIT_SHL or SLJIT_SHL32 operation
1268      SLJIT_LSHR or SLJIT_LSHR32:
1269        dst_reg = src1_reg >> src3_reg
1270        dst_reg |= ((src2_reg << 1) << (src3 ^ value_mask))
1271      SLJIT_MLSHR or SLJIT_MLSHR32:
1272        src3 &= value_mask
1273        perform the SLJIT_LSHR or SLJIT_LSHR32 operation
1274 
1275    op can be combined (or'ed) with SLJIT_SHIFT_INTO_NON_ZERO
1276 
1277    dst_reg specifies the destination register, where dst_reg
1278      and src2_reg cannot be the same registers
1279    src1_reg specifies the source register
1280    src2_reg specifies the register which is shifted into src1_reg
1281    src3 / src3w contains the shift amount
1282 
1283    Note: a rotate operation is performed if src1_reg and
1284          src2_reg are the same registers
1285 
1286    Flags: - (may destroy flags) */
1287 
1288 /* The src3 operand contains a non-zero value. Improves
1289    the generated code on certain architectures, which
1290    provides a small performance improvement. */
1291 #define SLJIT_SHIFT_INTO_NON_ZERO	0x200
1292 
1293 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
1294 	sljit_s32 dst_reg,
1295 	sljit_s32 src1_reg,
1296 	sljit_s32 src2_reg,
1297 	sljit_s32 src3, sljit_sw src3w);
1298 
1299 /* Starting index of opcodes for sljit_emit_op_src
1300    and sljit_emit_op_dst. */
1301 #define SLJIT_OP_SRC_DST_BASE		96
1302 
1303 /* Fast return, see SLJIT_FAST_CALL for more details.
1304    Note: src cannot be an immedate value
1305    Flags: - (does not modify flags) */
1306 #define SLJIT_FAST_RETURN		(SLJIT_OP_SRC_DST_BASE + 0)
1307 /* Skip stack frames before fast return.
1308    Note: src cannot be an immedate value
1309    Flags: may destroy flags. */
1310 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN	(SLJIT_OP_SRC_DST_BASE + 1)
1311 /* Prefetch value into the level 1 data cache
1312    Note: if the target CPU does not support data prefetch,
1313          no instructions are emitted.
1314    Note: this instruction never fails, even if the memory address is invalid.
1315    Flags: - (does not modify flags) */
1316 #define SLJIT_PREFETCH_L1		(SLJIT_OP_SRC_DST_BASE + 2)
1317 /* Prefetch value into the level 2 data cache
1318    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1319          does not support this instruction form.
1320    Note: this instruction never fails, even if the memory address is invalid.
1321    Flags: - (does not modify flags) */
1322 #define SLJIT_PREFETCH_L2		(SLJIT_OP_SRC_DST_BASE + 3)
1323 /* Prefetch value into the level 3 data cache
1324    Note: same as SLJIT_PREFETCH_L2 if the target CPU
1325          does not support this instruction form.
1326    Note: this instruction never fails, even if the memory address is invalid.
1327    Flags: - (does not modify flags) */
1328 #define SLJIT_PREFETCH_L3		(SLJIT_OP_SRC_DST_BASE + 4)
1329 /* Prefetch a value which is only used once (and can be discarded afterwards)
1330    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1331          does not support this instruction form.
1332    Note: this instruction never fails, even if the memory address is invalid.
1333    Flags: - (does not modify flags) */
1334 #define SLJIT_PREFETCH_ONCE		(SLJIT_OP_SRC_DST_BASE + 5)
1335 
1336 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1337 	sljit_s32 src, sljit_sw srcw);
1338 
1339 /* Fast enter, see SLJIT_FAST_CALL for more details.
1340    Flags: - (does not modify flags) */
1341 #define SLJIT_FAST_ENTER		(SLJIT_OP_SRC_DST_BASE + 6)
1342 
1343 /* Copies the return address into dst. The return address is the
1344    address where the execution continues after the called function
1345    returns (see: sljit_emit_return / sljit_emit_return_void).
1346    Flags: - (does not modify flags) */
1347 #define SLJIT_GET_RETURN_ADDRESS	(SLJIT_OP_SRC_DST_BASE + 7)
1348 
1349 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_dst(struct sljit_compiler *compiler, sljit_s32 op,
1350 	sljit_s32 dst, sljit_sw dstw);
1351 
1352 /* Starting index of opcodes for sljit_emit_fop1. */
1353 #define SLJIT_FOP1_BASE			128
1354 
1355 /* Flags: - (does not modify flags) */
1356 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
1357 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_32)
1358 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1359    SRC/DST TYPE can be: F64, F32, S32, SW
1360    Rounding mode when the destination is SW or S32: round towards zero. */
1361 /* Flags: - (may destroy flags) */
1362 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
1363 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
1364 /* Flags: - (may destroy flags) */
1365 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
1366 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
1367 /* Flags: - (may destroy flags) */
1368 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
1369 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
1370 /* Flags: - (may destroy flags) */
1371 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
1372 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_32)
1373 /* Flags: - (may destroy flags) */
1374 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
1375 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
1376 /* Flags: - (may destroy flags) */
1377 #define SLJIT_CONV_F64_FROM_UW		(SLJIT_FOP1_BASE + 6)
1378 #define SLJIT_CONV_F32_FROM_UW		(SLJIT_CONV_F64_FROM_UW | SLJIT_32)
1379 /* Flags: - (may destroy flags) */
1380 #define SLJIT_CONV_F64_FROM_U32		(SLJIT_FOP1_BASE + 7)
1381 #define SLJIT_CONV_F32_FROM_U32		(SLJIT_CONV_F64_FROM_U32 | SLJIT_32)
1382 /* Note: dst is the left and src is the right operand for SLJIT_CMP_F32/64.
1383    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1384 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 8)
1385 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_32)
1386 /* Flags: - (may destroy flags) */
1387 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 9)
1388 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_32)
1389 /* Flags: - (may destroy flags) */
1390 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 10)
1391 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_32)
1392 
1393 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1394 	sljit_s32 dst, sljit_sw dstw,
1395 	sljit_s32 src, sljit_sw srcw);
1396 
1397 /* Starting index of opcodes for sljit_emit_fop2. */
1398 #define SLJIT_FOP2_BASE			160
1399 
1400 /* Flags: - (may destroy flags) */
1401 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
1402 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_32)
1403 /* Flags: - (may destroy flags) */
1404 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
1405 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_32)
1406 /* Flags: - (may destroy flags) */
1407 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
1408 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_32)
1409 /* Flags: - (may destroy flags) */
1410 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
1411 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_32)
1412 
1413 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1414 	sljit_s32 dst, sljit_sw dstw,
1415 	sljit_s32 src1, sljit_sw src1w,
1416 	sljit_s32 src2, sljit_sw src2w);
1417 
1418 /* Starting index of opcodes for sljit_emit_fop2r. */
1419 #define SLJIT_FOP2R_BASE		168
1420 
1421 /* Flags: - (may destroy flags) */
1422 #define SLJIT_COPYSIGN_F64		(SLJIT_FOP2R_BASE + 0)
1423 #define SLJIT_COPYSIGN_F32		(SLJIT_COPYSIGN_F64 | SLJIT_32)
1424 
1425 /* Similar to sljit_emit_fop2, except the destination is always a register. */
1426 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2r(struct sljit_compiler *compiler, sljit_s32 op,
1427 	sljit_s32 dst_freg,
1428 	sljit_s32 src1, sljit_sw src1w,
1429 	sljit_s32 src2, sljit_sw src2w);
1430 
1431 /* Sets a floating point register to an immediate value. */
1432 
1433 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset32(struct sljit_compiler *compiler,
1434 	sljit_s32 freg, sljit_f32 value);
1435 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler,
1436 	sljit_s32 freg, sljit_f64 value);
1437 
1438 /* The following opcodes are used by sljit_emit_fcopy(). */
1439 
1440 /* 64 bit: copy a 64 bit value from an integer register into a
1441            64 bit floating point register without any modifications.
1442    32 bit: copy a 32 bit register or register pair into a 64 bit
1443            floating point register without any modifications. The
1444            register, or the first register of the register pair
1445            replaces the high order 32 bit of the floating point
1446            register. If a register pair is passed, the low
1447            order 32 bit is replaced by the second register.
1448            Otherwise, the low order 32 bit is unchanged. */
1449 #define SLJIT_COPY_TO_F64		1
1450 /* Copy a 32 bit value from an integer register into a 32 bit
1451    floating point register without any modifications. */
1452 #define SLJIT_COPY32_TO_F32		(SLJIT_COPY_TO_F64 | SLJIT_32)
1453 /* 64 bit: copy the value of a 64 bit floating point register into
1454            an integer register without any modifications.
1455    32 bit: copy a 64 bit floating point register into a 32 bit register
1456            or a 32 bit register pair without any modifications. The
1457            high order 32 bit of the floating point register is copied
1458            into the register, or the first register of the register
1459            pair. If a register pair is passed, the low order 32 bit
1460            is copied into the second register. */
1461 #define SLJIT_COPY_FROM_F64		2
1462 /* Copy the value of a 32 bit floating point register into an integer
1463    register without any modifications. The register should be processed
1464    with 32 bit operations later. */
1465 #define SLJIT_COPY32_FROM_F32		(SLJIT_COPY_FROM_F64 | SLJIT_32)
1466 
1467 /* Special data copy which involves floating point registers.
1468 
1469   op must be between SLJIT_COPY_TO_F64 and SLJIT_COPY32_FROM_F32
1470   freg must be a floating point register
1471   reg must be a register or register pair */
1472 
1473 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op,
1474 	sljit_s32 freg, sljit_s32 reg);
1475 
1476 /* Label and jump instructions. */
1477 
1478 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1479 
1480 /* The SLJIT_FAST_CALL is a calling method for creating lightweight function
1481    calls. This type of calls preserve the values of all registers and stack
1482    frame. Unlike normal function calls, the enter and return operations must
1483    be performed by the SLJIT_FAST_ENTER and SLJIT_FAST_RETURN operations
1484    respectively. The return address is stored in the dst argument of the
1485    SLJIT_FAST_ENTER operation, and this return address should be passed as
1486    the src argument for the SLJIT_FAST_RETURN operation to return from the
1487    called function.
1488 
1489    Fast calls are cheap operations (usually only a single call instruction is
1490    emitted) but they do not preserve any registers. However the callee function
1491    can freely use / update any registers and the locals area which can be
1492    efficiently exploited by various optimizations. Registers can be saved
1493    and restored manually if needed.
1494 
1495    Although returning to different address by SLJIT_FAST_RETURN is possible,
1496    this address usually cannot be predicted by the return address predictor of
1497    modern CPUs which may reduce performance. Furthermore certain security
1498    enhancement technologies such as Intel Control-flow Enforcement Technology
1499    (CET) may disallow returning to a different address (indirect jumps
1500    can be used instead, see SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN). */
1501 
1502 /* Invert (negate) conditional type: xor (^) with 0x1 */
1503 
1504 /* Integer comparison types. */
1505 #define SLJIT_EQUAL			0
1506 #define SLJIT_ZERO			SLJIT_EQUAL
1507 #define SLJIT_NOT_EQUAL			1
1508 #define SLJIT_NOT_ZERO			SLJIT_NOT_EQUAL
1509 
1510 #define SLJIT_LESS			2
1511 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
1512 #define SLJIT_GREATER_EQUAL		3
1513 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_LESS)
1514 #define SLJIT_GREATER			4
1515 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
1516 #define SLJIT_LESS_EQUAL		5
1517 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_GREATER)
1518 #define SLJIT_SIG_LESS			6
1519 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
1520 #define SLJIT_SIG_GREATER_EQUAL		7
1521 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_LESS)
1522 #define SLJIT_SIG_GREATER		8
1523 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
1524 #define SLJIT_SIG_LESS_EQUAL		9
1525 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER)
1526 
1527 #define SLJIT_OVERFLOW			10
1528 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
1529 #define SLJIT_NOT_OVERFLOW		11
1530 
1531 /* Unlike other flags, sljit_emit_jump may destroy the carry flag. */
1532 #define SLJIT_CARRY			12
1533 #define SLJIT_SET_CARRY			SLJIT_SET(SLJIT_CARRY)
1534 #define SLJIT_NOT_CARRY			13
1535 
1536 #define SLJIT_ATOMIC_STORED		14
1537 #define SLJIT_SET_ATOMIC_STORED		SLJIT_SET(SLJIT_ATOMIC_STORED)
1538 #define SLJIT_ATOMIC_NOT_STORED		15
1539 
1540 /* Basic floating point comparison types.
1541 
1542    Note: when the comparison result is unordered, their behaviour is unspecified. */
1543 
1544 #define SLJIT_F_EQUAL				16
1545 #define SLJIT_SET_F_EQUAL			SLJIT_SET(SLJIT_F_EQUAL)
1546 #define SLJIT_F_NOT_EQUAL			17
1547 #define SLJIT_SET_F_NOT_EQUAL			SLJIT_SET(SLJIT_F_EQUAL)
1548 #define SLJIT_F_LESS				18
1549 #define SLJIT_SET_F_LESS			SLJIT_SET(SLJIT_F_LESS)
1550 #define SLJIT_F_GREATER_EQUAL			19
1551 #define SLJIT_SET_F_GREATER_EQUAL		SLJIT_SET(SLJIT_F_LESS)
1552 #define SLJIT_F_GREATER				20
1553 #define SLJIT_SET_F_GREATER			SLJIT_SET(SLJIT_F_GREATER)
1554 #define SLJIT_F_LESS_EQUAL			21
1555 #define SLJIT_SET_F_LESS_EQUAL			SLJIT_SET(SLJIT_F_GREATER)
1556 
1557 /* Jumps when either argument contains a NaN value. */
1558 #define SLJIT_UNORDERED				22
1559 #define SLJIT_SET_UNORDERED			SLJIT_SET(SLJIT_UNORDERED)
1560 /* Jumps when neither argument contains a NaN value. */
1561 #define SLJIT_ORDERED				23
1562 #define SLJIT_SET_ORDERED			SLJIT_SET(SLJIT_UNORDERED)
1563 
1564 /* Ordered / unordered floating point comparison types.
1565 
1566    Note: each comparison type has an ordered and unordered form. Some
1567          architectures supports only either of them (see: sljit_cmp_info). */
1568 
1569 #define SLJIT_ORDERED_EQUAL			24
1570 #define SLJIT_SET_ORDERED_EQUAL			SLJIT_SET(SLJIT_ORDERED_EQUAL)
1571 #define SLJIT_UNORDERED_OR_NOT_EQUAL		25
1572 #define SLJIT_SET_UNORDERED_OR_NOT_EQUAL	SLJIT_SET(SLJIT_ORDERED_EQUAL)
1573 #define SLJIT_ORDERED_LESS			26
1574 #define SLJIT_SET_ORDERED_LESS			SLJIT_SET(SLJIT_ORDERED_LESS)
1575 #define SLJIT_UNORDERED_OR_GREATER_EQUAL	27
1576 #define SLJIT_SET_UNORDERED_OR_GREATER_EQUAL	SLJIT_SET(SLJIT_ORDERED_LESS)
1577 #define SLJIT_ORDERED_GREATER			28
1578 #define SLJIT_SET_ORDERED_GREATER		SLJIT_SET(SLJIT_ORDERED_GREATER)
1579 #define SLJIT_UNORDERED_OR_LESS_EQUAL		29
1580 #define SLJIT_SET_UNORDERED_OR_LESS_EQUAL	SLJIT_SET(SLJIT_ORDERED_GREATER)
1581 
1582 #define SLJIT_UNORDERED_OR_EQUAL		30
1583 #define SLJIT_SET_UNORDERED_OR_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
1584 #define SLJIT_ORDERED_NOT_EQUAL			31
1585 #define SLJIT_SET_ORDERED_NOT_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
1586 #define SLJIT_UNORDERED_OR_LESS			32
1587 #define SLJIT_SET_UNORDERED_OR_LESS		SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
1588 #define SLJIT_ORDERED_GREATER_EQUAL		33
1589 #define SLJIT_SET_ORDERED_GREATER_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
1590 #define SLJIT_UNORDERED_OR_GREATER		34
1591 #define SLJIT_SET_UNORDERED_OR_GREATER		SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
1592 #define SLJIT_ORDERED_LESS_EQUAL		35
1593 #define SLJIT_SET_ORDERED_LESS_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
1594 
1595 /* Unconditional jump types. */
1596 #define SLJIT_JUMP			36
1597 /* Fast calling method. See the description above. */
1598 #define SLJIT_FAST_CALL			37
1599 /* Default C calling convention. */
1600 #define SLJIT_CALL			38
1601 /* Called function must be compiled by SLJIT.
1602    See SLJIT_ENTER_REG_ARG option. */
1603 #define SLJIT_CALL_REG_ARG		39
1604 
1605 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1606 #define SLJIT_REWRITABLE_JUMP		0x1000
1607 /* When this flag is passed, the execution of the current function ends and
1608    the called function returns to the caller of the current function. The
1609    stack usage is reduced before the call, but it is not necessarily reduced
1610    to zero. In the latter case the compiler needs to allocate space for some
1611    arguments and the return address must be stored on the stack as well. */
1612 #define SLJIT_CALL_RETURN		0x2000
1613 
1614 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1615     type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1616     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1617 
1618    Flags: does not modify flags. */
1619 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1620 
1621 /* Emit a C compiler (ABI) compatible function call.
1622     type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
1623     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and/or SLJIT_CALL_RETURN
1624     arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros
1625 
1626    Flags: destroy all flags. */
1627 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1628 
1629 /* Basic arithmetic comparison. In most architectures it is implemented as
1630    a compare operation followed by a sljit_emit_jump. However some
1631    architectures (i.e: ARM64 or MIPS) may employ special optimizations
1632    here. It is suggested to use this comparison form when appropriate.
1633     type must be between SLJIT_EQUAL and SLJIT_SIG_LESS_EQUAL
1634     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1635 
1636    Flags: may destroy flags. */
1637 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1638 	sljit_s32 src1, sljit_sw src1w,
1639 	sljit_s32 src2, sljit_sw src2w);
1640 
1641 /* Basic floating point comparison. In most architectures it is implemented as
1642    a SLJIT_CMP_F32/64 operation (setting appropriate flags) followed by a
1643    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1644    special optimizations here. It is suggested to use this comparison form
1645    when appropriate.
1646     type must be between SLJIT_F_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1647     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1648    Flags: destroy flags.
1649    Note: when an operand is NaN the behaviour depends on the comparison type. */
1650 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1651 	sljit_s32 src1, sljit_sw src1w,
1652 	sljit_s32 src2, sljit_sw src2w);
1653 
1654 /* Set the destination of the jump to this label. */
1655 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1656 /* Set the destination address of the jump to this label. */
1657 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1658 
1659 /* Emit an indirect jump or fast call.
1660    Direct form: set src to SLJIT_IMM() and srcw to the address
1661    Indirect form: any other valid addressing mode
1662     type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1663 
1664    Flags: does not modify flags. */
1665 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1666 
1667 /* Emit a C compiler (ABI) compatible function call.
1668    Direct form: set src to SLJIT_IMM() and srcw to the address
1669    Indirect form: any other valid addressing mode
1670     type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
1671     type can be combined (or'ed) with SLJIT_CALL_RETURN
1672     arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros
1673 
1674    Flags: destroy all flags. */
1675 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1676 
1677 /* Perform an operation using the conditional flags as the second argument.
1678    Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL.
1679    The value represented by the type is 1, if the condition represented
1680    by the type is fulfilled, and 0 otherwise.
1681 
1682    When op is SLJIT_MOV or SLJIT_MOV32:
1683      Set dst to the value represented by the type (0 or 1).
1684      Flags: - (does not modify flags)
1685    When op is SLJIT_AND, SLJIT_AND32, SLJIT_OR, SLJIT_OR32, SLJIT_XOR, or SLJIT_XOR32
1686      Performs the binary operation using dst as the first, and the value
1687      represented by type as the second argument. Result is written into dst.
1688      Flags: Z (may destroy flags) */
1689 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1690 	sljit_s32 dst, sljit_sw dstw,
1691 	sljit_s32 type);
1692 
1693 /* Emit a conditional select instruction which moves src1 to dst_reg,
1694    if the condition is satisfied, or src2_reg to dst_reg otherwise.
1695 
1696    type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1697    type can be combined (or'ed) with SLJIT_32 to move 32 bit
1698        register values instead of word sized ones
1699    dst_reg and src2_reg must be valid registers
1700    src1 must be valid operand
1701 
1702    Note: if src1 is a memory operand, its value
1703          might be loaded even if the condition is false.
1704 
1705    Flags: - (does not modify flags) */
1706 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_select(struct sljit_compiler *compiler, sljit_s32 type,
1707 	sljit_s32 dst_reg,
1708 	sljit_s32 src1, sljit_sw src1w,
1709 	sljit_s32 src2_reg);
1710 
1711 /* Emit a conditional floating point select instruction which moves
1712    src1 to dst_reg, if the condition is satisfied, or src2_reg to
1713    dst_reg otherwise.
1714 
1715    type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1716    type can be combined (or'ed) with SLJIT_32 to move 32 bit
1717        floating point values instead of 64 bit ones
1718    dst_freg and src2_freg must be valid floating point registers
1719    src1 must be valid operand
1720 
1721    Note: if src1 is a memory operand, its value
1722          might be loaded even if the condition is false.
1723 
1724    Flags: - (does not modify flags) */
1725 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fselect(struct sljit_compiler *compiler, sljit_s32 type,
1726 	sljit_s32 dst_freg,
1727 	sljit_s32 src1, sljit_sw src1w,
1728 	sljit_s32 src2_freg);
1729 
1730 /* The following flags are used by sljit_emit_mem(), sljit_emit_mem_update(),
1731    sljit_emit_fmem(), and sljit_emit_fmem_update(). */
1732 
1733 /* Memory load operation. This is the default. */
1734 #define SLJIT_MEM_LOAD		0x000000
1735 /* Memory store operation. */
1736 #define SLJIT_MEM_STORE		0x000200
1737 
1738 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1739 
1740 /* Load or stora data from an unaligned (byte aligned) address. */
1741 #define SLJIT_MEM_UNALIGNED	0x000400
1742 /* Load or stora data from a 16 bit aligned address. */
1743 #define SLJIT_MEM_ALIGNED_16	0x000800
1744 /* Load or stora data from a 32 bit aligned address. */
1745 #define SLJIT_MEM_ALIGNED_32	0x001000
1746 
1747 /* The following flags are used by sljit_emit_mem_update(),
1748    and sljit_emit_fmem_update(). */
1749 
1750 /* Base register is updated before the memory access (default). */
1751 #define SLJIT_MEM_PRE		0x000000
1752 /* Base register is updated after the memory access. */
1753 #define SLJIT_MEM_POST		0x000400
1754 
1755 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1756    Instead the function returns with SLJIT_SUCCESS if the instruction
1757    form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1758    allows runtime checking of available instruction forms. */
1759 #define SLJIT_MEM_SUPP		0x000800
1760 
1761 /* The sljit_emit_mem emits instructions for various memory operations:
1762 
1763    When SLJIT_MEM_UNALIGNED / SLJIT_MEM_ALIGNED_16 /
1764         SLJIT_MEM_ALIGNED_32 is set in type argument:
1765      Emit instructions for unaligned memory loads or stores. When
1766      SLJIT_UNALIGNED is not defined, the only way to access unaligned
1767      memory data is using sljit_emit_mem. Otherwise all operations (e.g.
1768      sljit_emit_op1/2, or sljit_emit_fop1/2) supports unaligned access.
1769      In general, the performance of unaligned memory accesses are often
1770      lower than aligned and should be avoided.
1771 
1772    When a pair of registers is passed in reg argument:
1773      Emit instructions for moving data between a register pair and
1774      memory. The register pair can be specified by the SLJIT_REG_PAIR
1775      macro. The first register is loaded from or stored into the
1776      location specified by the mem/memw arguments, and the end address
1777      of this operation is the starting address of the data transfer
1778      between the second register and memory. The type argument must
1779      be SLJIT_MOV. The SLJIT_MEM_UNALIGNED / SLJIT_MEM_ALIGNED_*
1780      options are allowed for this operation.
1781 
1782    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1783      combined (or'ed) with SLJIT_MEM_* flags
1784    reg is a register or register pair, which is the source or
1785      destination of the operation
1786    mem must be a memory operand
1787 
1788    Flags: - (does not modify flags) */
1789 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1790 	sljit_s32 reg,
1791 	sljit_s32 mem, sljit_sw memw);
1792 
1793 /* Emit a single memory load or store with update instruction.
1794    When the requested instruction form is not supported by the CPU,
1795    it returns with SLJIT_ERR_UNSUPPORTED instead of emulating the
1796    instruction. This allows specializing tight loops based on
1797    the supported instruction forms (see SLJIT_MEM_SUPP flag).
1798    Absolute address (SLJIT_MEM0) forms are never supported
1799    and the base (first) register specified by the mem argument
1800    must not be SLJIT_SP and must also be different from the
1801    register specified by the reg argument.
1802 
1803    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1804      combined (or'ed) with SLJIT_MEM_* flags
1805    reg is the source or destination register of the operation
1806    mem must be a memory operand
1807 
1808    Flags: - (does not modify flags) */
1809 
1810 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type,
1811 	sljit_s32 reg,
1812 	sljit_s32 mem, sljit_sw memw);
1813 
1814 /* Same as sljit_emit_mem except the followings:
1815 
1816    Loading or storing a pair of registers is not supported.
1817 
1818    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1819      combined (or'ed) with SLJIT_MEM_* flags.
1820    freg is the source or destination floating point register
1821      of the operation
1822    mem must be a memory operand
1823 
1824    Flags: - (does not modify flags) */
1825 
1826 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1827 	sljit_s32 freg,
1828 	sljit_s32 mem, sljit_sw memw);
1829 
1830 /* Same as sljit_emit_mem_update except the followings:
1831 
1832    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1833      combined (or'ed) with SLJIT_MEM_* flags
1834    freg is the source or destination floating point register
1835      of the operation
1836    mem must be a memory operand
1837 
1838    Flags: - (does not modify flags) */
1839 
1840 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem_update(struct sljit_compiler *compiler, sljit_s32 type,
1841 	sljit_s32 freg,
1842 	sljit_s32 mem, sljit_sw memw);
1843 
1844 /* The following options are used by several simd operations. */
1845 
1846 /* Load data into a simd register, this is the default */
1847 #define SLJIT_SIMD_LOAD			0x000000
1848 /* Store data from a simd register */
1849 #define SLJIT_SIMD_STORE		0x000001
1850 /* The simd register contains floating point values */
1851 #define SLJIT_SIMD_FLOAT		0x000400
1852 /* Tests whether the operation is available */
1853 #define SLJIT_SIMD_TEST			0x000800
1854 /* Move data to/from a 64 bit (8 byte) long SIMD register */
1855 #define SLJIT_SIMD_REG_64		(3 << 12)
1856 /* Move data to/from a 128 bit (16 byte) long SIMD register */
1857 #define SLJIT_SIMD_REG_128		(4 << 12)
1858 /* Move data to/from a 256 bit (32 byte) long SIMD register */
1859 #define SLJIT_SIMD_REG_256		(5 << 12)
1860 /* Move data to/from a 512 bit (64 byte) long SIMD register */
1861 #define SLJIT_SIMD_REG_512		(6 << 12)
1862 /* Element size is 8 bit long (this is the default), usually cannot be combined with SLJIT_SIMD_FLOAT */
1863 #define SLJIT_SIMD_ELEM_8		(0 << 18)
1864 /* Element size is 16 bit long, usually cannot be combined with SLJIT_SIMD_FLOAT */
1865 #define SLJIT_SIMD_ELEM_16		(1 << 18)
1866 /* Element size is 32 bit long */
1867 #define SLJIT_SIMD_ELEM_32		(2 << 18)
1868 /* Element size is 64 bit long */
1869 #define SLJIT_SIMD_ELEM_64		(3 << 18)
1870 /* Element size is 128 bit long */
1871 #define SLJIT_SIMD_ELEM_128		(4 << 18)
1872 /* Element size is 256 bit long */
1873 #define SLJIT_SIMD_ELEM_256		(5 << 18)
1874 
1875 /* The following options are used by sljit_emit_simd_mov(). */
1876 
1877 /* Memory address is unaligned (this is the default) */
1878 #define SLJIT_SIMD_MEM_UNALIGNED	(0 << 24)
1879 /* Memory address is 16 bit aligned */
1880 #define SLJIT_SIMD_MEM_ALIGNED_16	(1 << 24)
1881 /* Memory address is 32 bit aligned */
1882 #define SLJIT_SIMD_MEM_ALIGNED_32	(2 << 24)
1883 /* Memory address is 64 bit aligned */
1884 #define SLJIT_SIMD_MEM_ALIGNED_64	(3 << 24)
1885 /* Memory address is 128 bit aligned */
1886 #define SLJIT_SIMD_MEM_ALIGNED_128	(4 << 24)
1887 /* Memory address is 256 bit aligned */
1888 #define SLJIT_SIMD_MEM_ALIGNED_256	(5 << 24)
1889 /* Memory address is 512 bit aligned */
1890 #define SLJIT_SIMD_MEM_ALIGNED_512	(6 << 24)
1891 
1892 /* Moves data between a simd register and memory.
1893 
1894    If the operation is not supported, it returns with
1895    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1896    it does not emit any instructions.
1897 
1898    type must be a combination of SLJIT_SIMD_* and
1899      SLJIT_SIMD_MEM_* options
1900    freg is the source or destination simd register
1901      of the operation
1902    srcdst must be a memory operand or a simd register
1903 
1904    Note:
1905        The alignment and element size must be
1906        less or equal than simd register size.
1907 
1908    Flags: - (does not modify flags) */
1909 
1910 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type,
1911 	sljit_s32 freg,
1912 	sljit_s32 srcdst, sljit_sw srcdstw);
1913 
1914 /* Replicates a scalar value to all lanes of a simd
1915    register.
1916 
1917    If the operation is not supported, it returns with
1918    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1919    it does not emit any instructions.
1920 
1921    type must be a combination of SLJIT_SIMD_* options
1922      except SLJIT_SIMD_STORE.
1923    freg is the destination simd register of the operation
1924    src is the value which is replicated
1925 
1926    Note:
1927        The src == SLJIT_IMM and srcw == 0 can be used to
1928        clear a register even when SLJIT_SIMD_FLOAT is set.
1929 
1930    Flags: - (does not modify flags) */
1931 
1932 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_replicate(struct sljit_compiler *compiler, sljit_s32 type,
1933 	sljit_s32 freg,
1934 	sljit_s32 src, sljit_sw srcw);
1935 
1936 /* The following options are used by sljit_emit_simd_lane_mov(). */
1937 
1938 /* Clear all bits of the simd register before loading the lane. */
1939 #define SLJIT_SIMD_LANE_ZERO		0x000002
1940 /* Sign extend the integer value stored from the lane. */
1941 #define SLJIT_SIMD_LANE_SIGNED		0x000004
1942 
1943 /* Moves data between a simd register lane and a register or
1944    memory. If the srcdst argument is a register, it must be
1945    a floating point register when SLJIT_SIMD_FLOAT is specified,
1946    or a general purpose register otherwise.
1947 
1948    If the operation is not supported, it returns with
1949    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1950    it does not emit any instructions.
1951 
1952    type must be a combination of SLJIT_SIMD_* options
1953      Further options:
1954        SLJIT_32 - when SLJIT_SIMD_FLOAT is not set
1955        SLJIT_SIMD_LANE_SIGNED - when SLJIT_SIMD_STORE
1956            is set and SLJIT_SIMD_FLOAT is not set
1957        SLJIT_SIMD_LANE_ZERO - when SLJIT_SIMD_LOAD
1958            is specified
1959    freg is the source or destination simd register
1960      of the operation
1961    lane_index is the index of the lane
1962    srcdst is the destination operand for loads, and
1963      source operand for stores
1964 
1965    Note:
1966        The elem size must be lower than register size.
1967 
1968    Flags: - (does not modify flags) */
1969 
1970 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_mov(struct sljit_compiler *compiler, sljit_s32 type,
1971 	sljit_s32 freg, sljit_s32 lane_index,
1972 	sljit_s32 srcdst, sljit_sw srcdstw);
1973 
1974 /* Replicates a scalar value from a lane to all lanes
1975    of a simd register.
1976 
1977    If the operation is not supported, it returns with
1978    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1979    it does not emit any instructions.
1980 
1981    type must be a combination of SLJIT_SIMD_* options
1982      except SLJIT_SIMD_STORE.
1983    freg is the destination simd register of the operation
1984    src is the simd register which lane is replicated
1985    src_lane_index is the lane index of the src register
1986 
1987    Flags: - (does not modify flags) */
1988 
1989 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_replicate(struct sljit_compiler *compiler, sljit_s32 type,
1990 	sljit_s32 freg,
1991 	sljit_s32 src, sljit_s32 src_lane_index);
1992 
1993 /* The following options are used by sljit_emit_simd_load_extend(). */
1994 
1995 /* Sign extend the integer elements */
1996 #define SLJIT_SIMD_EXTEND_SIGNED	0x000002
1997 /* Extend data to 16 bit */
1998 #define SLJIT_SIMD_EXTEND_16		(1 << 24)
1999 /* Extend data to 32 bit */
2000 #define SLJIT_SIMD_EXTEND_32		(2 << 24)
2001 /* Extend data to 64 bit */
2002 #define SLJIT_SIMD_EXTEND_64		(3 << 24)
2003 
2004 /* Extend elements and stores them in a simd register.
2005    The extension operation increases the size of the
2006    elements (e.g. from 16 bit to 64 bit). For integer
2007    values, the extension can be signed or unsigned.
2008 
2009    If the operation is not supported, it returns with
2010    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2011    it does not emit any instructions.
2012 
2013    type must be a combination of SLJIT_SIMD_*, and
2014      SLJIT_SIMD_EXTEND_* options except SLJIT_SIMD_STORE
2015    freg is the destination simd register of the operation
2016    src must be a memory operand or a simd register.
2017      In the latter case, the source elements are stored
2018      in the lower half of the register.
2019 
2020    Flags: - (does not modify flags) */
2021 
2022 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_extend(struct sljit_compiler *compiler, sljit_s32 type,
2023 	sljit_s32 freg,
2024 	sljit_s32 src, sljit_sw srcw);
2025 
2026 /* Extract the highest bit (usually the sign bit) from
2027    each elements of a vector.
2028 
2029    If the operation is not supported, it returns with
2030    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2031    it does not emit any instructions.
2032 
2033    type must be a combination of SLJIT_SIMD_* and SLJIT_32
2034      options except SLJIT_SIMD_LOAD
2035    freg is the source simd register of the operation
2036    dst is the destination operand
2037 
2038    Flags: - (does not modify flags) */
2039 
2040 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_sign(struct sljit_compiler *compiler, sljit_s32 type,
2041 	sljit_s32 freg,
2042 	sljit_s32 dst, sljit_sw dstw);
2043 
2044 /* The following options are used by sljit_emit_simd_op2(). */
2045 
2046 /* Binary 'and' operation */
2047 #define SLJIT_SIMD_OP2_AND		0x000001
2048 /* Binary 'or' operation */
2049 #define SLJIT_SIMD_OP2_OR		0x000002
2050 /* Binary 'xor' operation */
2051 #define SLJIT_SIMD_OP2_XOR		0x000003
2052 
2053 /* Perform simd operations using simd registers.
2054 
2055    If the operation is not supported, it returns with
2056    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2057    it does not emit any instructions.
2058 
2059    type must be a combination of SLJIT_SIMD_* and SLJIT_SIMD_OP2_
2060      options except SLJIT_SIMD_LOAD and SLJIT_SIMD_STORE
2061    dst_freg is the destination register of the operation
2062    src1_freg is the first source register of the operation
2063    src1_freg is the second source register of the operation
2064 
2065    Flags: - (does not modify flags) */
2066 
2067 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_op2(struct sljit_compiler *compiler, sljit_s32 type,
2068 	sljit_s32 dst_freg, sljit_s32 src1_freg, sljit_s32 src2_freg);
2069 
2070 /* The sljit_emit_atomic_load and sljit_emit_atomic_store operation pair
2071    can perform an atomic read-modify-write operation. First, an unsigned
2072    value must be loaded from memory using sljit_emit_atomic_load. Then,
2073    the updated value must be written back to the same memory location by
2074    sljit_emit_atomic_store. A thread can only perform a single atomic
2075    operation at a time.
2076 
2077    Note: atomic operations are experimental, and not implemented
2078          for all cpus.
2079 
2080    The following conditions must be satisfied, or the operation
2081    is undefined:
2082      - the address provided in mem_reg must be divisible by the size of
2083        the value (only naturally aligned updates are supported)
2084      - no memory writes are allowed between the load and store operations
2085        regardless of its target address (currently read operations are
2086        allowed, but this might change in the future)
2087      - the memory operation (op) and the base address (stored in mem_reg)
2088        passed to the load/store operations must be the same (the mem_reg
2089        can be a different register, only its value must be the same)
2090      - an store must always follow a load for the same transaction.
2091 
2092    op must be between SLJIT_MOV and SLJIT_MOV_P, excluding all
2093      signed loads such as SLJIT_MOV32_S16
2094    dst_reg is the register where the data will be loaded into
2095    mem_reg is the base address of the memory load (it cannot be
2096      SLJIT_SP or a virtual register on x86-32)
2097 
2098    Flags: - (does not modify flags) */
2099 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_load(struct sljit_compiler *compiler, sljit_s32 op,
2100 	sljit_s32 dst_reg,
2101 	sljit_s32 mem_reg);
2102 
2103 /* The sljit_emit_atomic_load and sljit_emit_atomic_store operations
2104    allows performing an atomic read-modify-write operation. See the
2105    description of sljit_emit_atomic_load.
2106 
2107    op must be between SLJIT_MOV and SLJIT_MOV_P, excluding all signed
2108      loads such as SLJIT_MOV32_S16
2109    src_reg is the register which value is stored into the memory
2110    mem_reg is the base address of the memory store (it cannot be
2111      SLJIT_SP or a virtual register on x86-32)
2112    temp_reg is a not preserved scratch register, which must be
2113      initialized with the value loaded into the dst_reg during the
2114      corresponding sljit_emit_atomic_load operation, or the operation
2115      is undefined
2116 
2117    Flags: ATOMIC_STORED is set if the operation is successful,
2118      otherwise the memory remains unchanged. */
2119 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_store(struct sljit_compiler *compiler, sljit_s32 op,
2120 	sljit_s32 src_reg,
2121 	sljit_s32 mem_reg,
2122 	sljit_s32 temp_reg);
2123 
2124 /* Copies the base address of SLJIT_SP + offset to dst. The offset can
2125    represent the starting address of a value in the local data (stack).
2126    The offset is not limited by the local data limits, it can be any value.
2127    For example if an array of bytes are stored on the stack from
2128    offset 0x40, and R0 contains the offset of an array item plus 0x120,
2129    this item can be changed by two SLJIT instructions:
2130 
2131    sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
2132    sljit_emit_op1(compiler, SLJIT_MOV_U8, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
2133 
2134    Flags: - (may destroy flags) */
2135 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
2136 
2137 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
2138    Flags: - (does not modify flags) */
2139 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
2140 
2141 /* Store the value of a label (see: sljit_set_put_label)
2142    Flags: - (does not modify flags) */
2143 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
2144 
2145 /* Set the value stored by put_label to this label. */
2146 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
2147 
2148 /* After the code generation the address for label, jump and const instructions
2149    are computed. Since these structures are freed by sljit_free_compiler, the
2150    addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)2151 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)2152 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)2153 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
2154 
2155 /* Only the address and executable offset are required to perform dynamic
2156    code modifications. See sljit_get_executable_offset function. */
2157 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
2158 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
2159 
2160 /* --------------------------------------------------------------------- */
2161 /*  CPU specific functions                                               */
2162 /* --------------------------------------------------------------------- */
2163 
2164 /* Types for sljit_get_register_index */
2165 
2166 /* General purpose (integer) registers. */
2167 #define SLJIT_GP_REGISTER 0
2168 /* Floating point registers. */
2169 #define SLJIT_FLOAT_REGISTER 1
2170 
2171 /* The following function is a helper function for sljit_emit_op_custom.
2172    It returns with the real machine register index ( >=0 ) of any registers.
2173 
2174    When type is SLJIT_GP_REGISTER:
2175       reg must be an SLJIT_R(i), SLJIT_S(i), or SLJIT_SP register
2176 
2177    When type is SLJIT_FLOAT_REGISTER:
2178       reg must be an SLJIT_FR(i) or SLJIT_FS(i) register
2179 
2180    When type is SLJIT_SIMD_REG_64 / 128 / 256 / 512 :
2181       reg must be an SLJIT_FR(i) or SLJIT_FS(i) register
2182 
2183    Note: it returns with -1 for unknown registers, such as virtual
2184          registers on x86-32 or unsupported simd registers. */
2185 
2186 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 type, sljit_s32 reg);
2187 
2188 /* Any instruction can be inserted into the instruction stream by
2189    sljit_emit_op_custom. It has a similar purpose as inline assembly.
2190    The size parameter must match to the instruction size of the target
2191    architecture:
2192 
2193          x86: 0 < size <= 15, the instruction argument can be byte aligned.
2194       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
2195               if size == 4, the instruction argument must be 4 byte aligned.
2196        s390x: size can be 2, 4, or 6, the instruction argument can be byte aligned.
2197    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
2198 
2199 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
2200 	void *instruction, sljit_u32 size);
2201 
2202 /* Flags were set by a 32 bit operation. */
2203 #define SLJIT_CURRENT_FLAGS_32			SLJIT_32
2204 
2205 /* Flags were set by an ADD or ADDC operations. */
2206 #define SLJIT_CURRENT_FLAGS_ADD			0x01
2207 /* Flags were set by a SUB, SUBC, or NEG operation. */
2208 #define SLJIT_CURRENT_FLAGS_SUB			0x02
2209 
2210 /* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
2211    Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
2212 #define SLJIT_CURRENT_FLAGS_COMPARE		0x04
2213 
2214 /* Define the currently available CPU status flags. It is usually used after
2215    an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
2216    status flags are available.
2217 
2218    The current_flags must be a valid combination of SLJIT_SET_* and
2219    SLJIT_CURRENT_FLAGS_* constants. */
2220 
2221 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
2222 	sljit_s32 current_flags);
2223 
2224 /* --------------------------------------------------------------------- */
2225 /*  Miscellaneous utility functions                                      */
2226 /* --------------------------------------------------------------------- */
2227 
2228 /* Get the human readable name of the platform. Can be useful on platforms
2229    like ARM, where ARM and Thumb2 functions can be mixed, and it is useful
2230    to know the type of the code generator. */
2231 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
2232 
2233 /* Portable helper function to get an offset of a member.
2234    Same as offsetof() macro defined in stddef.h */
2235 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
2236 
2237 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
2238 
2239 /* The sljit_stack structure and its manipulation functions provides
2240    an implementation for a top-down stack. The stack top is stored
2241    in the end field of the sljit_stack structure and the stack goes
2242    down to the min_start field, so the memory region reserved for
2243    this stack is between min_start (inclusive) and end (exclusive)
2244    fields. However the application can only use the region between
2245    start (inclusive) and end (exclusive) fields. The sljit_stack_resize
2246    function can be used to extend this region up to min_start.
2247 
2248    This feature uses the "address space reserve" feature of modern
2249    operating systems. Instead of allocating a large memory block
2250    applications can allocate a small memory region and extend it
2251    later without moving the content of the memory area. Therefore
2252    after a successful resize by sljit_stack_resize all pointers into
2253    this region are still valid.
2254 
2255    Note:
2256      this structure may not be supported by all operating systems.
2257      end and max_limit fields are aligned to PAGE_SIZE bytes (usually
2258          4 Kbyte or more).
2259      stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
2260 
2261 struct sljit_stack {
2262 	/* User data, anything can be stored here.
2263 	   Initialized to the same value as the end field. */
2264 	sljit_u8 *top;
2265 /* These members are read only. */
2266 	/* End address of the stack */
2267 	sljit_u8 *end;
2268 	/* Current start address of the stack. */
2269 	sljit_u8 *start;
2270 	/* Lowest start address of the stack. */
2271 	sljit_u8 *min_start;
2272 };
2273 
2274 /* Allocates a new stack. Returns NULL if unsuccessful.
2275    Note: see sljit_create_compiler for the explanation of allocator_data. */
2276 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
2277 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
2278 
2279 /* Can be used to increase (extend) or decrease (shrink) the stack
2280    memory area. Returns with new_start if successful and NULL otherwise.
2281    It always fails if new_start is less than min_start or greater or equal
2282    than end fields. The fields of the stack are not changed if the returned
2283    value is NULL (the current memory content is never lost). */
2284 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
2285 
2286 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
2287 
2288 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
2289 
2290 /* Get the entry address of a given function (signed, unsigned result). */
2291 #define SLJIT_FUNC_ADDR(func_name)	((sljit_sw)func_name)
2292 #define SLJIT_FUNC_UADDR(func_name)	((sljit_uw)func_name)
2293 
2294 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
2295 
2296 /* All JIT related code should be placed in the same context (library, binary, etc.). */
2297 
2298 /* Get the entry address of a given function (signed, unsigned result). */
2299 #define SLJIT_FUNC_ADDR(func_name)	(*(sljit_sw*)(void*)func_name)
2300 #define SLJIT_FUNC_UADDR(func_name)	(*(sljit_uw*)(void*)func_name)
2301 
2302 /* For powerpc64, the function pointers point to a context descriptor. */
2303 struct sljit_function_context {
2304 	sljit_uw addr;
2305 	sljit_uw r2;
2306 	sljit_uw r11;
2307 };
2308 
2309 /* Fill the context arguments using the addr and the function.
2310    If func_ptr is NULL, it will not be set to the address of context
2311    If addr is NULL, the function address also comes from the func pointer. */
2312 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);
2313 
2314 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
2315 
2316 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
2317 /* Free unused executable memory. The allocator keeps some free memory
2318    around to reduce the number of OS executable memory allocations.
2319    This improves performance since these calls are costly. However
2320    it is sometimes desired to free all unused memory regions, e.g.
2321    before the application terminates. */
2322 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
2323 #endif
2324 
2325 #ifdef __cplusplus
2326 } /* extern "C" */
2327 #endif
2328 
2329 #endif /* SLJIT_LIR_H_ */
2330