1=pod 2 3=head1 NAME 4 5OPENSSL_malloc_init, 6OPENSSL_malloc, OPENSSL_aligned_alloc, OPENSSL_zalloc, OPENSSL_realloc, 7OPENSSL_free, OPENSSL_clear_realloc, OPENSSL_clear_free, OPENSSL_cleanse, 8CRYPTO_malloc, CRYPTO_aligned_alloc, CRYPTO_zalloc, CRYPTO_realloc, CRYPTO_free, 9OPENSSL_strdup, OPENSSL_strndup, 10OPENSSL_memdup, OPENSSL_strlcpy, OPENSSL_strlcat, OPENSSL_strtoul, 11CRYPTO_strdup, CRYPTO_strndup, 12OPENSSL_mem_debug_push, OPENSSL_mem_debug_pop, 13CRYPTO_mem_debug_push, CRYPTO_mem_debug_pop, 14CRYPTO_clear_realloc, CRYPTO_clear_free, 15CRYPTO_malloc_fn, CRYPTO_realloc_fn, CRYPTO_free_fn, 16CRYPTO_get_mem_functions, CRYPTO_set_mem_functions, 17CRYPTO_get_alloc_counts, 18CRYPTO_set_mem_debug, CRYPTO_mem_ctrl, 19CRYPTO_mem_leaks, CRYPTO_mem_leaks_fp, CRYPTO_mem_leaks_cb, 20OPENSSL_MALLOC_FAILURES, 21OPENSSL_MALLOC_FD 22- Memory allocation functions 23 24=head1 SYNOPSIS 25 26 #include <openssl/crypto.h> 27 28 int OPENSSL_malloc_init(void); 29 30 void *OPENSSL_malloc(size_t num); 31 void *OPENSSL_aligned_alloc(size_t num, size_t alignment, void **freeptr); 32 void *OPENSSL_zalloc(size_t num); 33 void *OPENSSL_realloc(void *addr, size_t num); 34 void OPENSSL_free(void *addr); 35 char *OPENSSL_strdup(const char *str); 36 char *OPENSSL_strndup(const char *str, size_t s); 37 size_t OPENSSL_strlcat(char *dst, const char *src, size_t size); 38 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t size); 39 int OPENSSL_strtoul(char *src, char **endptr, int base, unsigned long *num); 40 void *OPENSSL_memdup(void *data, size_t s); 41 void *OPENSSL_clear_realloc(void *p, size_t old_len, size_t num); 42 void OPENSSL_clear_free(void *str, size_t num); 43 void OPENSSL_cleanse(void *ptr, size_t len); 44 45 void *CRYPTO_malloc(size_t num, const char *file, int line); 46 void *CRYPTO_aligned_alloc(size_t num, size_t align, void **freeptr, 47 const char *file, int line); 48 void *CRYPTO_zalloc(size_t num, const char *file, int line); 49 void *CRYPTO_realloc(void *p, size_t num, const char *file, int line); 50 void CRYPTO_free(void *str, const char *, int); 51 char *CRYPTO_strdup(const char *p, const char *file, int line); 52 char *CRYPTO_strndup(const char *p, size_t num, const char *file, int line); 53 void *CRYPTO_clear_realloc(void *p, size_t old_len, size_t num, 54 const char *file, int line); 55 void CRYPTO_clear_free(void *str, size_t num, const char *, int); 56 57 typedef void *(*CRYPTO_malloc_fn)(size_t num, const char *file, int line); 58 typedef void *(*CRYPTO_realloc_fn)(void *addr, size_t num, const char *file, 59 int line); 60 typedef void (*CRYPTO_free_fn)(void *addr, const char *file, int line); 61 void CRYPTO_get_mem_functions(CRYPTO_malloc_fn *malloc_fn, 62 CRYPTO_realloc_fn *realloc_fn, 63 CRYPTO_free_fn *free_fn); 64 int CRYPTO_set_mem_functions(CRYPTO_malloc_fn malloc_fn, 65 CRYPTO_realloc_fn realloc_fn, 66 CRYPTO_free_fn free_fn); 67 68 void CRYPTO_get_alloc_counts(int *mcount, int *rcount, int *fcount); 69 70 env OPENSSL_MALLOC_FAILURES=... <application> 71 env OPENSSL_MALLOC_FD=... <application> 72 73The following functions have been deprecated since OpenSSL 3.0, and can be 74hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value, 75see L<openssl_user_macros(7)>: 76 77 int CRYPTO_mem_leaks(BIO *b); 78 int CRYPTO_mem_leaks_fp(FILE *fp); 79 int CRYPTO_mem_leaks_cb(int (*cb)(const char *str, size_t len, void *u), 80 void *u); 81 82 int CRYPTO_set_mem_debug(int onoff); 83 int CRYPTO_mem_ctrl(int mode); 84 int OPENSSL_mem_debug_push(const char *info); 85 int OPENSSL_mem_debug_pop(void); 86 int CRYPTO_mem_debug_push(const char *info, const char *file, int line); 87 int CRYPTO_mem_debug_pop(void); 88 89=head1 DESCRIPTION 90 91OpenSSL memory allocation is handled by the B<OPENSSL_xxx> API. These are 92generally macro's that add the standard C B<__FILE__> and B<__LINE__> 93parameters and call a lower-level B<CRYPTO_xxx> API. 94Some functions do not add those parameters, but exist for consistency. 95 96OPENSSL_malloc_init() does nothing and does not need to be called. It is 97included for compatibility with older versions of OpenSSL. 98 99OPENSSL_malloc(), OPENSSL_realloc(), and OPENSSL_free() are like the 100C malloc(), realloc(), and free() functions. 101OPENSSL_zalloc() calls memset() to zero the memory before returning. 102 103OPENSSL_aligned_alloc() operates just as OPENSSL_malloc does, but it 104allows for the caller to specify an alignment value, for instances in 105which the default alignment of malloc is insufficient for the callers 106needs. Note, the alignment value must be a power of 2, and the size 107specified must be a multiple of the alignment. 108NOTE: The call to OPENSSL_aligned_alloc() accepts a 3rd argument, I<freeptr> 109which must point to a void pointer. On some platforms, there is no available 110library call to obtain memory allocations greater than what malloc provides. In 111this case, OPENSSL_aligned_alloc implements its own alignment routine, 112allocating additional memory and offsetting the returned pointer to be on the 113requested alignment boundary. In order to safely free allocations made by this 114method, the caller must return the value in the I<freeptr> variable, rather than 115the returned pointer. 116 117OPENSSL_clear_realloc() and OPENSSL_clear_free() should be used 118when the buffer at B<addr> holds sensitive information. 119The old buffer is filled with zero's by calling OPENSSL_cleanse() 120before ultimately calling OPENSSL_free(). If the argument to OPENSSL_free() is 121NULL, nothing is done. 122 123OPENSSL_cleanse() fills B<ptr> of size B<len> with a string of 0's. 124Use OPENSSL_cleanse() with care if the memory is a mapping of a file. 125If the storage controller uses write compression, then it's possible 126that sensitive tail bytes will survive zeroization because the block of 127zeros will be compressed. If the storage controller uses wear leveling, 128then the old sensitive data will not be overwritten; rather, a block of 1290's will be written at a new physical location. 130 131OPENSSL_strdup(), OPENSSL_strndup() and OPENSSL_memdup() are like the 132equivalent C functions, except that memory is allocated by calling the 133OPENSSL_malloc() and should be released by calling OPENSSL_free(). 134 135OPENSSL_strlcpy(), 136OPENSSL_strlcat() and OPENSSL_strnlen() are equivalents of the common C 137library functions and are provided for portability. 138 139OPENSSL_strtoul() is a wrapper around the POSIX function strtoul, with the same 140behaviors listed in the POSIX documentation, with the additional behavior that 141it validates the input I<str> and I<num> parameters for not being NULL, and confirms 142that at least a single byte of input has been consumed in the translation, 143returning an error in the event that no bytes were consumed. 144 145If no allocations have been done, it is possible to "swap out" the default 146implementations for OPENSSL_malloc(), OPENSSL_realloc() and OPENSSL_free() 147and replace them with alternate versions. 148CRYPTO_get_mem_functions() function fills in the given arguments with the 149function pointers for the current implementations. 150With CRYPTO_set_mem_functions(), you can specify a different set of functions. 151If any of B<malloc_fn>, B<realloc_fn>, or B<free_fn> are NULL, then 152the function is not changed. 153While it's permitted to swap out only a few and not all the functions 154with CRYPTO_set_mem_functions(), it's recommended to swap them all out 155at once. 156 157If the library is built with the C<crypto-mdebug> option, then one 158function, CRYPTO_get_alloc_counts(), and two additional environment 159variables, B<OPENSSL_MALLOC_FAILURES> and B<OPENSSL_MALLOC_FD>, 160are available. 161 162The function CRYPTO_get_alloc_counts() fills in the number of times 163each of CRYPTO_malloc(), CRYPTO_realloc(), and CRYPTO_free() have been 164called, into the values pointed to by B<mcount>, B<rcount>, and B<fcount>, 165respectively. If a pointer is NULL, then the corresponding count is not stored. 166 167The variable 168B<OPENSSL_MALLOC_FAILURES> controls how often allocations should fail. 169It is a set of fields separated by semicolons, which each field is a count 170(defaulting to zero) and an optional atsign and percentage (defaulting 171to 100). If the count is zero, then it lasts forever. For example, 172C<100;@25> or C<100@0;0@25> means the first 100 allocations pass, then all 173other allocations (until the program exits or crashes) have a 25% chance of 174failing. The length of the value of B<OPENSSL_MALLOC_FAILURES> must be 256 or 175fewer characters. 176 177If the variable B<OPENSSL_MALLOC_FD> is parsed as a positive integer, then 178it is taken as an open file descriptor. This is used in conjunction with 179B<OPENSSL_MALLOC_FAILURES> described above. For every allocation it will log 180details about how many allocations there have been so far, what percentage 181chance there is for this allocation failing, and whether it has actually failed. 182The following example in classic shell syntax shows how to use this (will not 183work on all platforms): 184 185 OPENSSL_MALLOC_FAILURES='200;@10' 186 export OPENSSL_MALLOC_FAILURES 187 OPENSSL_MALLOC_FD=3 188 export OPENSSL_MALLOC_FD 189 ...app invocation... 3>/tmp/log$$ 190 191=head1 RETURN VALUES 192 193OPENSSL_malloc_init(), OPENSSL_free(), OPENSSL_clear_free() 194CRYPTO_free(), CRYPTO_clear_free() and CRYPTO_get_mem_functions() 195return no value. 196 197OPENSSL_malloc(), OPENSSL_aligned_alloc(), OPENSSL_zalloc(), OPENSSL_realloc(), 198OPENSSL_clear_realloc(), 199CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_realloc(), 200CRYPTO_clear_realloc(), 201OPENSSL_strdup(), and OPENSSL_strndup() 202return a pointer to allocated memory or NULL on error. 203 204CRYPTO_set_mem_functions() returns 1 on success or 0 on failure (almost 205always because allocations have already happened). 206 207CRYPTO_mem_leaks(), CRYPTO_mem_leaks_fp(), CRYPTO_mem_leaks_cb(), 208CRYPTO_set_mem_debug(), and CRYPTO_mem_ctrl() are deprecated and are no-ops that 209always return -1. 210OPENSSL_mem_debug_push(), OPENSSL_mem_debug_pop(), 211CRYPTO_mem_debug_push(), and CRYPTO_mem_debug_pop() 212are deprecated and are no-ops that always return 0. 213 214OPENSSL_strtoul() returns 1 on success and 0 in the event that an error has 215occurred. Specifically, 0 is returned in the following events: 216 217=over 4 218 219=item * 220 221If the underlying call to strtoul returned a non zero errno value 222 223=item * 224 225If the translation did not consume the entire input string, and the passed 226endptr value was NULL 227 228=item * 229 230If no characters were consumed in the translation 231 232=back 233 234Note that a success condition does not imply that the expected 235translation has been performed. For instance calling 236 237 OPENSSL_strtoul("0x12345", &endptr, 10, &num); 238 239will result in a successful translation with num having the value 0, and 240*endptr = 'x'. Be sure to validate how much data was consumed when calling this 241function. 242 243=head1 HISTORY 244 245OPENSSL_mem_debug_push(), OPENSSL_mem_debug_pop(), 246CRYPTO_mem_debug_push(), CRYPTO_mem_debug_pop(), 247CRYPTO_mem_leaks(), CRYPTO_mem_leaks_fp(), 248CRYPTO_mem_leaks_cb(), CRYPTO_set_mem_debug(), CRYPTO_mem_ctrl() 249were deprecated in OpenSSL 3.0. 250The memory-leak checking has been deprecated in OpenSSL 3.0 in favor of 251clang's memory and leak sanitizer. 252OPENSSL_aligned_alloc(), CRYPTO_aligned_alloc() were added in OpenSSL 3.4.0 253 254=head1 COPYRIGHT 255 256Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved. 257 258Licensed under the Apache License 2.0 (the "License"). You may not use 259this file except in compliance with the License. You can obtain a copy 260in the file LICENSE in the source distribution or at 261L<https://www.openssl.org/source/license.html>. 262 263=cut 264