xref: /openssl/doc/man3/EVP_PKEY_CTX_ctrl.pod (revision 7ed6de99)
1=pod
2
3=head1 NAME
4
5EVP_PKEY_CTX_ctrl,
6EVP_PKEY_CTX_ctrl_str,
7EVP_PKEY_CTX_ctrl_uint64,
8EVP_PKEY_CTX_md,
9EVP_PKEY_CTX_set_signature_md,
10EVP_PKEY_CTX_get_signature_md,
11EVP_PKEY_CTX_set_mac_key,
12EVP_PKEY_CTX_set_group_name,
13EVP_PKEY_CTX_get_group_name,
14EVP_PKEY_CTX_set_rsa_padding,
15EVP_PKEY_CTX_get_rsa_padding,
16EVP_PKEY_CTX_set_rsa_pss_saltlen,
17EVP_PKEY_CTX_get_rsa_pss_saltlen,
18EVP_PKEY_CTX_set_rsa_keygen_bits,
19EVP_PKEY_CTX_set_rsa_keygen_pubexp,
20EVP_PKEY_CTX_set1_rsa_keygen_pubexp,
21EVP_PKEY_CTX_set_rsa_keygen_primes,
22EVP_PKEY_CTX_set_rsa_mgf1_md_name,
23EVP_PKEY_CTX_set_rsa_mgf1_md,
24EVP_PKEY_CTX_get_rsa_mgf1_md,
25EVP_PKEY_CTX_get_rsa_mgf1_md_name,
26EVP_PKEY_CTX_set_rsa_oaep_md_name,
27EVP_PKEY_CTX_set_rsa_oaep_md,
28EVP_PKEY_CTX_get_rsa_oaep_md,
29EVP_PKEY_CTX_get_rsa_oaep_md_name,
30EVP_PKEY_CTX_set0_rsa_oaep_label,
31EVP_PKEY_CTX_get0_rsa_oaep_label,
32EVP_PKEY_CTX_set_dsa_paramgen_bits,
33EVP_PKEY_CTX_set_dsa_paramgen_q_bits,
34EVP_PKEY_CTX_set_dsa_paramgen_md,
35EVP_PKEY_CTX_set_dsa_paramgen_md_props,
36EVP_PKEY_CTX_set_dsa_paramgen_gindex,
37EVP_PKEY_CTX_set_dsa_paramgen_type,
38EVP_PKEY_CTX_set_dsa_paramgen_seed,
39EVP_PKEY_CTX_set_dh_paramgen_prime_len,
40EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
41EVP_PKEY_CTX_set_dh_paramgen_generator,
42EVP_PKEY_CTX_set_dh_paramgen_type,
43EVP_PKEY_CTX_set_dh_paramgen_gindex,
44EVP_PKEY_CTX_set_dh_paramgen_seed,
45EVP_PKEY_CTX_set_dh_rfc5114,
46EVP_PKEY_CTX_set_dhx_rfc5114,
47EVP_PKEY_CTX_set_dh_pad,
48EVP_PKEY_CTX_set_dh_nid,
49EVP_PKEY_CTX_set_dh_kdf_type,
50EVP_PKEY_CTX_get_dh_kdf_type,
51EVP_PKEY_CTX_set0_dh_kdf_oid,
52EVP_PKEY_CTX_get0_dh_kdf_oid,
53EVP_PKEY_CTX_set_dh_kdf_md,
54EVP_PKEY_CTX_get_dh_kdf_md,
55EVP_PKEY_CTX_set_dh_kdf_outlen,
56EVP_PKEY_CTX_get_dh_kdf_outlen,
57EVP_PKEY_CTX_set0_dh_kdf_ukm,
58EVP_PKEY_CTX_get0_dh_kdf_ukm,
59EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
60EVP_PKEY_CTX_set_ec_param_enc,
61EVP_PKEY_CTX_set_ecdh_cofactor_mode,
62EVP_PKEY_CTX_get_ecdh_cofactor_mode,
63EVP_PKEY_CTX_set_ecdh_kdf_type,
64EVP_PKEY_CTX_get_ecdh_kdf_type,
65EVP_PKEY_CTX_set_ecdh_kdf_md,
66EVP_PKEY_CTX_get_ecdh_kdf_md,
67EVP_PKEY_CTX_set_ecdh_kdf_outlen,
68EVP_PKEY_CTX_get_ecdh_kdf_outlen,
69EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
70EVP_PKEY_CTX_get0_ecdh_kdf_ukm,
71EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len,
72EVP_PKEY_CTX_set_kem_op
73- algorithm specific control operations
74
75=head1 SYNOPSIS
76
77 #include <openssl/evp.h>
78
79 int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
80                       int cmd, int p1, void *p2);
81 int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
82                              int cmd, uint64_t value);
83 int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
84                           const char *value);
85
86 int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
87
88 int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
89 int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
90
91 int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
92                              int len);
93 int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
94 int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);
95
96 int EVP_PKEY_CTX_set_kem_op(EVP_PKEY_CTX *ctx, const char *op);
97
98 #include <openssl/rsa.h>
99
100 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
101 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
102 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
103 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
104 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
105 int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
106 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
107 int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
108                                     const char *mdprops);
109 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
110 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
111 int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
112                                       size_t namelen);
113 int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
114                                       const char *mdprops);
115 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
116 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
117 int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
118                                       size_t namelen);
119 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label,
120                                      int len);
121 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
122
123 #include <openssl/dsa.h>
124
125 int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
126 int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
127 int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
128 int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
129                                            const char *md_name,
130                                            const char *md_properties);
131 int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
132 int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
133 int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
134                                        const unsigned char *seed,
135                                        size_t seedlen);
136
137 #include <openssl/dh.h>
138
139 int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
140 int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
141 int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
142 int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
143 int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
144 int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
145 int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
146 int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
147 int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
148 int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
149                                        const unsigned char *seed,
150                                        size_t seedlen);
151 int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
152 int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
153 int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
154 int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
155 int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
156 int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
157 int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
158 int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
159 int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
160
161 #include <openssl/ec.h>
162
163 int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
164 int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
165 int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
166 int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
167 int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
168 int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
169 int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
170 int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
171 int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
172 int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
173 int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
174
175 int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
176 int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
177 int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);
178
179The following functions have been deprecated since OpenSSL 3.0, and can be
180hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
181see L<openssl_user_macros(7)>:
182
183 #include <openssl/rsa.h>
184
185 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
186
187 #include <openssl/dh.h>
188
189 int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
190
191 #include <openssl/ec.h>
192
193 int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
194
195=head1 DESCRIPTION
196
197EVP_PKEY_CTX_ctrl() sends a control operation to the context I<ctx>. The key
198type used must match I<keytype> if it is not -1. The parameter I<optype> is a
199mask indicating which operations the control can be applied to.
200The control command is indicated in I<cmd> and any additional arguments in
201I<p1> and I<p2>.
202
203For I<cmd> = B<EVP_PKEY_CTRL_SET_MAC_KEY>, I<p1> is the length of the MAC key,
204and I<p2> is the MAC key. This is used by Poly1305, SipHash, HMAC and CMAC.
205
206Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will
207instead call one of the algorithm specific functions below.
208
209EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a
210uint64 value as I<p2> to EVP_PKEY_CTX_ctrl().
211
212EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm
213specific control operation to a context I<ctx> in string form. This is
214intended to be used for options specified on the command line or in text
215files. The commands supported are documented in the openssl utility
216command line pages for the option I<-pkeyopt> which is supported by the
217I<pkeyutl>, I<genpkey> and I<req> commands.
218
219EVP_PKEY_CTX_md() sends a message digest control operation to the context
220I<ctx>. The message digest is specified by its name I<md>.
221
222EVP_PKEY_CTX_set_signature_md() sets the message digest type used
223in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
224
225EVP_PKEY_CTX_get_signature_md()gets the message digest type used
226in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
227
228Key generation typically involves setting up parameters to be used and
229generating the private and public key data. Some algorithm implementations
230allow private key data to be set explicitly using EVP_PKEY_CTX_set_mac_key().
231In this case key generation is simply the process of setting up the
232parameters for the key and then setting the raw key data to the value explicitly.
233Normally applications would call L<EVP_PKEY_new_raw_private_key(3)> or similar
234functions instead.
235
236EVP_PKEY_CTX_set_mac_key() can be used with any of the algorithms supported by
237the L<EVP_PKEY_new_raw_private_key(3)> function.
238
239EVP_PKEY_CTX_set_group_name() sets the group name to I<name> for parameter and
240key generation. For example for EC keys this will set the curve name and for
241DH keys it will set the name of the finite field group.
242
243EVP_PKEY_CTX_get_group_name() finds the group name that's currently
244set with I<ctx>, and writes it to the location that I<name> points at, as long
245as its size I<namelen> is large enough to store that name, including a
246terminating NUL byte.
247
248=head2 RSA parameters
249
250EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for I<ctx>.
251The I<pad> parameter can take the value B<RSA_PKCS1_PADDING> for PKCS#1
252padding, B<RSA_NO_PADDING> for
253no padding, B<RSA_PKCS1_OAEP_PADDING> for OAEP padding (encrypt and
254decrypt only), B<RSA_X931_PADDING> for X9.31 padding (signature operations
255only), B<RSA_PKCS1_PSS_PADDING> (sign and verify only) and
256B<RSA_PKCS1_WITH_TLS_PADDING> for TLS RSA ClientKeyExchange message padding
257(decryption only).
258
259Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md()
260is used. If this function is called for PKCS#1 padding the plaintext buffer is
261an actual digest value and is encapsulated in a DigestInfo structure according
262to PKCS#1 when signing and this structure is expected (and stripped off) when
263verifying. If this control is not used with RSA and PKCS#1 padding then the
264supplied data is used directly and not encapsulated. In the case of X9.31
265padding for RSA the algorithm identifier byte is added or checked and removed
266if this control is called. If it is not called then the first byte of the plaintext
267buffer is expected to be the algorithm identifier byte.
268
269EVP_PKEY_CTX_get_rsa_padding() gets the RSA padding mode for I<ctx>.
270
271EVP_PKEY_CTX_set_rsa_pss_saltlen() sets the RSA PSS salt length to I<saltlen>.
272As its name implies it is only supported for PSS padding. If this function is
273not called then the salt length is maximized up to the digest length when
274signing and auto detection when verifying. Four special values are supported:
275
276=over 4
277
278=item B<RSA_PSS_SALTLEN_DIGEST>
279
280sets the salt length to the digest length.
281
282=item B<RSA_PSS_SALTLEN_MAX>
283
284sets the salt length to the maximum permissible value.
285
286=item B<RSA_PSS_SALTLEN_AUTO>
287
288causes the salt length to be automatically determined based on the
289B<PSS> block structure when verifying.  When signing, it has the same
290meaning as B<RSA_PSS_SALTLEN_MAX>.
291
292=item B<RSA_PSS_SALTLEN_AUTO_DIGEST_MAX>
293
294causes the salt length to be automatically determined based on the B<PSS> block
295structure when verifying, like B<RSA_PSS_SALTLEN_AUTO>.  When signing, the salt
296length is maximized up to a maximum of the digest length to comply with FIPS
297186-4 section 5.5.
298
299=back
300
301EVP_PKEY_CTX_get_rsa_pss_saltlen() gets the RSA PSS salt length for I<ctx>.
302The padding mode must already have been set to B<RSA_PKCS1_PSS_PADDING>.
303
304EVP_PKEY_CTX_set_rsa_keygen_bits() sets the RSA key length for
305RSA key generation to I<bits>. If not specified 2048 bits is used.
306
307EVP_PKEY_CTX_set1_rsa_keygen_pubexp() sets the public exponent value for RSA key
308generation to the value stored in I<pubexp>. Currently it should be an odd
309integer. In accordance with the OpenSSL naming convention, the I<pubexp> pointer
310must be freed independently of the EVP_PKEY_CTX (ie, it is internally copied).
311If not specified 65537 is used.
312
313EVP_PKEY_CTX_set_rsa_keygen_pubexp() does the same as
314EVP_PKEY_CTX_set1_rsa_keygen_pubexp() except that there is no internal copy and
315therefore I<pubexp> should not be modified or freed after the call.
316
317EVP_PKEY_CTX_set_rsa_keygen_primes() sets the number of primes for
318RSA key generation to I<primes>. If not specified 2 is used.
319
320EVP_PKEY_CTX_set_rsa_mgf1_md_name() sets the MGF1 digest for RSA
321padding schemes to the digest named I<mdname>. If the RSA algorithm
322implementation for the selected provider supports it then the digest will be
323fetched using the properties I<mdprops>. If not explicitly set the signing
324digest is used. The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>
325or B<RSA_PKCS1_PSS_PADDING>.
326
327EVP_PKEY_CTX_set_rsa_mgf1_md() does the same as
328EVP_PKEY_CTX_set_rsa_mgf1_md_name() except that the name of the digest is
329inferred from the supplied I<md> and it is not possible to specify any
330properties.
331
332EVP_PKEY_CTX_get_rsa_mgf1_md_name() gets the name of the MGF1
333digest algorithm for I<ctx>. If not explicitly set the signing digest is used.
334The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING> or
335B<RSA_PKCS1_PSS_PADDING>.
336
337EVP_PKEY_CTX_get_rsa_mgf1_md() does the same as
338EVP_PKEY_CTX_get_rsa_mgf1_md_name() except that it returns a pointer to an
339EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
340returned. The EVP_MD object may be NULL if the digest is not one of these (such
341as a digest only implemented in a third party provider).
342
343EVP_PKEY_CTX_set_rsa_oaep_md_name() sets the message digest type
344used in RSA OAEP to the digest named I<mdname>.  If the RSA algorithm
345implementation for the selected provider supports it then the digest will be
346fetched using the properties I<mdprops>. The padding mode must have been set to
347B<RSA_PKCS1_OAEP_PADDING>.
348
349EVP_PKEY_CTX_set_rsa_oaep_md() does the same as
350EVP_PKEY_CTX_set_rsa_oaep_md_name() except that the name of the digest is
351inferred from the supplied I<md> and it is not possible to specify any
352properties.
353
354EVP_PKEY_CTX_get_rsa_oaep_md_name() gets the message digest
355algorithm name used in RSA OAEP and stores it in the buffer I<name> which is of
356size I<namelen>. The padding mode must have been set to
357B<RSA_PKCS1_OAEP_PADDING>. The buffer should be sufficiently large for any
358expected digest algorithm names or the function will fail.
359
360EVP_PKEY_CTX_get_rsa_oaep_md() does the same as
361EVP_PKEY_CTX_get_rsa_oaep_md_name() except that it returns a pointer to an
362EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
363returned. The EVP_MD object may be NULL if the digest is not one of these (such
364as a digest only implemented in a third party provider).
365
366EVP_PKEY_CTX_set0_rsa_oaep_label() sets the RSA OAEP label to binary data
367I<label> and its length in bytes to I<len>. If I<label> is NULL or I<len> is 0,
368the label is cleared. The library takes ownership of the label so the
369caller should not free the original memory pointed to by I<label>.
370The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>.
371
372EVP_PKEY_CTX_get0_rsa_oaep_label() gets the RSA OAEP label to
373I<label>. The return value is the label length. The padding mode
374must have been set to B<RSA_PKCS1_OAEP_PADDING>. The resulting pointer is owned
375by the library and should not be freed by the caller.
376
377B<RSA_PKCS1_WITH_TLS_PADDING> is used when decrypting an RSA encrypted TLS
378pre-master secret in a TLS ClientKeyExchange message. It is the same as
379RSA_PKCS1_PADDING except that it additionally verifies that the result is the
380correct length and the first two bytes are the protocol version initially
381requested by the client. If the encrypted content is publicly invalid then the
382decryption will fail. However, if the padding checks fail then decryption will
383still appear to succeed but a random TLS premaster secret will be returned
384instead. This padding mode accepts two parameters which can be set using the
385L<EVP_PKEY_CTX_set_params(3)> function. These are
386OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION and
387OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION, both of which are expected to be
388unsigned integers. Normally only the first of these will be set and represents
389the TLS protocol version that was first requested by the client (e.g. 0x0303 for
390TLSv1.2, 0x0302 for TLSv1.1 etc). Historically some buggy clients would use the
391negotiated protocol version instead of the protocol version first requested. If
392this behaviour should be tolerated then
393OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION should be set to the actual
394negotiated protocol version. Otherwise it should be left unset.
395
396Similarly to the B<RSA_PKCS1_WITH_TLS_PADDING> above, since OpenSSL version
3973.2.0, the use of B<RSA_PKCS1_PADDING> will return a randomly generated message
398instead of padding errors in case padding checks fail. Applications that
399want to remain secure while using earlier versions of OpenSSL, or a provider
400that doesn't implement the implicit rejection mechanism, still need to
401handle both the error code from the RSA decryption operation and the
402returned message in a side channel secure manner.
403This protection against Bleichenbacher attacks can be disabled by setting
404B<OSSL_ASYM_CIPHER_PARAM_IMPLICIT_REJECTION> (an unsigned integer) to 0.
405
406=head2 DSA parameters
407
408EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for DSA
409parameter generation to B<nbits>. If not specified, 2048 is used.
410
411EVP_PKEY_CTX_set_dsa_paramgen_q_bits() sets the number of bits in the subprime
412parameter I<q> for DSA parameter generation to I<qbits>. If not specified, 224
413is used. If a digest function is specified below, this parameter is ignored and
414instead, the number of bits in I<q> matches the size of the digest.
415
416EVP_PKEY_CTX_set_dsa_paramgen_md() sets the digest function used for DSA
417parameter generation to I<md>. If not specified, one of SHA-1, SHA-224, or
418SHA-256 is selected to match the bit length of I<q> above.
419
420EVP_PKEY_CTX_set_dsa_paramgen_md_props() sets the digest function used for DSA
421parameter generation using I<md_name> and I<md_properties> to retrieve the
422digest from a provider.
423If not specified, I<md_name> will be set to one of SHA-1, SHA-224, or
424SHA-256 depending on the bit length of I<q> above. I<md_properties> is a
425property query string that has a default value of '' if not specified.
426
427EVP_PKEY_CTX_set_dsa_paramgen_gindex() sets the I<gindex> used by the generator
428G. The default value is -1 which uses unverifiable g, otherwise a positive value
429uses verifiable g. This value must be saved if key validation of g is required,
430since it is not part of a persisted key.
431
432EVP_PKEY_CTX_set_dsa_paramgen_seed() sets the I<seed> to use for generation
433rather than using a randomly generated value for the seed. This is useful for
434testing purposes only and can fail if the seed does not produce primes for both
435p & q on its first iteration. This value must be saved if key validation of
436p, q, and verifiable g are required, since it is not part of a persisted key.
437
438EVP_PKEY_CTX_set_dsa_paramgen_type() sets the generation type to use FIPS186-4
439generation if I<name> is "fips186_4", or FIPS186-2 generation if I<name> is
440"fips186_2". The default value for the default provider is "fips186_2". The
441default value for the FIPS provider is "fips186_4".
442
443=head2 DH parameters
444
445EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH prime
446parameter I<p> for DH parameter generation. If this function is not called then
4472048 is used. Only accepts lengths greater than or equal to 256.
448
449EVP_PKEY_CTX_set_dh_paramgen_subprime_len() sets the length of the DH
450optional subprime parameter I<q> for DH parameter generation. The default is
451256 if the prime is at least 2048 bits long or 160 otherwise. The DH paramgen
452type must have been set to "fips186_4".
453
454EVP_PKEY_CTX_set_dh_paramgen_generator() sets DH generator to I<gen> for DH
455parameter generation. If not specified 2 is used.
456
457EVP_PKEY_CTX_set_dh_paramgen_type() sets the key type for DH parameter
458generation. The supported parameters are:
459
460=over 4
461
462=item B<DH_PARAMGEN_TYPE_GROUP>
463
464Use a named group. If only the safe prime parameter I<p> is set this can be
465used to select a ffdhe safe prime group of the correct size.
466
467=item B<DH_PARAMGEN_TYPE_FIPS_186_4>
468
469FIPS186-4 FFC parameter generator.
470
471=item B<DH_PARAMGEN_TYPE_FIPS_186_2>
472
473FIPS186-2 FFC parameter generator (X9.42 DH).
474
475=item B<DH_PARAMGEN_TYPE_GENERATOR>
476
477Uses a safe prime generator g (PKCS#3 format).
478
479=back
480
481The default in the default provider is B<DH_PARAMGEN_TYPE_GENERATOR> for the
482"DH" keytype, and B<DH_PARAMGEN_TYPE_FIPS_186_2> for the "DHX" keytype. In the
483FIPS provider the default value is B<DH_PARAMGEN_TYPE_GROUP> for the "DH"
484keytype and <B<DH_PARAMGEN_TYPE_FIPS_186_4> for the "DHX" keytype.
485
486EVP_PKEY_CTX_set_dh_paramgen_gindex() sets the I<gindex> used by the generator G.
487The default value is -1 which uses unverifiable g, otherwise a positive value
488uses verifiable g. This value must be saved if key validation of g is required,
489since it is not part of a persisted key.
490
491EVP_PKEY_CTX_set_dh_paramgen_seed() sets the I<seed> to use for generation
492rather than using a randomly generated value for the seed. This is useful for
493testing purposes only and can fail if the seed does not produce primes for both
494p & q on its first iteration. This value must be saved if key validation of p, q,
495and verifiable g are required, since it is not part of a persisted key.
496
497EVP_PKEY_CTX_set_dh_pad() sets the DH padding mode.
498If I<pad> is 1 the shared secret is padded with zeros up to the size of the DH
499prime I<p>.
500If I<pad> is zero (the default) then no padding is performed.
501
502EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to
503I<nid> as defined in RFC7919 or RFC3526. The I<nid> parameter must be
504B<NID_ffdhe2048>, B<NID_ffdhe3072>, B<NID_ffdhe4096>, B<NID_ffdhe6144>,
505B<NID_ffdhe8192>, B<NID_modp_1536>, B<NID_modp_2048>, B<NID_modp_3072>,
506B<NID_modp_4096>, B<NID_modp_6144>, B<NID_modp_8192> or B<NID_undef> to clear
507the stored value. This function can be called during parameter or key generation.
508The nid parameter and the rfc5114 parameter are mutually exclusive.
509
510EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() both set the
511DH parameters to the values defined in RFC5114. The I<rfc5114> parameter must
512be 1, 2 or 3 corresponding to RFC5114 sections 2.1, 2.2 and 2.3. or 0 to clear
513the stored value. This macro can be called during parameter generation. The
514I<ctx> must have a key type of B<EVP_PKEY_DHX>.
515The rfc5114 parameter and the nid parameter are mutually exclusive.
516
517=head2 DH key derivation function parameters
518
519Note that all of the following functions require that the I<ctx> parameter has
520a private key type of B<EVP_PKEY_DHX>. When using key derivation, the output of
521EVP_PKEY_derive() is the output of the KDF instead of the DH shared secret.
522The KDF output is typically used as a Key Encryption Key (KEK) that in turn
523encrypts a Content Encryption Key (CEK).
524
525EVP_PKEY_CTX_set_dh_kdf_type() sets the key derivation function type to I<kdf>
526for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
527B<EVP_PKEY_DH_KDF_X9_42> which uses the key derivation specified in RFC2631
528(based on the keying algorithm described in X9.42). When using key derivation,
529the I<kdf_oid>, I<kdf_md> and I<kdf_outlen> parameters must also be specified.
530
531EVP_PKEY_CTX_get_dh_kdf_type() gets the key derivation function type for I<ctx>
532used for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
533B<EVP_PKEY_DH_KDF_X9_42>.
534
535EVP_PKEY_CTX_set0_dh_kdf_oid() sets the key derivation function object
536identifier to I<oid> for DH key derivation. This OID should identify the
537algorithm to be used with the Content Encryption Key.
538The library takes ownership of the object identifier so the caller should not
539free the original memory pointed to by I<oid>.
540
541EVP_PKEY_CTX_get0_dh_kdf_oid() gets the key derivation function oid for I<ctx>
542used for DH key derivation. The resulting pointer is owned by the library and
543should not be freed by the caller.
544
545EVP_PKEY_CTX_set_dh_kdf_md() sets the key derivation function message digest to
546I<md> for DH key derivation. Note that RFC2631 specifies that this digest should
547be SHA1 but OpenSSL tolerates other digests.
548
549EVP_PKEY_CTX_get_dh_kdf_md() gets the key derivation function message digest for
550I<ctx> used for DH key derivation.
551
552EVP_PKEY_CTX_set_dh_kdf_outlen() sets the key derivation function output length
553to I<len> for DH key derivation.
554
555EVP_PKEY_CTX_get_dh_kdf_outlen() gets the key derivation function output length
556for I<ctx> used for DH key derivation.
557
558EVP_PKEY_CTX_set0_dh_kdf_ukm() sets the user key material to I<ukm> and its
559length to I<len> for DH key derivation. This parameter is optional and
560corresponds to the partyAInfo field in RFC2631 terms. The specification
561requires that it is 512 bits long but this is not enforced by OpenSSL.
562The library takes ownership of the user key material so the caller should not
563free the original memory pointed to by I<ukm>.
564
565EVP_PKEY_CTX_get0_dh_kdf_ukm() gets the user key material for I<ctx>.
566The return value is the user key material length. The resulting pointer is owned
567by the library and should not be freed by the caller.
568
569=head2 EC parameters
570
571Use EVP_PKEY_CTX_set_group_name() (described above) to set the curve name to
572I<name> for parameter and key generation.
573
574EVP_PKEY_CTX_set_ec_paramgen_curve_nid() does the same as
575EVP_PKEY_CTX_set_group_name(), but is specific to EC and uses a I<nid> rather
576than a name string.
577
578For EC parameter generation, one of EVP_PKEY_CTX_set_group_name()
579or EVP_PKEY_CTX_set_ec_paramgen_curve_nid() must be called or an error occurs
580because there is no default curve.
581These function can also be called to set the curve explicitly when
582generating an EC key.
583
584EVP_PKEY_CTX_get_group_name() (described above) can be used to obtain the curve
585name that's currently set with I<ctx>.
586
587EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to I<param_enc>
588when generating EC parameters or an EC key. The encoding can be
589B<OPENSSL_EC_EXPLICIT_CURVE> for explicit parameters (the default in versions
590of OpenSSL before 1.1.0) or B<OPENSSL_EC_NAMED_CURVE> to use named curve form.
591For maximum compatibility the named curve form should be used. Note: the
592B<OPENSSL_EC_NAMED_CURVE> value was added in OpenSSL 1.1.0; previous
593versions should use 0 instead.
594
595=head2 ECDH parameters
596
597EVP_PKEY_CTX_set_ecdh_cofactor_mode() sets the cofactor mode to I<cofactor_mode>
598for ECDH key derivation. Possible values are 1 to enable cofactor
599key derivation, 0 to disable it and -1 to clear the stored cofactor mode and
600fallback to the private key cofactor mode.
601
602EVP_PKEY_CTX_get_ecdh_cofactor_mode() returns the cofactor mode for I<ctx> used
603for ECDH key derivation. Possible values are 1 when cofactor key derivation is
604enabled and 0 otherwise.
605
606=head2 ECDH key derivation function parameters
607
608EVP_PKEY_CTX_set_ecdh_kdf_type() sets the key derivation function type to
609I<kdf> for ECDH key derivation. Possible values are B<EVP_PKEY_ECDH_KDF_NONE>
610and B<EVP_PKEY_ECDH_KDF_X9_63> which uses the key derivation specified in X9.63.
611When using key derivation, the I<kdf_md> and I<kdf_outlen> parameters must
612also be specified.
613
614EVP_PKEY_CTX_get_ecdh_kdf_type() returns the key derivation function type for
615I<ctx> used for ECDH key derivation. Possible values are
616B<EVP_PKEY_ECDH_KDF_NONE> and B<EVP_PKEY_ECDH_KDF_X9_63>.
617
618EVP_PKEY_CTX_set_ecdh_kdf_md() sets the key derivation function message digest
619to I<md> for ECDH key derivation. Note that X9.63 specifies that this digest
620should be SHA1 but OpenSSL tolerates other digests.
621
622EVP_PKEY_CTX_get_ecdh_kdf_md() gets the key derivation function message digest
623for I<ctx> used for ECDH key derivation.
624
625EVP_PKEY_CTX_set_ecdh_kdf_outlen() sets the key derivation function output
626length to I<len> for ECDH key derivation.
627
628EVP_PKEY_CTX_get_ecdh_kdf_outlen() gets the key derivation function output
629length for I<ctx> used for ECDH key derivation.
630
631EVP_PKEY_CTX_set0_ecdh_kdf_ukm() sets the user key material to I<ukm> for ECDH
632key derivation. This parameter is optional and corresponds to the shared info in
633X9.63 terms. The library takes ownership of the user key material so the caller
634should not free the original memory pointed to by I<ukm>.
635
636EVP_PKEY_CTX_get0_ecdh_kdf_ukm() gets the user key material for I<ctx>.
637The return value is the user key material length. The resulting pointer is owned
638by the library and should not be freed by the caller.
639
640=head2 Other parameters
641
642EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len()
643are used to manipulate the special identifier field for specific signature
644algorithms such as SM2. The EVP_PKEY_CTX_set1_id() sets an ID pointed by I<id> with
645the length I<id_len> to the library. The library takes a copy of the id so that
646the caller can safely free the original memory pointed to by I<id>.
647EVP_PKEY_CTX_get1_id_len() returns the length of the ID set via a previous call
648to EVP_PKEY_CTX_set1_id(). The length is usually used to allocate adequate
649memory for further calls to EVP_PKEY_CTX_get1_id(). EVP_PKEY_CTX_get1_id()
650returns the previously set ID value to caller in I<id>. The caller should
651allocate adequate memory space for the I<id> before calling EVP_PKEY_CTX_get1_id().
652
653EVP_PKEY_CTX_set_kem_op() sets the KEM operation to run. This can be set after
654EVP_PKEY_encapsulate_init() or EVP_PKEY_decapsulate_init() to select the kem
655operation. For the key types that support encapsulation and don't have the
656default operation, e.g. RSA, this function must be called before
657EVP_PKEY_encapsulate() or EVP_PKEY_decapsulate(). The supported values for the
658built-in algorithms are enumerated in L<EVP_KEM-RSA(7)>, L<EVP_KEM-EC(7)>,
659L<EVP_KEM-X25519(7)>, and L<EVP_KEM-X448(7)>.
660
661=head1 RETURN VALUES
662
663All other functions described on this page return a positive value for success
664and 0 or a negative value for failure. In particular a return value of -2
665indicates the operation is not supported by the public key algorithm.
666
667=head1 SEE ALSO
668
669L<EVP_PKEY_CTX_set_params(3)>,
670L<EVP_PKEY_CTX_new(3)>,
671L<EVP_PKEY_encrypt(3)>,
672L<EVP_PKEY_decrypt(3)>,
673L<EVP_PKEY_sign(3)>,
674L<EVP_PKEY_verify(3)>,
675L<EVP_PKEY_verify_recover(3)>,
676L<EVP_PKEY_derive(3)>,
677L<EVP_PKEY_keygen(3)>
678L<EVP_PKEY_encapsulate(3)>
679L<EVP_PKEY_decapsulate(3)>
680
681=head1 HISTORY
682
683EVP_PKEY_CTX_get_rsa_oaep_md_name(), EVP_PKEY_CTX_get_rsa_mgf1_md_name(),
684EVP_PKEY_CTX_set_rsa_mgf1_md_name(), EVP_PKEY_CTX_set_rsa_oaep_md_name(),
685EVP_PKEY_CTX_set_dsa_paramgen_md_props(), EVP_PKEY_CTX_set_dsa_paramgen_gindex(),
686EVP_PKEY_CTX_set_dsa_paramgen_type(), EVP_PKEY_CTX_set_dsa_paramgen_seed(),
687EVP_PKEY_CTX_set_group_name() and EVP_PKEY_CTX_get_group_name()
688were added in OpenSSL 3.0.
689
690The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
691EVP_PKEY_CTX_get1_id_len() macros were added in 1.1.1, other functions were
692added in OpenSSL 1.0.0.
693
694In OpenSSL 1.1.1 and below the functions were mostly macros.
695From OpenSSL 3.0 they are all functions.
696
697EVP_PKEY_CTX_set_rsa_keygen_pubexp(), EVP_PKEY_CTX_get0_dh_kdf_ukm(),
698and EVP_PKEY_CTX_get0_ecdh_kdf_ukm() were deprecated in OpenSSL 3.0.
699
700=head1 COPYRIGHT
701
702Copyright 2006-2024 The OpenSSL Project Authors. All Rights Reserved.
703
704Licensed under the Apache License 2.0 (the "License").  You may not use
705this file except in compliance with the License.  You can obtain a copy
706in the file LICENSE in the source distribution or at
707L<https://www.openssl.org/source/license.html>.
708
709=cut
710