xref: /openssl/crypto/rc4/asm/rc4-x86_64.pl (revision 33388b44)
1#! /usr/bin/env perl
2# Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# July 2004
18#
19# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
20# "hand-coded assembler"] doesn't stand for the whole improvement
21# coefficient. It turned out that eliminating RC4_CHAR from config
22# line results in ~40% improvement (yes, even for C implementation).
23# Presumably it has everything to do with AMD cache architecture and
24# RAW or whatever penalties. Once again! The module *requires* config
25# line *without* RC4_CHAR! As for coding "secret," I bet on partial
26# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
27# I simply 'inc %r8b'. Even though optimization manual discourages
28# to operate on partial registers, it turned out to be the best bet.
29# At least for AMD... How IA32E would perform remains to be seen...
30
31# November 2004
32#
33# As was shown by Marc Bevand reordering of couple of load operations
34# results in even higher performance gain of 3.3x:-) At least on
35# Opteron... For reference, 1x in this case is RC4_CHAR C-code
36# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
37# Latter means that if you want to *estimate* what to expect from
38# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
39
40# November 2004
41#
42# Intel P4 EM64T core was found to run the AMD64 code really slow...
43# The only way to achieve comparable performance on P4 was to keep
44# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
45# compose blended code, which would perform even within 30% marginal
46# on either AMD and Intel platforms, I implement both cases. See
47# rc4_skey.c for further details...
48
49# April 2005
50#
51# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
52# those with add/sub results in 50% performance improvement of folded
53# loop...
54
55# May 2005
56#
57# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
58# performance by >30% [unlike P4 32-bit case that is]. But this is
59# provided that loads are reordered even more aggressively! Both code
60# paths, AMD64 and EM64T, reorder loads in essentially same manner
61# as my IA-64 implementation. On Opteron this resulted in modest 5%
62# improvement [I had to test it], while final Intel P4 performance
63# achieves respectful 432MBps on 2.8GHz processor now. For reference.
64# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
65# RC4_INT code-path. While if executed on Opteron, it's only 25%
66# slower than the RC4_INT one [meaning that if CPU µ-arch detection
67# is not implemented, then this final RC4_CHAR code-path should be
68# preferred, as it provides better *all-round* performance].
69
70# March 2007
71#
72# Intel Core2 was observed to perform poorly on both code paths:-( It
73# apparently suffers from some kind of partial register stall, which
74# occurs in 64-bit mode only [as virtually identical 32-bit loop was
75# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
76# cloop1 boosts its performance by 80%! This loop appears to be optimal
77# fit for Core2 and therefore the code was modified to skip cloop8 on
78# this CPU.
79
80# May 2010
81#
82# Intel Westmere was observed to perform suboptimally. Adding yet
83# another movzb to cloop1 improved performance by almost 50%! Core2
84# performance is improved too, but nominally...
85
86# May 2011
87#
88# The only code path that was not modified is P4-specific one. Non-P4
89# Intel code path optimization is heavily based on submission by Maxim
90# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
91# some of the ideas even in attempt to optimize the original RC4_INT
92# code path... Current performance in cycles per processed byte (less
93# is better) and improvement coefficients relative to previous
94# version of this module are:
95#
96# Opteron	5.3/+0%(*)
97# P4		6.5
98# Core2		6.2/+15%(**)
99# Westmere	4.2/+60%
100# Sandy Bridge	4.2/+120%
101# Atom		9.3/+80%
102# VIA Nano	6.4/+4%
103# Ivy Bridge	4.1/+30%
104# Bulldozer	4.5/+30%(*)
105#
106# (*)	But corresponding loop has less instructions, which should have
107#	positive effect on upcoming Bulldozer, which has one less ALU.
108#	For reference, Intel code runs at 6.8 cpb rate on Opteron.
109# (**)	Note that Core2 result is ~15% lower than corresponding result
110#	for 32-bit code, meaning that it's possible to improve it,
111#	but more than likely at the cost of the others (see rc4-586.pl
112#	to get the idea)...
113
114# $output is the last argument if it looks like a file (it has an extension)
115# $flavour is the first argument if it doesn't look like a file
116$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
117$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
118
119$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
120
121$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
122( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
123( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
124die "can't locate x86_64-xlate.pl";
125
126open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
127    or die "can't call $xlate: $!";
128*STDOUT=*OUT;
129
130$dat="%rdi";	    # arg1
131$len="%rsi";	    # arg2
132$inp="%rdx";	    # arg3
133$out="%rcx";	    # arg4
134
135{
136$code=<<___;
137.text
138.extern	OPENSSL_ia32cap_P
139
140.globl	RC4
141.type	RC4,\@function,4
142.align	16
143RC4:
144.cfi_startproc
145	endbranch
146	or	$len,$len
147	jne	.Lentry
148	ret
149.Lentry:
150	push	%rbx
151.cfi_push	%rbx
152	push	%r12
153.cfi_push	%r12
154	push	%r13
155.cfi_push	%r13
156.Lprologue:
157	mov	$len,%r11
158	mov	$inp,%r12
159	mov	$out,%r13
160___
161my $len="%r11";		# reassign input arguments
162my $inp="%r12";
163my $out="%r13";
164
165my @XX=("%r10","%rsi");
166my @TX=("%rax","%rbx");
167my $YY="%rcx";
168my $TY="%rdx";
169
170$code.=<<___;
171	xor	$XX[0],$XX[0]
172	xor	$YY,$YY
173
174	lea	8($dat),$dat
175	mov	-8($dat),$XX[0]#b
176	mov	-4($dat),$YY#b
177	cmpl	\$-1,256($dat)
178	je	.LRC4_CHAR
179	mov	OPENSSL_ia32cap_P(%rip),%r8d
180	xor	$TX[1],$TX[1]
181	inc	$XX[0]#b
182	sub	$XX[0],$TX[1]
183	sub	$inp,$out
184	movl	($dat,$XX[0],4),$TX[0]#d
185	test	\$-16,$len
186	jz	.Lloop1
187	bt	\$30,%r8d	# Intel CPU?
188	jc	.Lintel
189	and	\$7,$TX[1]
190	lea	1($XX[0]),$XX[1]
191	jz	.Loop8
192	sub	$TX[1],$len
193.Loop8_warmup:
194	add	$TX[0]#b,$YY#b
195	movl	($dat,$YY,4),$TY#d
196	movl	$TX[0]#d,($dat,$YY,4)
197	movl	$TY#d,($dat,$XX[0],4)
198	add	$TY#b,$TX[0]#b
199	inc	$XX[0]#b
200	movl	($dat,$TX[0],4),$TY#d
201	movl	($dat,$XX[0],4),$TX[0]#d
202	xorb	($inp),$TY#b
203	movb	$TY#b,($out,$inp)
204	lea	1($inp),$inp
205	dec	$TX[1]
206	jnz	.Loop8_warmup
207
208	lea	1($XX[0]),$XX[1]
209	jmp	.Loop8
210.align	16
211.Loop8:
212___
213for ($i=0;$i<8;$i++) {
214$code.=<<___ if ($i==7);
215	add	\$8,$XX[1]#b
216___
217$code.=<<___;
218	add	$TX[0]#b,$YY#b
219	movl	($dat,$YY,4),$TY#d
220	movl	$TX[0]#d,($dat,$YY,4)
221	movl	`4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
222	ror	\$8,%r8				# ror is redundant when $i=0
223	movl	$TY#d,4*$i($dat,$XX[0],4)
224	add	$TX[0]#b,$TY#b
225	movb	($dat,$TY,4),%r8b
226___
227push(@TX,shift(@TX)); #push(@XX,shift(@XX));	# "rotate" registers
228}
229$code.=<<___;
230	add	\$8,$XX[0]#b
231	ror	\$8,%r8
232	sub	\$8,$len
233
234	xor	($inp),%r8
235	mov	%r8,($out,$inp)
236	lea	8($inp),$inp
237
238	test	\$-8,$len
239	jnz	.Loop8
240	cmp	\$0,$len
241	jne	.Lloop1
242	jmp	.Lexit
243
244.align	16
245.Lintel:
246	test	\$-32,$len
247	jz	.Lloop1
248	and	\$15,$TX[1]
249	jz	.Loop16_is_hot
250	sub	$TX[1],$len
251.Loop16_warmup:
252	add	$TX[0]#b,$YY#b
253	movl	($dat,$YY,4),$TY#d
254	movl	$TX[0]#d,($dat,$YY,4)
255	movl	$TY#d,($dat,$XX[0],4)
256	add	$TY#b,$TX[0]#b
257	inc	$XX[0]#b
258	movl	($dat,$TX[0],4),$TY#d
259	movl	($dat,$XX[0],4),$TX[0]#d
260	xorb	($inp),$TY#b
261	movb	$TY#b,($out,$inp)
262	lea	1($inp),$inp
263	dec	$TX[1]
264	jnz	.Loop16_warmup
265
266	mov	$YY,$TX[1]
267	xor	$YY,$YY
268	mov	$TX[1]#b,$YY#b
269
270.Loop16_is_hot:
271	lea	($dat,$XX[0],4),$XX[1]
272___
273sub RC4_loop {
274  my $i=shift;
275  my $j=$i<0?0:$i;
276  my $xmm="%xmm".($j&1);
277
278    $code.="	add	\$16,$XX[0]#b\n"		if ($i==15);
279    $code.="	movdqu	($inp),%xmm2\n"			if ($i==15);
280    $code.="	add	$TX[0]#b,$YY#b\n"		if ($i<=0);
281    $code.="	movl	($dat,$YY,4),$TY#d\n";
282    $code.="	pxor	%xmm0,%xmm2\n"			if ($i==0);
283    $code.="	psllq	\$8,%xmm1\n"			if ($i==0);
284    $code.="	pxor	$xmm,$xmm\n"			if ($i<=1);
285    $code.="	movl	$TX[0]#d,($dat,$YY,4)\n";
286    $code.="	add	$TY#b,$TX[0]#b\n";
287    $code.="	movl	`4*($j+1)`($XX[1]),$TX[1]#d\n"	if ($i<15);
288    $code.="	movz	$TX[0]#b,$TX[0]#d\n";
289    $code.="	movl	$TY#d,4*$j($XX[1])\n";
290    $code.="	pxor	%xmm1,%xmm2\n"			if ($i==0);
291    $code.="	lea	($dat,$XX[0],4),$XX[1]\n"	if ($i==15);
292    $code.="	add	$TX[1]#b,$YY#b\n"		if ($i<15);
293    $code.="	pinsrw	\$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
294    $code.="	movdqu	%xmm2,($out,$inp)\n"		if ($i==0);
295    $code.="	lea	16($inp),$inp\n"		if ($i==0);
296    $code.="	movl	($XX[1]),$TX[1]#d\n"		if ($i==15);
297}
298	RC4_loop(-1);
299$code.=<<___;
300	jmp	.Loop16_enter
301.align	16
302.Loop16:
303___
304
305for ($i=0;$i<16;$i++) {
306    $code.=".Loop16_enter:\n"		if ($i==1);
307	RC4_loop($i);
308	push(@TX,shift(@TX)); 		# "rotate" registers
309}
310$code.=<<___;
311	mov	$YY,$TX[1]
312	xor	$YY,$YY			# keyword to partial register
313	sub	\$16,$len
314	mov	$TX[1]#b,$YY#b
315	test	\$-16,$len
316	jnz	.Loop16
317
318	psllq	\$8,%xmm1
319	pxor	%xmm0,%xmm2
320	pxor	%xmm1,%xmm2
321	movdqu	%xmm2,($out,$inp)
322	lea	16($inp),$inp
323
324	cmp	\$0,$len
325	jne	.Lloop1
326	jmp	.Lexit
327
328.align	16
329.Lloop1:
330	add	$TX[0]#b,$YY#b
331	movl	($dat,$YY,4),$TY#d
332	movl	$TX[0]#d,($dat,$YY,4)
333	movl	$TY#d,($dat,$XX[0],4)
334	add	$TY#b,$TX[0]#b
335	inc	$XX[0]#b
336	movl	($dat,$TX[0],4),$TY#d
337	movl	($dat,$XX[0],4),$TX[0]#d
338	xorb	($inp),$TY#b
339	movb	$TY#b,($out,$inp)
340	lea	1($inp),$inp
341	dec	$len
342	jnz	.Lloop1
343	jmp	.Lexit
344
345.align	16
346.LRC4_CHAR:
347	add	\$1,$XX[0]#b
348	movzb	($dat,$XX[0]),$TX[0]#d
349	test	\$-8,$len
350	jz	.Lcloop1
351	jmp	.Lcloop8
352.align	16
353.Lcloop8:
354	mov	($inp),%r8d
355	mov	4($inp),%r9d
356___
357# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
358for ($i=0;$i<4;$i++) {
359$code.=<<___;
360	add	$TX[0]#b,$YY#b
361	lea	1($XX[0]),$XX[1]
362	movzb	($dat,$YY),$TY#d
363	movzb	$XX[1]#b,$XX[1]#d
364	movzb	($dat,$XX[1]),$TX[1]#d
365	movb	$TX[0]#b,($dat,$YY)
366	cmp	$XX[1],$YY
367	movb	$TY#b,($dat,$XX[0])
368	jne	.Lcmov$i			# Intel cmov is sloooow...
369	mov	$TX[0],$TX[1]
370.Lcmov$i:
371	add	$TX[0]#b,$TY#b
372	xor	($dat,$TY),%r8b
373	ror	\$8,%r8d
374___
375push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
376}
377for ($i=4;$i<8;$i++) {
378$code.=<<___;
379	add	$TX[0]#b,$YY#b
380	lea	1($XX[0]),$XX[1]
381	movzb	($dat,$YY),$TY#d
382	movzb	$XX[1]#b,$XX[1]#d
383	movzb	($dat,$XX[1]),$TX[1]#d
384	movb	$TX[0]#b,($dat,$YY)
385	cmp	$XX[1],$YY
386	movb	$TY#b,($dat,$XX[0])
387	jne	.Lcmov$i			# Intel cmov is sloooow...
388	mov	$TX[0],$TX[1]
389.Lcmov$i:
390	add	$TX[0]#b,$TY#b
391	xor	($dat,$TY),%r9b
392	ror	\$8,%r9d
393___
394push(@TX,shift(@TX)); push(@XX,shift(@XX));	# "rotate" registers
395}
396$code.=<<___;
397	lea	-8($len),$len
398	mov	%r8d,($out)
399	lea	8($inp),$inp
400	mov	%r9d,4($out)
401	lea	8($out),$out
402
403	test	\$-8,$len
404	jnz	.Lcloop8
405	cmp	\$0,$len
406	jne	.Lcloop1
407	jmp	.Lexit
408___
409$code.=<<___;
410.align	16
411.Lcloop1:
412	add	$TX[0]#b,$YY#b
413	movzb	$YY#b,$YY#d
414	movzb	($dat,$YY),$TY#d
415	movb	$TX[0]#b,($dat,$YY)
416	movb	$TY#b,($dat,$XX[0])
417	add	$TX[0]#b,$TY#b
418	add	\$1,$XX[0]#b
419	movzb	$TY#b,$TY#d
420	movzb	$XX[0]#b,$XX[0]#d
421	movzb	($dat,$TY),$TY#d
422	movzb	($dat,$XX[0]),$TX[0]#d
423	xorb	($inp),$TY#b
424	lea	1($inp),$inp
425	movb	$TY#b,($out)
426	lea	1($out),$out
427	sub	\$1,$len
428	jnz	.Lcloop1
429	jmp	.Lexit
430
431.align	16
432.Lexit:
433	sub	\$1,$XX[0]#b
434	movl	$XX[0]#d,-8($dat)
435	movl	$YY#d,-4($dat)
436
437	mov	(%rsp),%r13
438.cfi_restore	%r13
439	mov	8(%rsp),%r12
440.cfi_restore	%r12
441	mov	16(%rsp),%rbx
442.cfi_restore	%rbx
443	add	\$24,%rsp
444.cfi_adjust_cfa_offset	-24
445.Lepilogue:
446	ret
447.cfi_endproc
448.size	RC4,.-RC4
449___
450}
451
452$idx="%r8";
453$ido="%r9";
454
455$code.=<<___;
456.globl	RC4_set_key
457.type	RC4_set_key,\@function,3
458.align	16
459RC4_set_key:
460.cfi_startproc
461	endbranch
462	lea	8($dat),$dat
463	lea	($inp,$len),$inp
464	neg	$len
465	mov	$len,%rcx
466	xor	%eax,%eax
467	xor	$ido,$ido
468	xor	%r10,%r10
469	xor	%r11,%r11
470
471	mov	OPENSSL_ia32cap_P(%rip),$idx#d
472	bt	\$20,$idx#d	# RC4_CHAR?
473	jc	.Lc1stloop
474	jmp	.Lw1stloop
475
476.align	16
477.Lw1stloop:
478	mov	%eax,($dat,%rax,4)
479	add	\$1,%al
480	jnc	.Lw1stloop
481
482	xor	$ido,$ido
483	xor	$idx,$idx
484.align	16
485.Lw2ndloop:
486	mov	($dat,$ido,4),%r10d
487	add	($inp,$len,1),$idx#b
488	add	%r10b,$idx#b
489	add	\$1,$len
490	mov	($dat,$idx,4),%r11d
491	cmovz	%rcx,$len
492	mov	%r10d,($dat,$idx,4)
493	mov	%r11d,($dat,$ido,4)
494	add	\$1,$ido#b
495	jnc	.Lw2ndloop
496	jmp	.Lexit_key
497
498.align	16
499.Lc1stloop:
500	mov	%al,($dat,%rax)
501	add	\$1,%al
502	jnc	.Lc1stloop
503
504	xor	$ido,$ido
505	xor	$idx,$idx
506.align	16
507.Lc2ndloop:
508	mov	($dat,$ido),%r10b
509	add	($inp,$len),$idx#b
510	add	%r10b,$idx#b
511	add	\$1,$len
512	mov	($dat,$idx),%r11b
513	jnz	.Lcnowrap
514	mov	%rcx,$len
515.Lcnowrap:
516	mov	%r10b,($dat,$idx)
517	mov	%r11b,($dat,$ido)
518	add	\$1,$ido#b
519	jnc	.Lc2ndloop
520	movl	\$-1,256($dat)
521
522.align	16
523.Lexit_key:
524	xor	%eax,%eax
525	mov	%eax,-8($dat)
526	mov	%eax,-4($dat)
527	ret
528.cfi_endproc
529.size	RC4_set_key,.-RC4_set_key
530
531.globl	RC4_options
532.type	RC4_options,\@abi-omnipotent
533.align	16
534RC4_options:
535.cfi_startproc
536	endbranch
537	lea	.Lopts(%rip),%rax
538	mov	OPENSSL_ia32cap_P(%rip),%edx
539	bt	\$20,%edx
540	jc	.L8xchar
541	bt	\$30,%edx
542	jnc	.Ldone
543	add	\$25,%rax
544	ret
545.L8xchar:
546	add	\$12,%rax
547.Ldone:
548	ret
549.cfi_endproc
550.align	64
551.Lopts:
552.asciz	"rc4(8x,int)"
553.asciz	"rc4(8x,char)"
554.asciz	"rc4(16x,int)"
555.asciz	"RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
556.align	64
557.size	RC4_options,.-RC4_options
558___
559
560# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
561#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
562if ($win64) {
563$rec="%rcx";
564$frame="%rdx";
565$context="%r8";
566$disp="%r9";
567
568$code.=<<___;
569.extern	__imp_RtlVirtualUnwind
570.type	stream_se_handler,\@abi-omnipotent
571.align	16
572stream_se_handler:
573	push	%rsi
574	push	%rdi
575	push	%rbx
576	push	%rbp
577	push	%r12
578	push	%r13
579	push	%r14
580	push	%r15
581	pushfq
582	sub	\$64,%rsp
583
584	mov	120($context),%rax	# pull context->Rax
585	mov	248($context),%rbx	# pull context->Rip
586
587	lea	.Lprologue(%rip),%r10
588	cmp	%r10,%rbx		# context->Rip<prologue label
589	jb	.Lin_prologue
590
591	mov	152($context),%rax	# pull context->Rsp
592
593	lea	.Lepilogue(%rip),%r10
594	cmp	%r10,%rbx		# context->Rip>=epilogue label
595	jae	.Lin_prologue
596
597	lea	24(%rax),%rax
598
599	mov	-8(%rax),%rbx
600	mov	-16(%rax),%r12
601	mov	-24(%rax),%r13
602	mov	%rbx,144($context)	# restore context->Rbx
603	mov	%r12,216($context)	# restore context->R12
604	mov	%r13,224($context)	# restore context->R13
605
606.Lin_prologue:
607	mov	8(%rax),%rdi
608	mov	16(%rax),%rsi
609	mov	%rax,152($context)	# restore context->Rsp
610	mov	%rsi,168($context)	# restore context->Rsi
611	mov	%rdi,176($context)	# restore context->Rdi
612
613	jmp	.Lcommon_seh_exit
614.size	stream_se_handler,.-stream_se_handler
615
616.type	key_se_handler,\@abi-omnipotent
617.align	16
618key_se_handler:
619	push	%rsi
620	push	%rdi
621	push	%rbx
622	push	%rbp
623	push	%r12
624	push	%r13
625	push	%r14
626	push	%r15
627	pushfq
628	sub	\$64,%rsp
629
630	mov	152($context),%rax	# pull context->Rsp
631	mov	8(%rax),%rdi
632	mov	16(%rax),%rsi
633	mov	%rsi,168($context)	# restore context->Rsi
634	mov	%rdi,176($context)	# restore context->Rdi
635
636.Lcommon_seh_exit:
637
638	mov	40($disp),%rdi		# disp->ContextRecord
639	mov	$context,%rsi		# context
640	mov	\$154,%ecx		# sizeof(CONTEXT)
641	.long	0xa548f3fc		# cld; rep movsq
642
643	mov	$disp,%rsi
644	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
645	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
646	mov	0(%rsi),%r8		# arg3, disp->ControlPc
647	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
648	mov	40(%rsi),%r10		# disp->ContextRecord
649	lea	56(%rsi),%r11		# &disp->HandlerData
650	lea	24(%rsi),%r12		# &disp->EstablisherFrame
651	mov	%r10,32(%rsp)		# arg5
652	mov	%r11,40(%rsp)		# arg6
653	mov	%r12,48(%rsp)		# arg7
654	mov	%rcx,56(%rsp)		# arg8, (NULL)
655	call	*__imp_RtlVirtualUnwind(%rip)
656
657	mov	\$1,%eax		# ExceptionContinueSearch
658	add	\$64,%rsp
659	popfq
660	pop	%r15
661	pop	%r14
662	pop	%r13
663	pop	%r12
664	pop	%rbp
665	pop	%rbx
666	pop	%rdi
667	pop	%rsi
668	ret
669.size	key_se_handler,.-key_se_handler
670
671.section	.pdata
672.align	4
673	.rva	.LSEH_begin_RC4
674	.rva	.LSEH_end_RC4
675	.rva	.LSEH_info_RC4
676
677	.rva	.LSEH_begin_RC4_set_key
678	.rva	.LSEH_end_RC4_set_key
679	.rva	.LSEH_info_RC4_set_key
680
681.section	.xdata
682.align	8
683.LSEH_info_RC4:
684	.byte	9,0,0,0
685	.rva	stream_se_handler
686.LSEH_info_RC4_set_key:
687	.byte	9,0,0,0
688	.rva	key_se_handler
689___
690}
691
692sub reg_part {
693my ($reg,$conv)=@_;
694    if ($reg =~ /%r[0-9]+/)	{ $reg .= $conv; }
695    elsif ($conv eq "b")	{ $reg =~ s/%[er]([^x]+)x?/%$1l/;	}
696    elsif ($conv eq "w")	{ $reg =~ s/%[er](.+)/%$1/;		}
697    elsif ($conv eq "d")	{ $reg =~ s/%[er](.+)/%e$1/;		}
698    return $reg;
699}
700
701$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
702$code =~ s/\`([^\`]*)\`/eval $1/gem;
703
704print $code;
705
706close STDOUT or die "error closing STDOUT: $!";
707