xref: /openssl/crypto/modes/asm/ghash-x86_64.pl (revision 25391acc)
1#! /usr/bin/env perl
2# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# March, June 2010
18#
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that
21# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
22# function features so called "528B" variant utilizing additional
23# 256+16 bytes of per-key storage [+512 bytes shared table].
24# Performance results are for this streamed GHASH subroutine and are
25# expressed in cycles per processed byte, less is better:
26#
27#		gcc 3.4.x(*)	assembler
28#
29# P4		28.6		14.0		+100%
30# Opteron	19.3		7.7		+150%
31# Core2		17.8		8.1(**)		+120%
32# Atom		31.6		16.8		+88%
33# VIA Nano	21.8		10.1		+115%
34#
35# (*)	comparison is not completely fair, because C results are
36#	for vanilla "256B" implementation, while assembler results
37#	are for "528B";-)
38# (**)	it's mystery [to me] why Core2 result is not same as for
39#	Opteron;
40
41# May 2010
42#
43# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
44# See ghash-x86.pl for background information and details about coding
45# techniques.
46#
47# Special thanks to David Woodhouse for providing access to a
48# Westmere-based system on behalf of Intel Open Source Technology Centre.
49
50# December 2012
51#
52# Overhaul: aggregate Karatsuba post-processing, improve ILP in
53# reduction_alg9, increase reduction aggregate factor to 4x. As for
54# the latter. ghash-x86.pl discusses that it makes lesser sense to
55# increase aggregate factor. Then why increase here? Critical path
56# consists of 3 independent pclmulqdq instructions, Karatsuba post-
57# processing and reduction. "On top" of this we lay down aggregated
58# multiplication operations, triplets of independent pclmulqdq's. As
59# issue rate for pclmulqdq is limited, it makes lesser sense to
60# aggregate more multiplications than it takes to perform remaining
61# non-multiplication operations. 2x is near-optimal coefficient for
62# contemporary Intel CPUs (therefore modest improvement coefficient),
63# but not for Bulldozer. Latter is because logical SIMD operations
64# are twice as slow in comparison to Intel, so that critical path is
65# longer. A CPU with higher pclmulqdq issue rate would also benefit
66# from higher aggregate factor...
67#
68# Westmere	1.78(+13%)
69# Sandy Bridge	1.80(+8%)
70# Ivy Bridge	1.80(+7%)
71# Haswell	0.55(+93%) (if system doesn't support AVX)
72# Broadwell	0.45(+110%)(if system doesn't support AVX)
73# Skylake	0.44(+110%)(if system doesn't support AVX)
74# Bulldozer	1.49(+27%)
75# Silvermont	2.88(+13%)
76# Knights L	2.12(-)    (if system doesn't support AVX)
77# Goldmont	1.08(+24%)
78
79# March 2013
80#
81# ... 8x aggregate factor AVX code path is using reduction algorithm
82# suggested by Shay Gueron[1]. Even though contemporary AVX-capable
83# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
84# sub-optimally in comparison to above mentioned version. But thanks
85# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
86# it performs in 0.41 cycles per byte on Haswell processor, in
87# 0.29 on Broadwell, and in 0.36 on Skylake.
88#
89# Knights Landing achieves 1.09 cpb.
90#
91# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
92
93# $output is the last argument if it looks like a file (it has an extension)
94# $flavour is the first argument if it doesn't look like a file
95$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
96$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
97
98$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
99
100$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
101( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
102( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
103die "can't locate x86_64-xlate.pl";
104
105if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
106		=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
107	$avx = ($1>=2.20) + ($1>=2.22);
108}
109
110if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
111	    `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
112	$avx = ($1>=2.09) + ($1>=2.10);
113}
114
115if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
116	    `ml64 2>&1` =~ /Version ([0-9]+)\./) {
117	$avx = ($1>=10) + ($1>=11);
118}
119
120if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
121	$avx = ($2>=3.0) + ($2>3.0);
122}
123
124open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
125    or die "can't call $xlate: $!";
126*STDOUT=*OUT;
127
128$do4xaggr=1;
129
130# common register layout
131$nlo="%rax";
132$nhi="%rbx";
133$Zlo="%r8";
134$Zhi="%r9";
135$tmp="%r10";
136$rem_4bit = "%r11";
137
138$Xi="%rdi";
139$Htbl="%rsi";
140
141# per-function register layout
142$cnt="%rcx";
143$rem="%rdx";
144
145sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/	or
146			$r =~ s/%[er]([sd]i)/%\1l/	or
147			$r =~ s/%[er](bp)/%\1l/		or
148			$r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
149
150sub AUTOLOAD()		# thunk [simplified] 32-bit style perlasm
151{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
152  my $arg = pop;
153    $arg = "\$$arg" if ($arg*1 eq $arg);
154    $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
155}
156
157{ my $N;
158  sub loop() {
159  my $inp = shift;
160
161	$N++;
162$code.=<<___;
163	xor	$nlo,$nlo
164	xor	$nhi,$nhi
165	mov	`&LB("$Zlo")`,`&LB("$nlo")`
166	mov	`&LB("$Zlo")`,`&LB("$nhi")`
167	shl	\$4,`&LB("$nlo")`
168	mov	\$14,$cnt
169	mov	8($Htbl,$nlo),$Zlo
170	mov	($Htbl,$nlo),$Zhi
171	and	\$0xf0,`&LB("$nhi")`
172	mov	$Zlo,$rem
173	jmp	.Loop$N
174
175.align	16
176.Loop$N:
177	shr	\$4,$Zlo
178	and	\$0xf,$rem
179	mov	$Zhi,$tmp
180	mov	($inp,$cnt),`&LB("$nlo")`
181	shr	\$4,$Zhi
182	xor	8($Htbl,$nhi),$Zlo
183	shl	\$60,$tmp
184	xor	($Htbl,$nhi),$Zhi
185	mov	`&LB("$nlo")`,`&LB("$nhi")`
186	xor	($rem_4bit,$rem,8),$Zhi
187	mov	$Zlo,$rem
188	shl	\$4,`&LB("$nlo")`
189	xor	$tmp,$Zlo
190	dec	$cnt
191	js	.Lbreak$N
192
193	shr	\$4,$Zlo
194	and	\$0xf,$rem
195	mov	$Zhi,$tmp
196	shr	\$4,$Zhi
197	xor	8($Htbl,$nlo),$Zlo
198	shl	\$60,$tmp
199	xor	($Htbl,$nlo),$Zhi
200	and	\$0xf0,`&LB("$nhi")`
201	xor	($rem_4bit,$rem,8),$Zhi
202	mov	$Zlo,$rem
203	xor	$tmp,$Zlo
204	jmp	.Loop$N
205
206.align	16
207.Lbreak$N:
208	shr	\$4,$Zlo
209	and	\$0xf,$rem
210	mov	$Zhi,$tmp
211	shr	\$4,$Zhi
212	xor	8($Htbl,$nlo),$Zlo
213	shl	\$60,$tmp
214	xor	($Htbl,$nlo),$Zhi
215	and	\$0xf0,`&LB("$nhi")`
216	xor	($rem_4bit,$rem,8),$Zhi
217	mov	$Zlo,$rem
218	xor	$tmp,$Zlo
219
220	shr	\$4,$Zlo
221	and	\$0xf,$rem
222	mov	$Zhi,$tmp
223	shr	\$4,$Zhi
224	xor	8($Htbl,$nhi),$Zlo
225	shl	\$60,$tmp
226	xor	($Htbl,$nhi),$Zhi
227	xor	$tmp,$Zlo
228	xor	($rem_4bit,$rem,8),$Zhi
229
230	bswap	$Zlo
231	bswap	$Zhi
232___
233}}
234
235$code=<<___;
236.text
237.extern	OPENSSL_ia32cap_P
238
239.globl	gcm_gmult_4bit
240.type	gcm_gmult_4bit,\@function,2
241.align	16
242gcm_gmult_4bit:
243.cfi_startproc
244	endbranch
245	push	%rbx
246.cfi_push	%rbx
247	push	%rbp		# %rbp and others are pushed exclusively in
248.cfi_push	%rbp
249	push	%r12		# order to reuse Win64 exception handler...
250.cfi_push	%r12
251	push	%r13
252.cfi_push	%r13
253	push	%r14
254.cfi_push	%r14
255	push	%r15
256.cfi_push	%r15
257	sub	\$280,%rsp
258.cfi_adjust_cfa_offset	280
259.Lgmult_prologue:
260
261	movzb	15($Xi),$Zlo
262	lea	.Lrem_4bit(%rip),$rem_4bit
263___
264	&loop	($Xi);
265$code.=<<___;
266	mov	$Zlo,8($Xi)
267	mov	$Zhi,($Xi)
268
269	lea	280+48(%rsp),%rsi
270.cfi_def_cfa	%rsi,8
271	mov	-8(%rsi),%rbx
272.cfi_restore	%rbx
273	lea	(%rsi),%rsp
274.cfi_def_cfa_register	%rsp
275.Lgmult_epilogue:
276	ret
277.cfi_endproc
278.size	gcm_gmult_4bit,.-gcm_gmult_4bit
279___
280
281# per-function register layout
282$inp="%rdx";
283$len="%rcx";
284$rem_8bit=$rem_4bit;
285
286$code.=<<___;
287.globl	gcm_ghash_4bit
288.type	gcm_ghash_4bit,\@function,4
289.align	16
290gcm_ghash_4bit:
291.cfi_startproc
292	endbranch
293	push	%rbx
294.cfi_push	%rbx
295	push	%rbp
296.cfi_push	%rbp
297	push	%r12
298.cfi_push	%r12
299	push	%r13
300.cfi_push	%r13
301	push	%r14
302.cfi_push	%r14
303	push	%r15
304.cfi_push	%r15
305	sub	\$280,%rsp
306.cfi_adjust_cfa_offset	280
307.Lghash_prologue:
308	mov	$inp,%r14		# reassign couple of args
309	mov	$len,%r15
310___
311{ my $inp="%r14";
312  my $dat="%edx";
313  my $len="%r15";
314  my @nhi=("%ebx","%ecx");
315  my @rem=("%r12","%r13");
316  my $Hshr4="%rbp";
317
318	&sub	($Htbl,-128);		# size optimization
319	&lea	($Hshr4,"16+128(%rsp)");
320	{ my @lo =($nlo,$nhi);
321          my @hi =($Zlo,$Zhi);
322
323	  &xor	($dat,$dat);
324	  for ($i=0,$j=-2;$i<18;$i++,$j++) {
325	    &mov	("$j(%rsp)",&LB($dat))		if ($i>1);
326	    &or		($lo[0],$tmp)			if ($i>1);
327	    &mov	(&LB($dat),&LB($lo[1]))		if ($i>0 && $i<17);
328	    &shr	($lo[1],4)			if ($i>0 && $i<17);
329	    &mov	($tmp,$hi[1])			if ($i>0 && $i<17);
330	    &shr	($hi[1],4)			if ($i>0 && $i<17);
331	    &mov	("8*$j($Hshr4)",$hi[0])		if ($i>1);
332	    &mov	($hi[0],"16*$i+0-128($Htbl)")	if ($i<16);
333	    &shl	(&LB($dat),4)			if ($i>0 && $i<17);
334	    &mov	("8*$j-128($Hshr4)",$lo[0])	if ($i>1);
335	    &mov	($lo[0],"16*$i+8-128($Htbl)")	if ($i<16);
336	    &shl	($tmp,60)			if ($i>0 && $i<17);
337
338	    push	(@lo,shift(@lo));
339	    push	(@hi,shift(@hi));
340	  }
341	}
342	&add	($Htbl,-128);
343	&mov	($Zlo,"8($Xi)");
344	&mov	($Zhi,"0($Xi)");
345	&add	($len,$inp);		# pointer to the end of data
346	&lea	($rem_8bit,".Lrem_8bit(%rip)");
347	&jmp	(".Louter_loop");
348
349$code.=".align	16\n.Louter_loop:\n";
350	&xor	($Zhi,"($inp)");
351	&mov	("%rdx","8($inp)");
352	&lea	($inp,"16($inp)");
353	&xor	("%rdx",$Zlo);
354	&mov	("($Xi)",$Zhi);
355	&mov	("8($Xi)","%rdx");
356	&shr	("%rdx",32);
357
358	&xor	($nlo,$nlo);
359	&rol	($dat,8);
360	&mov	(&LB($nlo),&LB($dat));
361	&movz	($nhi[0],&LB($dat));
362	&shl	(&LB($nlo),4);
363	&shr	($nhi[0],4);
364
365	for ($j=11,$i=0;$i<15;$i++) {
366	    &rol	($dat,8);
367	    &xor	($Zlo,"8($Htbl,$nlo)")			if ($i>0);
368	    &xor	($Zhi,"($Htbl,$nlo)")			if ($i>0);
369	    &mov	($Zlo,"8($Htbl,$nlo)")			if ($i==0);
370	    &mov	($Zhi,"($Htbl,$nlo)")			if ($i==0);
371
372	    &mov	(&LB($nlo),&LB($dat));
373	    &xor	($Zlo,$tmp)				if ($i>0);
374	    &movzw	($rem[1],"($rem_8bit,$rem[1],2)")	if ($i>0);
375
376	    &movz	($nhi[1],&LB($dat));
377	    &shl	(&LB($nlo),4);
378	    &movzb	($rem[0],"(%rsp,$nhi[0])");
379
380	    &shr	($nhi[1],4)				if ($i<14);
381	    &and	($nhi[1],0xf0)				if ($i==14);
382	    &shl	($rem[1],48)				if ($i>0);
383	    &xor	($rem[0],$Zlo);
384
385	    &mov	($tmp,$Zhi);
386	    &xor	($Zhi,$rem[1])				if ($i>0);
387	    &shr	($Zlo,8);
388
389	    &movz	($rem[0],&LB($rem[0]));
390	    &mov	($dat,"$j($Xi)")			if (--$j%4==0);
391	    &shr	($Zhi,8);
392
393	    &xor	($Zlo,"-128($Hshr4,$nhi[0],8)");
394	    &shl	($tmp,56);
395	    &xor	($Zhi,"($Hshr4,$nhi[0],8)");
396
397	    unshift	(@nhi,pop(@nhi));		# "rotate" registers
398	    unshift	(@rem,pop(@rem));
399	}
400	&movzw	($rem[1],"($rem_8bit,$rem[1],2)");
401	&xor	($Zlo,"8($Htbl,$nlo)");
402	&xor	($Zhi,"($Htbl,$nlo)");
403
404	&shl	($rem[1],48);
405	&xor	($Zlo,$tmp);
406
407	&xor	($Zhi,$rem[1]);
408	&movz	($rem[0],&LB($Zlo));
409	&shr	($Zlo,4);
410
411	&mov	($tmp,$Zhi);
412	&shl	(&LB($rem[0]),4);
413	&shr	($Zhi,4);
414
415	&xor	($Zlo,"8($Htbl,$nhi[0])");
416	&movzw	($rem[0],"($rem_8bit,$rem[0],2)");
417	&shl	($tmp,60);
418
419	&xor	($Zhi,"($Htbl,$nhi[0])");
420	&xor	($Zlo,$tmp);
421	&shl	($rem[0],48);
422
423	&bswap	($Zlo);
424	&xor	($Zhi,$rem[0]);
425
426	&bswap	($Zhi);
427	&cmp	($inp,$len);
428	&jb	(".Louter_loop");
429}
430$code.=<<___;
431	mov	$Zlo,8($Xi)
432	mov	$Zhi,($Xi)
433
434	lea	280+48(%rsp),%rsi
435.cfi_def_cfa	%rsi,8
436	mov	-48(%rsi),%r15
437.cfi_restore	%r15
438	mov	-40(%rsi),%r14
439.cfi_restore	%r14
440	mov	-32(%rsi),%r13
441.cfi_restore	%r13
442	mov	-24(%rsi),%r12
443.cfi_restore	%r12
444	mov	-16(%rsi),%rbp
445.cfi_restore	%rbp
446	mov	-8(%rsi),%rbx
447.cfi_restore	%rbx
448	lea	0(%rsi),%rsp
449.cfi_def_cfa_register	%rsp
450.Lghash_epilogue:
451	ret
452.cfi_endproc
453.size	gcm_ghash_4bit,.-gcm_ghash_4bit
454___
455
456######################################################################
457# PCLMULQDQ version.
458
459@_4args=$win64?	("%rcx","%rdx","%r8", "%r9") :	# Win64 order
460		("%rdi","%rsi","%rdx","%rcx");	# Unix order
461
462($Xi,$Xhi)=("%xmm0","%xmm1");	$Hkey="%xmm2";
463($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
464
465sub clmul64x64_T2 {	# minimal register pressure
466my ($Xhi,$Xi,$Hkey,$HK)=@_;
467
468if (!defined($HK)) {	$HK = $T2;
469$code.=<<___;
470	movdqa		$Xi,$Xhi		#
471	pshufd		\$0b01001110,$Xi,$T1
472	pshufd		\$0b01001110,$Hkey,$T2
473	pxor		$Xi,$T1			#
474	pxor		$Hkey,$T2
475___
476} else {
477$code.=<<___;
478	movdqa		$Xi,$Xhi		#
479	pshufd		\$0b01001110,$Xi,$T1
480	pxor		$Xi,$T1			#
481___
482}
483$code.=<<___;
484	pclmulqdq	\$0x00,$Hkey,$Xi	#######
485	pclmulqdq	\$0x11,$Hkey,$Xhi	#######
486	pclmulqdq	\$0x00,$HK,$T1		#######
487	pxor		$Xi,$T1			#
488	pxor		$Xhi,$T1		#
489
490	movdqa		$T1,$T2			#
491	psrldq		\$8,$T1
492	pslldq		\$8,$T2			#
493	pxor		$T1,$Xhi
494	pxor		$T2,$Xi			#
495___
496}
497
498sub reduction_alg9 {	# 17/11 times faster than Intel version
499my ($Xhi,$Xi) = @_;
500
501$code.=<<___;
502	# 1st phase
503	movdqa		$Xi,$T2			#
504	movdqa		$Xi,$T1
505	psllq		\$5,$Xi
506	pxor		$Xi,$T1			#
507	psllq		\$1,$Xi
508	pxor		$T1,$Xi			#
509	psllq		\$57,$Xi		#
510	movdqa		$Xi,$T1			#
511	pslldq		\$8,$Xi
512	psrldq		\$8,$T1			#
513	pxor		$T2,$Xi
514	pxor		$T1,$Xhi		#
515
516	# 2nd phase
517	movdqa		$Xi,$T2
518	psrlq		\$1,$Xi
519	pxor		$T2,$Xhi		#
520	pxor		$Xi,$T2
521	psrlq		\$5,$Xi
522	pxor		$T2,$Xi			#
523	psrlq		\$1,$Xi			#
524	pxor		$Xhi,$Xi		#
525___
526}
527
528{ my ($Htbl,$Xip)=@_4args;
529  my $HK="%xmm6";
530
531$code.=<<___;
532.globl	gcm_init_clmul
533.type	gcm_init_clmul,\@abi-omnipotent
534.align	16
535gcm_init_clmul:
536.cfi_startproc
537	endbranch
538.L_init_clmul:
539___
540$code.=<<___ if ($win64);
541.LSEH_begin_gcm_init_clmul:
542	# I can't trust assembler to use specific encoding:-(
543	.byte	0x48,0x83,0xec,0x18		#sub	$0x18,%rsp
544	.byte	0x0f,0x29,0x34,0x24		#movaps	%xmm6,(%rsp)
545___
546$code.=<<___;
547	movdqu		($Xip),$Hkey
548	pshufd		\$0b01001110,$Hkey,$Hkey	# dword swap
549
550	# <<1 twist
551	pshufd		\$0b11111111,$Hkey,$T2	# broadcast uppermost dword
552	movdqa		$Hkey,$T1
553	psllq		\$1,$Hkey
554	pxor		$T3,$T3			#
555	psrlq		\$63,$T1
556	pcmpgtd		$T2,$T3			# broadcast carry bit
557	pslldq		\$8,$T1
558	por		$T1,$Hkey		# H<<=1
559
560	# magic reduction
561	pand		.L0x1c2_polynomial(%rip),$T3
562	pxor		$T3,$Hkey		# if(carry) H^=0x1c2_polynomial
563
564	# calculate H^2
565	pshufd		\$0b01001110,$Hkey,$HK
566	movdqa		$Hkey,$Xi
567	pxor		$Hkey,$HK
568___
569	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);
570	&reduction_alg9	($Xhi,$Xi);
571$code.=<<___;
572	pshufd		\$0b01001110,$Hkey,$T1
573	pshufd		\$0b01001110,$Xi,$T2
574	pxor		$Hkey,$T1		# Karatsuba pre-processing
575	movdqu		$Hkey,0x00($Htbl)	# save H
576	pxor		$Xi,$T2			# Karatsuba pre-processing
577	movdqu		$Xi,0x10($Htbl)		# save H^2
578	palignr		\$8,$T1,$T2		# low part is H.lo^H.hi...
579	movdqu		$T2,0x20($Htbl)		# save Karatsuba "salt"
580___
581if ($do4xaggr) {
582	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H^3
583	&reduction_alg9	($Xhi,$Xi);
584$code.=<<___;
585	movdqa		$Xi,$T3
586___
587	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H^4
588	&reduction_alg9	($Xhi,$Xi);
589$code.=<<___;
590	pshufd		\$0b01001110,$T3,$T1
591	pshufd		\$0b01001110,$Xi,$T2
592	pxor		$T3,$T1			# Karatsuba pre-processing
593	movdqu		$T3,0x30($Htbl)		# save H^3
594	pxor		$Xi,$T2			# Karatsuba pre-processing
595	movdqu		$Xi,0x40($Htbl)		# save H^4
596	palignr		\$8,$T1,$T2		# low part is H^3.lo^H^3.hi...
597	movdqu		$T2,0x50($Htbl)		# save Karatsuba "salt"
598___
599}
600$code.=<<___ if ($win64);
601	movaps	(%rsp),%xmm6
602	lea	0x18(%rsp),%rsp
603.LSEH_end_gcm_init_clmul:
604___
605$code.=<<___;
606	ret
607.cfi_endproc
608.size	gcm_init_clmul,.-gcm_init_clmul
609___
610}
611
612{ my ($Xip,$Htbl)=@_4args;
613
614$code.=<<___;
615.globl	gcm_gmult_clmul
616.type	gcm_gmult_clmul,\@abi-omnipotent
617.align	16
618gcm_gmult_clmul:
619.cfi_startproc
620	endbranch
621.L_gmult_clmul:
622	movdqu		($Xip),$Xi
623	movdqa		.Lbswap_mask(%rip),$T3
624	movdqu		($Htbl),$Hkey
625	movdqu		0x20($Htbl),$T2
626	pshufb		$T3,$Xi
627___
628	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
629$code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
630	# experimental alternative. special thing about is that there
631	# no dependency between the two multiplications...
632	mov		\$`0xE1<<1`,%eax
633	mov		\$0xA040608020C0E000,%r10	# ((7..0)·0xE0)&0xff
634	mov		\$0x07,%r11d
635	movq		%rax,$T1
636	movq		%r10,$T2
637	movq		%r11,$T3		# borrow $T3
638	pand		$Xi,$T3
639	pshufb		$T3,$T2			# ($Xi&7)·0xE0
640	movq		%rax,$T3
641	pclmulqdq	\$0x00,$Xi,$T1		# ·(0xE1<<1)
642	pxor		$Xi,$T2
643	pslldq		\$15,$T2
644	paddd		$T2,$T2			# <<(64+56+1)
645	pxor		$T2,$Xi
646	pclmulqdq	\$0x01,$T3,$Xi
647	movdqa		.Lbswap_mask(%rip),$T3	# reload $T3
648	psrldq		\$1,$T1
649	pxor		$T1,$Xhi
650	pslldq		\$7,$Xi
651	pxor		$Xhi,$Xi
652___
653$code.=<<___;
654	pshufb		$T3,$Xi
655	movdqu		$Xi,($Xip)
656	ret
657.cfi_endproc
658.size	gcm_gmult_clmul,.-gcm_gmult_clmul
659___
660}
661
662{ my ($Xip,$Htbl,$inp,$len)=@_4args;
663  my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
664  my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
665
666$code.=<<___;
667.globl	gcm_ghash_clmul
668.type	gcm_ghash_clmul,\@abi-omnipotent
669.align	32
670gcm_ghash_clmul:
671.cfi_startproc
672	endbranch
673.L_ghash_clmul:
674___
675$code.=<<___ if ($win64);
676	lea	-0x88(%rsp),%rax
677.LSEH_begin_gcm_ghash_clmul:
678	# I can't trust assembler to use specific encoding:-(
679	.byte	0x48,0x8d,0x60,0xe0		#lea	-0x20(%rax),%rsp
680	.byte	0x0f,0x29,0x70,0xe0		#movaps	%xmm6,-0x20(%rax)
681	.byte	0x0f,0x29,0x78,0xf0		#movaps	%xmm7,-0x10(%rax)
682	.byte	0x44,0x0f,0x29,0x00		#movaps	%xmm8,0(%rax)
683	.byte	0x44,0x0f,0x29,0x48,0x10	#movaps	%xmm9,0x10(%rax)
684	.byte	0x44,0x0f,0x29,0x50,0x20	#movaps	%xmm10,0x20(%rax)
685	.byte	0x44,0x0f,0x29,0x58,0x30	#movaps	%xmm11,0x30(%rax)
686	.byte	0x44,0x0f,0x29,0x60,0x40	#movaps	%xmm12,0x40(%rax)
687	.byte	0x44,0x0f,0x29,0x68,0x50	#movaps	%xmm13,0x50(%rax)
688	.byte	0x44,0x0f,0x29,0x70,0x60	#movaps	%xmm14,0x60(%rax)
689	.byte	0x44,0x0f,0x29,0x78,0x70	#movaps	%xmm15,0x70(%rax)
690___
691$code.=<<___;
692	movdqa		.Lbswap_mask(%rip),$T3
693
694	movdqu		($Xip),$Xi
695	movdqu		($Htbl),$Hkey
696	movdqu		0x20($Htbl),$HK
697	pshufb		$T3,$Xi
698
699	sub		\$0x10,$len
700	jz		.Lodd_tail
701
702	movdqu		0x10($Htbl),$Hkey2
703___
704if ($do4xaggr) {
705my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
706
707$code.=<<___;
708	mov		OPENSSL_ia32cap_P+4(%rip),%eax
709	cmp		\$0x30,$len
710	jb		.Lskip4x
711
712	and		\$`1<<26|1<<22`,%eax	# isolate MOVBE+XSAVE
713	cmp		\$`1<<22`,%eax		# check for MOVBE without XSAVE
714	je		.Lskip4x
715
716	sub		\$0x30,$len
717	mov		\$0xA040608020C0E000,%rax	# ((7..0)·0xE0)&0xff
718	movdqu		0x30($Htbl),$Hkey3
719	movdqu		0x40($Htbl),$Hkey4
720
721	#######
722	# Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
723	#
724	movdqu		0x30($inp),$Xln
725	 movdqu		0x20($inp),$Xl
726	pshufb		$T3,$Xln
727	 pshufb		$T3,$Xl
728	movdqa		$Xln,$Xhn
729	pshufd		\$0b01001110,$Xln,$Xmn
730	pxor		$Xln,$Xmn
731	pclmulqdq	\$0x00,$Hkey,$Xln
732	pclmulqdq	\$0x11,$Hkey,$Xhn
733	pclmulqdq	\$0x00,$HK,$Xmn
734
735	movdqa		$Xl,$Xh
736	pshufd		\$0b01001110,$Xl,$Xm
737	pxor		$Xl,$Xm
738	pclmulqdq	\$0x00,$Hkey2,$Xl
739	pclmulqdq	\$0x11,$Hkey2,$Xh
740	pclmulqdq	\$0x10,$HK,$Xm
741	xorps		$Xl,$Xln
742	xorps		$Xh,$Xhn
743	movups		0x50($Htbl),$HK
744	xorps		$Xm,$Xmn
745
746	movdqu		0x10($inp),$Xl
747	 movdqu		0($inp),$T1
748	pshufb		$T3,$Xl
749	 pshufb		$T3,$T1
750	movdqa		$Xl,$Xh
751	pshufd		\$0b01001110,$Xl,$Xm
752	 pxor		$T1,$Xi
753	pxor		$Xl,$Xm
754	pclmulqdq	\$0x00,$Hkey3,$Xl
755	 movdqa		$Xi,$Xhi
756	 pshufd		\$0b01001110,$Xi,$T1
757	 pxor		$Xi,$T1
758	pclmulqdq	\$0x11,$Hkey3,$Xh
759	pclmulqdq	\$0x00,$HK,$Xm
760	xorps		$Xl,$Xln
761	xorps		$Xh,$Xhn
762
763	lea	0x40($inp),$inp
764	sub	\$0x40,$len
765	jc	.Ltail4x
766
767	jmp	.Lmod4_loop
768.align	32
769.Lmod4_loop:
770	pclmulqdq	\$0x00,$Hkey4,$Xi
771	xorps		$Xm,$Xmn
772	 movdqu		0x30($inp),$Xl
773	 pshufb		$T3,$Xl
774	pclmulqdq	\$0x11,$Hkey4,$Xhi
775	xorps		$Xln,$Xi
776	 movdqu		0x20($inp),$Xln
777	 movdqa		$Xl,$Xh
778	pclmulqdq	\$0x10,$HK,$T1
779	 pshufd		\$0b01001110,$Xl,$Xm
780	xorps		$Xhn,$Xhi
781	 pxor		$Xl,$Xm
782	 pshufb		$T3,$Xln
783	movups		0x20($Htbl),$HK
784	xorps		$Xmn,$T1
785	 pclmulqdq	\$0x00,$Hkey,$Xl
786	 pshufd		\$0b01001110,$Xln,$Xmn
787
788	pxor		$Xi,$T1			# aggregated Karatsuba post-processing
789	 movdqa		$Xln,$Xhn
790	pxor		$Xhi,$T1		#
791	 pxor		$Xln,$Xmn
792	movdqa		$T1,$T2			#
793	 pclmulqdq	\$0x11,$Hkey,$Xh
794	pslldq		\$8,$T1
795	psrldq		\$8,$T2			#
796	pxor		$T1,$Xi
797	movdqa		.L7_mask(%rip),$T1
798	pxor		$T2,$Xhi		#
799	movq		%rax,$T2
800
801	pand		$Xi,$T1			# 1st phase
802	pshufb		$T1,$T2			#
803	pxor		$Xi,$T2			#
804	 pclmulqdq	\$0x00,$HK,$Xm
805	psllq		\$57,$T2		#
806	movdqa		$T2,$T1			#
807	pslldq		\$8,$T2
808	 pclmulqdq	\$0x00,$Hkey2,$Xln
809	psrldq		\$8,$T1			#
810	pxor		$T2,$Xi
811	pxor		$T1,$Xhi		#
812	movdqu		0($inp),$T1
813
814	movdqa		$Xi,$T2			# 2nd phase
815	psrlq		\$1,$Xi
816	 pclmulqdq	\$0x11,$Hkey2,$Xhn
817	 xorps		$Xl,$Xln
818	 movdqu		0x10($inp),$Xl
819	 pshufb		$T3,$Xl
820	 pclmulqdq	\$0x10,$HK,$Xmn
821	 xorps		$Xh,$Xhn
822	 movups		0x50($Htbl),$HK
823	pshufb		$T3,$T1
824	pxor		$T2,$Xhi		#
825	pxor		$Xi,$T2
826	psrlq		\$5,$Xi
827
828	 movdqa		$Xl,$Xh
829	 pxor		$Xm,$Xmn
830	 pshufd		\$0b01001110,$Xl,$Xm
831	pxor		$T2,$Xi			#
832	pxor		$T1,$Xhi
833	 pxor		$Xl,$Xm
834	 pclmulqdq	\$0x00,$Hkey3,$Xl
835	psrlq		\$1,$Xi			#
836	pxor		$Xhi,$Xi		#
837	movdqa		$Xi,$Xhi
838	 pclmulqdq	\$0x11,$Hkey3,$Xh
839	 xorps		$Xl,$Xln
840	pshufd		\$0b01001110,$Xi,$T1
841	pxor		$Xi,$T1
842
843	 pclmulqdq	\$0x00,$HK,$Xm
844	 xorps		$Xh,$Xhn
845
846	lea	0x40($inp),$inp
847	sub	\$0x40,$len
848	jnc	.Lmod4_loop
849
850.Ltail4x:
851	pclmulqdq	\$0x00,$Hkey4,$Xi
852	pclmulqdq	\$0x11,$Hkey4,$Xhi
853	pclmulqdq	\$0x10,$HK,$T1
854	xorps		$Xm,$Xmn
855	xorps		$Xln,$Xi
856	xorps		$Xhn,$Xhi
857	pxor		$Xi,$Xhi		# aggregated Karatsuba post-processing
858	pxor		$Xmn,$T1
859
860	pxor		$Xhi,$T1		#
861	pxor		$Xi,$Xhi
862
863	movdqa		$T1,$T2			#
864	psrldq		\$8,$T1
865	pslldq		\$8,$T2			#
866	pxor		$T1,$Xhi
867	pxor		$T2,$Xi			#
868___
869	&reduction_alg9($Xhi,$Xi);
870$code.=<<___;
871	add	\$0x40,$len
872	jz	.Ldone
873	movdqu	0x20($Htbl),$HK
874	sub	\$0x10,$len
875	jz	.Lodd_tail
876.Lskip4x:
877___
878}
879$code.=<<___;
880	#######
881	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
882	#	[(H*Ii+1) + (H*Xi+1)] mod P =
883	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
884	#
885	movdqu		($inp),$T1		# Ii
886	movdqu		16($inp),$Xln		# Ii+1
887	pshufb		$T3,$T1
888	pshufb		$T3,$Xln
889	pxor		$T1,$Xi			# Ii+Xi
890
891	movdqa		$Xln,$Xhn
892	pshufd		\$0b01001110,$Xln,$Xmn
893	pxor		$Xln,$Xmn
894	pclmulqdq	\$0x00,$Hkey,$Xln
895	pclmulqdq	\$0x11,$Hkey,$Xhn
896	pclmulqdq	\$0x00,$HK,$Xmn
897
898	lea		32($inp),$inp		# i+=2
899	nop
900	sub		\$0x20,$len
901	jbe		.Leven_tail
902	nop
903	jmp		.Lmod_loop
904
905.align	32
906.Lmod_loop:
907	movdqa		$Xi,$Xhi
908	movdqa		$Xmn,$T1
909	pshufd		\$0b01001110,$Xi,$Xmn	#
910	pxor		$Xi,$Xmn		#
911
912	pclmulqdq	\$0x00,$Hkey2,$Xi
913	pclmulqdq	\$0x11,$Hkey2,$Xhi
914	pclmulqdq	\$0x10,$HK,$Xmn
915
916	pxor		$Xln,$Xi		# (H*Ii+1) + H^2*(Ii+Xi)
917	pxor		$Xhn,$Xhi
918	  movdqu	($inp),$T2		# Ii
919	pxor		$Xi,$T1			# aggregated Karatsuba post-processing
920	  pshufb	$T3,$T2
921	  movdqu	16($inp),$Xln		# Ii+1
922
923	pxor		$Xhi,$T1
924	  pxor		$T2,$Xhi		# "Ii+Xi", consume early
925	pxor		$T1,$Xmn
926	 pshufb		$T3,$Xln
927	movdqa		$Xmn,$T1		#
928	psrldq		\$8,$T1
929	pslldq		\$8,$Xmn		#
930	pxor		$T1,$Xhi
931	pxor		$Xmn,$Xi		#
932
933	movdqa		$Xln,$Xhn		#
934
935	  movdqa	$Xi,$T2			# 1st phase
936	  movdqa	$Xi,$T1
937	  psllq		\$5,$Xi
938	  pxor		$Xi,$T1			#
939	pclmulqdq	\$0x00,$Hkey,$Xln	#######
940	  psllq		\$1,$Xi
941	  pxor		$T1,$Xi			#
942	  psllq		\$57,$Xi		#
943	  movdqa	$Xi,$T1			#
944	  pslldq	\$8,$Xi
945	  psrldq	\$8,$T1			#
946	  pxor		$T2,$Xi
947	pshufd		\$0b01001110,$Xhn,$Xmn
948	  pxor		$T1,$Xhi		#
949	pxor		$Xhn,$Xmn		#
950
951	  movdqa	$Xi,$T2			# 2nd phase
952	  psrlq		\$1,$Xi
953	pclmulqdq	\$0x11,$Hkey,$Xhn	#######
954	  pxor		$T2,$Xhi		#
955	  pxor		$Xi,$T2
956	  psrlq		\$5,$Xi
957	  pxor		$T2,$Xi			#
958	lea		32($inp),$inp
959	  psrlq		\$1,$Xi			#
960	pclmulqdq	\$0x00,$HK,$Xmn		#######
961	  pxor		$Xhi,$Xi		#
962
963	sub		\$0x20,$len
964	ja		.Lmod_loop
965
966.Leven_tail:
967	 movdqa		$Xi,$Xhi
968	 movdqa		$Xmn,$T1
969	 pshufd		\$0b01001110,$Xi,$Xmn	#
970	 pxor		$Xi,$Xmn		#
971
972	pclmulqdq	\$0x00,$Hkey2,$Xi
973	pclmulqdq	\$0x11,$Hkey2,$Xhi
974	pclmulqdq	\$0x10,$HK,$Xmn
975
976	pxor		$Xln,$Xi		# (H*Ii+1) + H^2*(Ii+Xi)
977	pxor		$Xhn,$Xhi
978	pxor		$Xi,$T1
979	pxor		$Xhi,$T1
980	pxor		$T1,$Xmn
981	movdqa		$Xmn,$T1		#
982	psrldq		\$8,$T1
983	pslldq		\$8,$Xmn		#
984	pxor		$T1,$Xhi
985	pxor		$Xmn,$Xi		#
986___
987	&reduction_alg9	($Xhi,$Xi);
988$code.=<<___;
989	test		$len,$len
990	jnz		.Ldone
991
992.Lodd_tail:
993	movdqu		($inp),$T1		# Ii
994	pshufb		$T3,$T1
995	pxor		$T1,$Xi			# Ii+Xi
996___
997	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H*(Ii+Xi)
998	&reduction_alg9	($Xhi,$Xi);
999$code.=<<___;
1000.Ldone:
1001	pshufb		$T3,$Xi
1002	movdqu		$Xi,($Xip)
1003___
1004$code.=<<___ if ($win64);
1005	movaps	(%rsp),%xmm6
1006	movaps	0x10(%rsp),%xmm7
1007	movaps	0x20(%rsp),%xmm8
1008	movaps	0x30(%rsp),%xmm9
1009	movaps	0x40(%rsp),%xmm10
1010	movaps	0x50(%rsp),%xmm11
1011	movaps	0x60(%rsp),%xmm12
1012	movaps	0x70(%rsp),%xmm13
1013	movaps	0x80(%rsp),%xmm14
1014	movaps	0x90(%rsp),%xmm15
1015	lea	0xa8(%rsp),%rsp
1016.LSEH_end_gcm_ghash_clmul:
1017___
1018$code.=<<___;
1019	ret
1020.cfi_endproc
1021.size	gcm_ghash_clmul,.-gcm_ghash_clmul
1022___
1023}
1024
1025$code.=<<___;
1026.globl	gcm_init_avx
1027.type	gcm_init_avx,\@abi-omnipotent
1028.align	32
1029gcm_init_avx:
1030.cfi_startproc
1031	endbranch
1032___
1033if ($avx) {
1034my ($Htbl,$Xip)=@_4args;
1035my $HK="%xmm6";
1036
1037$code.=<<___ if ($win64);
1038.LSEH_begin_gcm_init_avx:
1039	# I can't trust assembler to use specific encoding:-(
1040	.byte	0x48,0x83,0xec,0x18		#sub	$0x18,%rsp
1041	.byte	0x0f,0x29,0x34,0x24		#movaps	%xmm6,(%rsp)
1042___
1043$code.=<<___;
1044	vzeroupper
1045
1046	vmovdqu		($Xip),$Hkey
1047	vpshufd		\$0b01001110,$Hkey,$Hkey	# dword swap
1048
1049	# <<1 twist
1050	vpshufd		\$0b11111111,$Hkey,$T2	# broadcast uppermost dword
1051	vpsrlq		\$63,$Hkey,$T1
1052	vpsllq		\$1,$Hkey,$Hkey
1053	vpxor		$T3,$T3,$T3		#
1054	vpcmpgtd	$T2,$T3,$T3		# broadcast carry bit
1055	vpslldq		\$8,$T1,$T1
1056	vpor		$T1,$Hkey,$Hkey		# H<<=1
1057
1058	# magic reduction
1059	vpand		.L0x1c2_polynomial(%rip),$T3,$T3
1060	vpxor		$T3,$Hkey,$Hkey		# if(carry) H^=0x1c2_polynomial
1061
1062	vpunpckhqdq	$Hkey,$Hkey,$HK
1063	vmovdqa		$Hkey,$Xi
1064	vpxor		$Hkey,$HK,$HK
1065	mov		\$4,%r10		# up to H^8
1066	jmp		.Linit_start_avx
1067___
1068
1069sub clmul64x64_avx {
1070my ($Xhi,$Xi,$Hkey,$HK)=@_;
1071
1072if (!defined($HK)) {	$HK = $T2;
1073$code.=<<___;
1074	vpunpckhqdq	$Xi,$Xi,$T1
1075	vpunpckhqdq	$Hkey,$Hkey,$T2
1076	vpxor		$Xi,$T1,$T1		#
1077	vpxor		$Hkey,$T2,$T2
1078___
1079} else {
1080$code.=<<___;
1081	vpunpckhqdq	$Xi,$Xi,$T1
1082	vpxor		$Xi,$T1,$T1		#
1083___
1084}
1085$code.=<<___;
1086	vpclmulqdq	\$0x11,$Hkey,$Xi,$Xhi	#######
1087	vpclmulqdq	\$0x00,$Hkey,$Xi,$Xi	#######
1088	vpclmulqdq	\$0x00,$HK,$T1,$T1	#######
1089	vpxor		$Xi,$Xhi,$T2		#
1090	vpxor		$T2,$T1,$T1		#
1091
1092	vpslldq		\$8,$T1,$T2		#
1093	vpsrldq		\$8,$T1,$T1
1094	vpxor		$T2,$Xi,$Xi		#
1095	vpxor		$T1,$Xhi,$Xhi
1096___
1097}
1098
1099sub reduction_avx {
1100my ($Xhi,$Xi) = @_;
1101
1102$code.=<<___;
1103	vpsllq		\$57,$Xi,$T1		# 1st phase
1104	vpsllq		\$62,$Xi,$T2
1105	vpxor		$T1,$T2,$T2		#
1106	vpsllq		\$63,$Xi,$T1
1107	vpxor		$T1,$T2,$T2		#
1108	vpslldq		\$8,$T2,$T1		#
1109	vpsrldq		\$8,$T2,$T2
1110	vpxor		$T1,$Xi,$Xi		#
1111	vpxor		$T2,$Xhi,$Xhi
1112
1113	vpsrlq		\$1,$Xi,$T2		# 2nd phase
1114	vpxor		$Xi,$Xhi,$Xhi
1115	vpxor		$T2,$Xi,$Xi		#
1116	vpsrlq		\$5,$T2,$T2
1117	vpxor		$T2,$Xi,$Xi		#
1118	vpsrlq		\$1,$Xi,$Xi		#
1119	vpxor		$Xhi,$Xi,$Xi		#
1120___
1121}
1122
1123$code.=<<___;
1124.align	32
1125.Linit_loop_avx:
1126	vpalignr	\$8,$T1,$T2,$T3		# low part is H.lo^H.hi...
1127	vmovdqu		$T3,-0x10($Htbl)	# save Karatsuba "salt"
1128___
1129	&clmul64x64_avx	($Xhi,$Xi,$Hkey,$HK);	# calculate H^3,5,7
1130	&reduction_avx	($Xhi,$Xi);
1131$code.=<<___;
1132.Linit_start_avx:
1133	vmovdqa		$Xi,$T3
1134___
1135	&clmul64x64_avx	($Xhi,$Xi,$Hkey,$HK);	# calculate H^2,4,6,8
1136	&reduction_avx	($Xhi,$Xi);
1137$code.=<<___;
1138	vpshufd		\$0b01001110,$T3,$T1
1139	vpshufd		\$0b01001110,$Xi,$T2
1140	vpxor		$T3,$T1,$T1		# Karatsuba pre-processing
1141	vmovdqu		$T3,0x00($Htbl)		# save H^1,3,5,7
1142	vpxor		$Xi,$T2,$T2		# Karatsuba pre-processing
1143	vmovdqu		$Xi,0x10($Htbl)		# save H^2,4,6,8
1144	lea		0x30($Htbl),$Htbl
1145	sub		\$1,%r10
1146	jnz		.Linit_loop_avx
1147
1148	vpalignr	\$8,$T2,$T1,$T3		# last "salt" is flipped
1149	vmovdqu		$T3,-0x10($Htbl)
1150
1151	vzeroupper
1152___
1153$code.=<<___ if ($win64);
1154	movaps	(%rsp),%xmm6
1155	lea	0x18(%rsp),%rsp
1156.LSEH_end_gcm_init_avx:
1157___
1158$code.=<<___;
1159	ret
1160.cfi_endproc
1161.size	gcm_init_avx,.-gcm_init_avx
1162___
1163} else {
1164$code.=<<___;
1165	jmp	.L_init_clmul
1166.cfi_endproc
1167.size	gcm_init_avx,.-gcm_init_avx
1168___
1169}
1170
1171$code.=<<___;
1172.globl	gcm_gmult_avx
1173.type	gcm_gmult_avx,\@abi-omnipotent
1174.align	32
1175gcm_gmult_avx:
1176.cfi_startproc
1177	endbranch
1178	jmp	.L_gmult_clmul
1179.cfi_endproc
1180.size	gcm_gmult_avx,.-gcm_gmult_avx
1181___
1182
1183$code.=<<___;
1184.globl	gcm_ghash_avx
1185.type	gcm_ghash_avx,\@abi-omnipotent
1186.align	32
1187gcm_ghash_avx:
1188.cfi_startproc
1189	endbranch
1190___
1191if ($avx) {
1192my ($Xip,$Htbl,$inp,$len)=@_4args;
1193my ($Xlo,$Xhi,$Xmi,
1194    $Zlo,$Zhi,$Zmi,
1195    $Hkey,$HK,$T1,$T2,
1196    $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
1197
1198$code.=<<___ if ($win64);
1199	lea	-0x88(%rsp),%rax
1200.LSEH_begin_gcm_ghash_avx:
1201	# I can't trust assembler to use specific encoding:-(
1202	.byte	0x48,0x8d,0x60,0xe0		#lea	-0x20(%rax),%rsp
1203	.byte	0x0f,0x29,0x70,0xe0		#movaps	%xmm6,-0x20(%rax)
1204	.byte	0x0f,0x29,0x78,0xf0		#movaps	%xmm7,-0x10(%rax)
1205	.byte	0x44,0x0f,0x29,0x00		#movaps	%xmm8,0(%rax)
1206	.byte	0x44,0x0f,0x29,0x48,0x10	#movaps	%xmm9,0x10(%rax)
1207	.byte	0x44,0x0f,0x29,0x50,0x20	#movaps	%xmm10,0x20(%rax)
1208	.byte	0x44,0x0f,0x29,0x58,0x30	#movaps	%xmm11,0x30(%rax)
1209	.byte	0x44,0x0f,0x29,0x60,0x40	#movaps	%xmm12,0x40(%rax)
1210	.byte	0x44,0x0f,0x29,0x68,0x50	#movaps	%xmm13,0x50(%rax)
1211	.byte	0x44,0x0f,0x29,0x70,0x60	#movaps	%xmm14,0x60(%rax)
1212	.byte	0x44,0x0f,0x29,0x78,0x70	#movaps	%xmm15,0x70(%rax)
1213___
1214$code.=<<___;
1215	vzeroupper
1216
1217	vmovdqu		($Xip),$Xi		# load $Xi
1218	lea		.L0x1c2_polynomial(%rip),%r10
1219	lea		0x40($Htbl),$Htbl	# size optimization
1220	vmovdqu		.Lbswap_mask(%rip),$bswap
1221	vpshufb		$bswap,$Xi,$Xi
1222	cmp		\$0x80,$len
1223	jb		.Lshort_avx
1224	sub		\$0x80,$len
1225
1226	vmovdqu		0x70($inp),$Ii		# I[7]
1227	vmovdqu		0x00-0x40($Htbl),$Hkey	# $Hkey^1
1228	vpshufb		$bswap,$Ii,$Ii
1229	vmovdqu		0x20-0x40($Htbl),$HK
1230
1231	vpunpckhqdq	$Ii,$Ii,$T2
1232	 vmovdqu	0x60($inp),$Ij		# I[6]
1233	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1234	vpxor		$Ii,$T2,$T2
1235	 vpshufb	$bswap,$Ij,$Ij
1236	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1237	 vmovdqu	0x10-0x40($Htbl),$Hkey	# $Hkey^2
1238	 vpunpckhqdq	$Ij,$Ij,$T1
1239	 vmovdqu	0x50($inp),$Ii		# I[5]
1240	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
1241	 vpxor		$Ij,$T1,$T1
1242
1243	 vpshufb	$bswap,$Ii,$Ii
1244	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
1245	 vpunpckhqdq	$Ii,$Ii,$T2
1246	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
1247	 vmovdqu	0x30-0x40($Htbl),$Hkey	# $Hkey^3
1248	 vpxor		$Ii,$T2,$T2
1249	 vmovdqu	0x40($inp),$Ij		# I[4]
1250	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
1251	 vmovdqu	0x50-0x40($Htbl),$HK
1252
1253	 vpshufb	$bswap,$Ij,$Ij
1254	vpxor		$Xlo,$Zlo,$Zlo
1255	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1256	vpxor		$Xhi,$Zhi,$Zhi
1257	 vpunpckhqdq	$Ij,$Ij,$T1
1258	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1259	 vmovdqu	0x40-0x40($Htbl),$Hkey	# $Hkey^4
1260	vpxor		$Xmi,$Zmi,$Zmi
1261	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
1262	 vpxor		$Ij,$T1,$T1
1263
1264	 vmovdqu	0x30($inp),$Ii		# I[3]
1265	vpxor		$Zlo,$Xlo,$Xlo
1266	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
1267	vpxor		$Zhi,$Xhi,$Xhi
1268	 vpshufb	$bswap,$Ii,$Ii
1269	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
1270	 vmovdqu	0x60-0x40($Htbl),$Hkey	# $Hkey^5
1271	vpxor		$Zmi,$Xmi,$Xmi
1272	 vpunpckhqdq	$Ii,$Ii,$T2
1273	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
1274	 vmovdqu	0x80-0x40($Htbl),$HK
1275	 vpxor		$Ii,$T2,$T2
1276
1277	 vmovdqu	0x20($inp),$Ij		# I[2]
1278	vpxor		$Xlo,$Zlo,$Zlo
1279	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1280	vpxor		$Xhi,$Zhi,$Zhi
1281	 vpshufb	$bswap,$Ij,$Ij
1282	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1283	 vmovdqu	0x70-0x40($Htbl),$Hkey	# $Hkey^6
1284	vpxor		$Xmi,$Zmi,$Zmi
1285	 vpunpckhqdq	$Ij,$Ij,$T1
1286	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
1287	 vpxor		$Ij,$T1,$T1
1288
1289	 vmovdqu	0x10($inp),$Ii		# I[1]
1290	vpxor		$Zlo,$Xlo,$Xlo
1291	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
1292	vpxor		$Zhi,$Xhi,$Xhi
1293	 vpshufb	$bswap,$Ii,$Ii
1294	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
1295	 vmovdqu	0x90-0x40($Htbl),$Hkey	# $Hkey^7
1296	vpxor		$Zmi,$Xmi,$Xmi
1297	 vpunpckhqdq	$Ii,$Ii,$T2
1298	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
1299	 vmovdqu	0xb0-0x40($Htbl),$HK
1300	 vpxor		$Ii,$T2,$T2
1301
1302	 vmovdqu	($inp),$Ij		# I[0]
1303	vpxor		$Xlo,$Zlo,$Zlo
1304	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1305	vpxor		$Xhi,$Zhi,$Zhi
1306	 vpshufb	$bswap,$Ij,$Ij
1307	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1308	 vmovdqu	0xa0-0x40($Htbl),$Hkey	# $Hkey^8
1309	vpxor		$Xmi,$Zmi,$Zmi
1310	vpclmulqdq	\$0x10,$HK,$T2,$Xmi
1311
1312	lea		0x80($inp),$inp
1313	cmp		\$0x80,$len
1314	jb		.Ltail_avx
1315
1316	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
1317	sub		\$0x80,$len
1318	jmp		.Loop8x_avx
1319
1320.align	32
1321.Loop8x_avx:
1322	vpunpckhqdq	$Ij,$Ij,$T1
1323	 vmovdqu	0x70($inp),$Ii		# I[7]
1324	vpxor		$Xlo,$Zlo,$Zlo
1325	vpxor		$Ij,$T1,$T1
1326	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xi
1327	 vpshufb	$bswap,$Ii,$Ii
1328	vpxor		$Xhi,$Zhi,$Zhi
1329	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xo
1330	 vmovdqu	0x00-0x40($Htbl),$Hkey	# $Hkey^1
1331	 vpunpckhqdq	$Ii,$Ii,$T2
1332	vpxor		$Xmi,$Zmi,$Zmi
1333	vpclmulqdq	\$0x00,$HK,$T1,$Tred
1334	 vmovdqu	0x20-0x40($Htbl),$HK
1335	 vpxor		$Ii,$T2,$T2
1336
1337	  vmovdqu	0x60($inp),$Ij		# I[6]
1338	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1339	vpxor		$Zlo,$Xi,$Xi		# collect result
1340	  vpshufb	$bswap,$Ij,$Ij
1341	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1342	vxorps		$Zhi,$Xo,$Xo
1343	  vmovdqu	0x10-0x40($Htbl),$Hkey	# $Hkey^2
1344	 vpunpckhqdq	$Ij,$Ij,$T1
1345	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
1346	vpxor		$Zmi,$Tred,$Tred
1347	 vxorps		$Ij,$T1,$T1
1348
1349	  vmovdqu	0x50($inp),$Ii		# I[5]
1350	vpxor		$Xi,$Tred,$Tred		# aggregated Karatsuba post-processing
1351	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
1352	vpxor		$Xo,$Tred,$Tred
1353	vpslldq		\$8,$Tred,$T2
1354	 vpxor		$Xlo,$Zlo,$Zlo
1355	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
1356	vpsrldq		\$8,$Tred,$Tred
1357	vpxor		$T2, $Xi, $Xi
1358	  vmovdqu	0x30-0x40($Htbl),$Hkey	# $Hkey^3
1359	  vpshufb	$bswap,$Ii,$Ii
1360	vxorps		$Tred,$Xo, $Xo
1361	 vpxor		$Xhi,$Zhi,$Zhi
1362	 vpunpckhqdq	$Ii,$Ii,$T2
1363	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
1364	  vmovdqu	0x50-0x40($Htbl),$HK
1365	 vpxor		$Ii,$T2,$T2
1366	 vpxor		$Xmi,$Zmi,$Zmi
1367
1368	  vmovdqu	0x40($inp),$Ij		# I[4]
1369	vpalignr	\$8,$Xi,$Xi,$Tred	# 1st phase
1370	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1371	  vpshufb	$bswap,$Ij,$Ij
1372	 vpxor		$Zlo,$Xlo,$Xlo
1373	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1374	  vmovdqu	0x40-0x40($Htbl),$Hkey	# $Hkey^4
1375	 vpunpckhqdq	$Ij,$Ij,$T1
1376	 vpxor		$Zhi,$Xhi,$Xhi
1377	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
1378	 vxorps		$Ij,$T1,$T1
1379	 vpxor		$Zmi,$Xmi,$Xmi
1380
1381	  vmovdqu	0x30($inp),$Ii		# I[3]
1382	vpclmulqdq	\$0x10,(%r10),$Xi,$Xi
1383	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
1384	  vpshufb	$bswap,$Ii,$Ii
1385	 vpxor		$Xlo,$Zlo,$Zlo
1386	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
1387	  vmovdqu	0x60-0x40($Htbl),$Hkey	# $Hkey^5
1388	 vpunpckhqdq	$Ii,$Ii,$T2
1389	 vpxor		$Xhi,$Zhi,$Zhi
1390	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
1391	  vmovdqu	0x80-0x40($Htbl),$HK
1392	 vpxor		$Ii,$T2,$T2
1393	 vpxor		$Xmi,$Zmi,$Zmi
1394
1395	  vmovdqu	0x20($inp),$Ij		# I[2]
1396	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1397	  vpshufb	$bswap,$Ij,$Ij
1398	 vpxor		$Zlo,$Xlo,$Xlo
1399	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1400	  vmovdqu	0x70-0x40($Htbl),$Hkey	# $Hkey^6
1401	 vpunpckhqdq	$Ij,$Ij,$T1
1402	 vpxor		$Zhi,$Xhi,$Xhi
1403	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
1404	 vpxor		$Ij,$T1,$T1
1405	 vpxor		$Zmi,$Xmi,$Xmi
1406	vxorps		$Tred,$Xi,$Xi
1407
1408	  vmovdqu	0x10($inp),$Ii		# I[1]
1409	vpalignr	\$8,$Xi,$Xi,$Tred	# 2nd phase
1410	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
1411	  vpshufb	$bswap,$Ii,$Ii
1412	 vpxor		$Xlo,$Zlo,$Zlo
1413	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
1414	  vmovdqu	0x90-0x40($Htbl),$Hkey	# $Hkey^7
1415	vpclmulqdq	\$0x10,(%r10),$Xi,$Xi
1416	vxorps		$Xo,$Tred,$Tred
1417	 vpunpckhqdq	$Ii,$Ii,$T2
1418	 vpxor		$Xhi,$Zhi,$Zhi
1419	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
1420	  vmovdqu	0xb0-0x40($Htbl),$HK
1421	 vpxor		$Ii,$T2,$T2
1422	 vpxor		$Xmi,$Zmi,$Zmi
1423
1424	  vmovdqu	($inp),$Ij		# I[0]
1425	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
1426	  vpshufb	$bswap,$Ij,$Ij
1427	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
1428	  vmovdqu	0xa0-0x40($Htbl),$Hkey	# $Hkey^8
1429	vpxor		$Tred,$Ij,$Ij
1430	 vpclmulqdq	\$0x10,$HK,  $T2,$Xmi
1431	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
1432
1433	lea		0x80($inp),$inp
1434	sub		\$0x80,$len
1435	jnc		.Loop8x_avx
1436
1437	add		\$0x80,$len
1438	jmp		.Ltail_no_xor_avx
1439
1440.align	32
1441.Lshort_avx:
1442	vmovdqu		-0x10($inp,$len),$Ii	# very last word
1443	lea		($inp,$len),$inp
1444	vmovdqu		0x00-0x40($Htbl),$Hkey	# $Hkey^1
1445	vmovdqu		0x20-0x40($Htbl),$HK
1446	vpshufb		$bswap,$Ii,$Ij
1447
1448	vmovdqa		$Xlo,$Zlo		# subtle way to zero $Zlo,
1449	vmovdqa		$Xhi,$Zhi		# $Zhi and
1450	vmovdqa		$Xmi,$Zmi		# $Zmi
1451	sub		\$0x10,$len
1452	jz		.Ltail_avx
1453
1454	vpunpckhqdq	$Ij,$Ij,$T1
1455	vpxor		$Xlo,$Zlo,$Zlo
1456	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1457	vpxor		$Ij,$T1,$T1
1458	 vmovdqu	-0x20($inp),$Ii
1459	vpxor		$Xhi,$Zhi,$Zhi
1460	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1461	vmovdqu		0x10-0x40($Htbl),$Hkey	# $Hkey^2
1462	 vpshufb	$bswap,$Ii,$Ij
1463	vpxor		$Xmi,$Zmi,$Zmi
1464	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1465	vpsrldq		\$8,$HK,$HK
1466	sub		\$0x10,$len
1467	jz		.Ltail_avx
1468
1469	vpunpckhqdq	$Ij,$Ij,$T1
1470	vpxor		$Xlo,$Zlo,$Zlo
1471	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1472	vpxor		$Ij,$T1,$T1
1473	 vmovdqu	-0x30($inp),$Ii
1474	vpxor		$Xhi,$Zhi,$Zhi
1475	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1476	vmovdqu		0x30-0x40($Htbl),$Hkey	# $Hkey^3
1477	 vpshufb	$bswap,$Ii,$Ij
1478	vpxor		$Xmi,$Zmi,$Zmi
1479	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1480	vmovdqu		0x50-0x40($Htbl),$HK
1481	sub		\$0x10,$len
1482	jz		.Ltail_avx
1483
1484	vpunpckhqdq	$Ij,$Ij,$T1
1485	vpxor		$Xlo,$Zlo,$Zlo
1486	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1487	vpxor		$Ij,$T1,$T1
1488	 vmovdqu	-0x40($inp),$Ii
1489	vpxor		$Xhi,$Zhi,$Zhi
1490	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1491	vmovdqu		0x40-0x40($Htbl),$Hkey	# $Hkey^4
1492	 vpshufb	$bswap,$Ii,$Ij
1493	vpxor		$Xmi,$Zmi,$Zmi
1494	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1495	vpsrldq		\$8,$HK,$HK
1496	sub		\$0x10,$len
1497	jz		.Ltail_avx
1498
1499	vpunpckhqdq	$Ij,$Ij,$T1
1500	vpxor		$Xlo,$Zlo,$Zlo
1501	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1502	vpxor		$Ij,$T1,$T1
1503	 vmovdqu	-0x50($inp),$Ii
1504	vpxor		$Xhi,$Zhi,$Zhi
1505	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1506	vmovdqu		0x60-0x40($Htbl),$Hkey	# $Hkey^5
1507	 vpshufb	$bswap,$Ii,$Ij
1508	vpxor		$Xmi,$Zmi,$Zmi
1509	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1510	vmovdqu		0x80-0x40($Htbl),$HK
1511	sub		\$0x10,$len
1512	jz		.Ltail_avx
1513
1514	vpunpckhqdq	$Ij,$Ij,$T1
1515	vpxor		$Xlo,$Zlo,$Zlo
1516	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1517	vpxor		$Ij,$T1,$T1
1518	 vmovdqu	-0x60($inp),$Ii
1519	vpxor		$Xhi,$Zhi,$Zhi
1520	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1521	vmovdqu		0x70-0x40($Htbl),$Hkey	# $Hkey^6
1522	 vpshufb	$bswap,$Ii,$Ij
1523	vpxor		$Xmi,$Zmi,$Zmi
1524	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1525	vpsrldq		\$8,$HK,$HK
1526	sub		\$0x10,$len
1527	jz		.Ltail_avx
1528
1529	vpunpckhqdq	$Ij,$Ij,$T1
1530	vpxor		$Xlo,$Zlo,$Zlo
1531	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1532	vpxor		$Ij,$T1,$T1
1533	 vmovdqu	-0x70($inp),$Ii
1534	vpxor		$Xhi,$Zhi,$Zhi
1535	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1536	vmovdqu		0x90-0x40($Htbl),$Hkey	# $Hkey^7
1537	 vpshufb	$bswap,$Ii,$Ij
1538	vpxor		$Xmi,$Zmi,$Zmi
1539	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1540	vmovq		0xb8-0x40($Htbl),$HK
1541	sub		\$0x10,$len
1542	jmp		.Ltail_avx
1543
1544.align	32
1545.Ltail_avx:
1546	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
1547.Ltail_no_xor_avx:
1548	vpunpckhqdq	$Ij,$Ij,$T1
1549	vpxor		$Xlo,$Zlo,$Zlo
1550	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
1551	vpxor		$Ij,$T1,$T1
1552	vpxor		$Xhi,$Zhi,$Zhi
1553	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
1554	vpxor		$Xmi,$Zmi,$Zmi
1555	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
1556
1557	vmovdqu		(%r10),$Tred
1558
1559	vpxor		$Xlo,$Zlo,$Xi
1560	vpxor		$Xhi,$Zhi,$Xo
1561	vpxor		$Xmi,$Zmi,$Zmi
1562
1563	vpxor		$Xi, $Zmi,$Zmi		# aggregated Karatsuba post-processing
1564	vpxor		$Xo, $Zmi,$Zmi
1565	vpslldq		\$8, $Zmi,$T2
1566	vpsrldq		\$8, $Zmi,$Zmi
1567	vpxor		$T2, $Xi, $Xi
1568	vpxor		$Zmi,$Xo, $Xo
1569
1570	vpclmulqdq	\$0x10,$Tred,$Xi,$T2	# 1st phase
1571	vpalignr	\$8,$Xi,$Xi,$Xi
1572	vpxor		$T2,$Xi,$Xi
1573
1574	vpclmulqdq	\$0x10,$Tred,$Xi,$T2	# 2nd phase
1575	vpalignr	\$8,$Xi,$Xi,$Xi
1576	vpxor		$Xo,$Xi,$Xi
1577	vpxor		$T2,$Xi,$Xi
1578
1579	cmp		\$0,$len
1580	jne		.Lshort_avx
1581
1582	vpshufb		$bswap,$Xi,$Xi
1583	vmovdqu		$Xi,($Xip)
1584	vzeroupper
1585___
1586$code.=<<___ if ($win64);
1587	movaps	(%rsp),%xmm6
1588	movaps	0x10(%rsp),%xmm7
1589	movaps	0x20(%rsp),%xmm8
1590	movaps	0x30(%rsp),%xmm9
1591	movaps	0x40(%rsp),%xmm10
1592	movaps	0x50(%rsp),%xmm11
1593	movaps	0x60(%rsp),%xmm12
1594	movaps	0x70(%rsp),%xmm13
1595	movaps	0x80(%rsp),%xmm14
1596	movaps	0x90(%rsp),%xmm15
1597	lea	0xa8(%rsp),%rsp
1598.LSEH_end_gcm_ghash_avx:
1599___
1600$code.=<<___;
1601	ret
1602.cfi_endproc
1603.size	gcm_ghash_avx,.-gcm_ghash_avx
1604___
1605} else {
1606$code.=<<___;
1607	jmp	.L_ghash_clmul
1608.cfi_endproc
1609.size	gcm_ghash_avx,.-gcm_ghash_avx
1610___
1611}
1612
1613$code.=<<___;
1614.section .rodata align=64
1615.align	64
1616.Lbswap_mask:
1617	.byte	15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
1618.L0x1c2_polynomial:
1619	.byte	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
1620.L7_mask:
1621	.long	7,0,7,0
1622.L7_mask_poly:
1623	.long	7,0,`0xE1<<1`,0
1624.align	64
1625.type	.Lrem_4bit,\@object
1626.Lrem_4bit:
1627	.long	0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
1628	.long	0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
1629	.long	0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
1630	.long	0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
1631.type	.Lrem_8bit,\@object
1632.Lrem_8bit:
1633	.value	0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
1634	.value	0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
1635	.value	0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
1636	.value	0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
1637	.value	0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
1638	.value	0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
1639	.value	0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
1640	.value	0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
1641	.value	0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
1642	.value	0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
1643	.value	0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
1644	.value	0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
1645	.value	0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
1646	.value	0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
1647	.value	0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
1648	.value	0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
1649	.value	0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
1650	.value	0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
1651	.value	0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
1652	.value	0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
1653	.value	0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
1654	.value	0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
1655	.value	0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
1656	.value	0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
1657	.value	0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
1658	.value	0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
1659	.value	0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
1660	.value	0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
1661	.value	0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
1662	.value	0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
1663	.value	0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
1664	.value	0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
1665
1666.asciz	"GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1667.align	64
1668.previous
1669___
1670
1671# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1672#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
1673if ($win64) {
1674$rec="%rcx";
1675$frame="%rdx";
1676$context="%r8";
1677$disp="%r9";
1678
1679$code.=<<___;
1680.extern	__imp_RtlVirtualUnwind
1681.type	se_handler,\@abi-omnipotent
1682.align	16
1683se_handler:
1684	push	%rsi
1685	push	%rdi
1686	push	%rbx
1687	push	%rbp
1688	push	%r12
1689	push	%r13
1690	push	%r14
1691	push	%r15
1692	pushfq
1693	sub	\$64,%rsp
1694
1695	mov	120($context),%rax	# pull context->Rax
1696	mov	248($context),%rbx	# pull context->Rip
1697
1698	mov	8($disp),%rsi		# disp->ImageBase
1699	mov	56($disp),%r11		# disp->HandlerData
1700
1701	mov	0(%r11),%r10d		# HandlerData[0]
1702	lea	(%rsi,%r10),%r10	# prologue label
1703	cmp	%r10,%rbx		# context->Rip<prologue label
1704	jb	.Lin_prologue
1705
1706	mov	152($context),%rax	# pull context->Rsp
1707
1708	mov	4(%r11),%r10d		# HandlerData[1]
1709	lea	(%rsi,%r10),%r10	# epilogue label
1710	cmp	%r10,%rbx		# context->Rip>=epilogue label
1711	jae	.Lin_prologue
1712
1713	lea	48+280(%rax),%rax	# adjust "rsp"
1714
1715	mov	-8(%rax),%rbx
1716	mov	-16(%rax),%rbp
1717	mov	-24(%rax),%r12
1718	mov	-32(%rax),%r13
1719	mov	-40(%rax),%r14
1720	mov	-48(%rax),%r15
1721	mov	%rbx,144($context)	# restore context->Rbx
1722	mov	%rbp,160($context)	# restore context->Rbp
1723	mov	%r12,216($context)	# restore context->R12
1724	mov	%r13,224($context)	# restore context->R13
1725	mov	%r14,232($context)	# restore context->R14
1726	mov	%r15,240($context)	# restore context->R15
1727
1728.Lin_prologue:
1729	mov	8(%rax),%rdi
1730	mov	16(%rax),%rsi
1731	mov	%rax,152($context)	# restore context->Rsp
1732	mov	%rsi,168($context)	# restore context->Rsi
1733	mov	%rdi,176($context)	# restore context->Rdi
1734
1735	mov	40($disp),%rdi		# disp->ContextRecord
1736	mov	$context,%rsi		# context
1737	mov	\$`1232/8`,%ecx		# sizeof(CONTEXT)
1738	.long	0xa548f3fc		# cld; rep movsq
1739
1740	mov	$disp,%rsi
1741	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
1742	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
1743	mov	0(%rsi),%r8		# arg3, disp->ControlPc
1744	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
1745	mov	40(%rsi),%r10		# disp->ContextRecord
1746	lea	56(%rsi),%r11		# &disp->HandlerData
1747	lea	24(%rsi),%r12		# &disp->EstablisherFrame
1748	mov	%r10,32(%rsp)		# arg5
1749	mov	%r11,40(%rsp)		# arg6
1750	mov	%r12,48(%rsp)		# arg7
1751	mov	%rcx,56(%rsp)		# arg8, (NULL)
1752	call	*__imp_RtlVirtualUnwind(%rip)
1753
1754	mov	\$1,%eax		# ExceptionContinueSearch
1755	add	\$64,%rsp
1756	popfq
1757	pop	%r15
1758	pop	%r14
1759	pop	%r13
1760	pop	%r12
1761	pop	%rbp
1762	pop	%rbx
1763	pop	%rdi
1764	pop	%rsi
1765	ret
1766.size	se_handler,.-se_handler
1767
1768.section	.pdata
1769.align	4
1770	.rva	.LSEH_begin_gcm_gmult_4bit
1771	.rva	.LSEH_end_gcm_gmult_4bit
1772	.rva	.LSEH_info_gcm_gmult_4bit
1773
1774	.rva	.LSEH_begin_gcm_ghash_4bit
1775	.rva	.LSEH_end_gcm_ghash_4bit
1776	.rva	.LSEH_info_gcm_ghash_4bit
1777
1778	.rva	.LSEH_begin_gcm_init_clmul
1779	.rva	.LSEH_end_gcm_init_clmul
1780	.rva	.LSEH_info_gcm_init_clmul
1781
1782	.rva	.LSEH_begin_gcm_ghash_clmul
1783	.rva	.LSEH_end_gcm_ghash_clmul
1784	.rva	.LSEH_info_gcm_ghash_clmul
1785___
1786$code.=<<___	if ($avx);
1787	.rva	.LSEH_begin_gcm_init_avx
1788	.rva	.LSEH_end_gcm_init_avx
1789	.rva	.LSEH_info_gcm_init_clmul
1790
1791	.rva	.LSEH_begin_gcm_ghash_avx
1792	.rva	.LSEH_end_gcm_ghash_avx
1793	.rva	.LSEH_info_gcm_ghash_clmul
1794___
1795$code.=<<___;
1796.section	.xdata
1797.align	8
1798.LSEH_info_gcm_gmult_4bit:
1799	.byte	9,0,0,0
1800	.rva	se_handler
1801	.rva	.Lgmult_prologue,.Lgmult_epilogue	# HandlerData
1802.LSEH_info_gcm_ghash_4bit:
1803	.byte	9,0,0,0
1804	.rva	se_handler
1805	.rva	.Lghash_prologue,.Lghash_epilogue	# HandlerData
1806.LSEH_info_gcm_init_clmul:
1807	.byte	0x01,0x08,0x03,0x00
1808	.byte	0x08,0x68,0x00,0x00	#movaps	0x00(rsp),xmm6
1809	.byte	0x04,0x22,0x00,0x00	#sub	rsp,0x18
1810.LSEH_info_gcm_ghash_clmul:
1811	.byte	0x01,0x33,0x16,0x00
1812	.byte	0x33,0xf8,0x09,0x00	#movaps 0x90(rsp),xmm15
1813	.byte	0x2e,0xe8,0x08,0x00	#movaps 0x80(rsp),xmm14
1814	.byte	0x29,0xd8,0x07,0x00	#movaps 0x70(rsp),xmm13
1815	.byte	0x24,0xc8,0x06,0x00	#movaps 0x60(rsp),xmm12
1816	.byte	0x1f,0xb8,0x05,0x00	#movaps 0x50(rsp),xmm11
1817	.byte	0x1a,0xa8,0x04,0x00	#movaps 0x40(rsp),xmm10
1818	.byte	0x15,0x98,0x03,0x00	#movaps 0x30(rsp),xmm9
1819	.byte	0x10,0x88,0x02,0x00	#movaps 0x20(rsp),xmm8
1820	.byte	0x0c,0x78,0x01,0x00	#movaps 0x10(rsp),xmm7
1821	.byte	0x08,0x68,0x00,0x00	#movaps 0x00(rsp),xmm6
1822	.byte	0x04,0x01,0x15,0x00	#sub	rsp,0xa8
1823___
1824}
1825
1826$code =~ s/\`([^\`]*)\`/eval($1)/gem;
1827
1828print $code;
1829
1830close STDOUT or die "error closing STDOUT: $!";
1831