1#! /usr/bin/env perl 2# Copyright 2007-2020 The OpenSSL Project Authors. All Rights Reserved. 3# 4# Licensed under the Apache License 2.0 (the "License"). You may not use 5# this file except in compliance with the License. You can obtain a copy 6# in the file LICENSE in the source distribution or at 7# https://www.openssl.org/source/license.html 8 9 10# ==================================================================== 11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12# project. The module is, however, dual licensed under OpenSSL and 13# CRYPTOGAMS licenses depending on where you obtain it. For further 14# details see http://www.openssl.org/~appro/cryptogams/. 15# ==================================================================== 16 17# April 2007. 18# 19# Performance improvement over vanilla C code varies from 85% to 45% 20# depending on key length and benchmark. Unfortunately in this context 21# these are not very impressive results [for code that utilizes "wide" 22# 64x64=128-bit multiplication, which is not commonly available to C 23# programmers], at least hand-coded bn_asm.c replacement is known to 24# provide 30-40% better results for longest keys. Well, on a second 25# thought it's not very surprising, because z-CPUs are single-issue 26# and _strictly_ in-order execution, while bn_mul_mont is more or less 27# dependent on CPU ability to pipe-line instructions and have several 28# of them "in-flight" at the same time. I mean while other methods, 29# for example Karatsuba, aim to minimize amount of multiplications at 30# the cost of other operations increase, bn_mul_mont aim to neatly 31# "overlap" multiplications and the other operations [and on most 32# platforms even minimize the amount of the other operations, in 33# particular references to memory]. But it's possible to improve this 34# module performance by implementing dedicated squaring code-path and 35# possibly by unrolling loops... 36 37# January 2009. 38# 39# Reschedule to minimize/avoid Address Generation Interlock hazard, 40# make inner loops counter-based. 41 42# November 2010. 43# 44# Adapt for -m31 build. If kernel supports what's called "highgprs" 45# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit 46# instructions and achieve "64-bit" performance even in 31-bit legacy 47# application context. The feature is not specific to any particular 48# processor, as long as it's "z-CPU". Latter implies that the code 49# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG 50# is achieved by swapping words after 64-bit loads, follow _dswap-s. 51# On z990 it was measured to perform 2.6-2.2 times better than 52# compiler-generated code, less for longer keys... 53 54# $output is the last argument if it looks like a file (it has an extension) 55# $flavour is the first argument if it doesn't look like a file 56$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; 57$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; 58 59if ($flavour =~ /3[12]/) { 60 $SIZE_T=4; 61 $g=""; 62} else { 63 $SIZE_T=8; 64 $g="g"; 65} 66 67$output and open STDOUT,">$output"; 68 69$stdframe=16*$SIZE_T+4*8; 70 71$mn0="%r0"; 72$num="%r1"; 73 74# int bn_mul_mont( 75$rp="%r2"; # BN_ULONG *rp, 76$ap="%r3"; # const BN_ULONG *ap, 77$bp="%r4"; # const BN_ULONG *bp, 78$np="%r5"; # const BN_ULONG *np, 79$n0="%r6"; # const BN_ULONG *n0, 80#$num="160(%r15)" # int num); 81 82$bi="%r2"; # zaps rp 83$j="%r7"; 84 85$ahi="%r8"; 86$alo="%r9"; 87$nhi="%r10"; 88$nlo="%r11"; 89$AHI="%r12"; 90$NHI="%r13"; 91$count="%r14"; 92$sp="%r15"; 93 94$code.=<<___; 95.text 96.globl bn_mul_mont 97.type bn_mul_mont,\@function 98bn_mul_mont: 99 lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num 100 sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes 101 la $bp,0($num,$bp) 102 103 st${g} %r2,2*$SIZE_T($sp) 104 105 cghi $num,16 # 106 lghi %r2,0 # 107 blr %r14 # if($num<16) return 0; 108___ 109$code.=<<___ if ($flavour =~ /3[12]/); 110 tmll $num,4 111 bnzr %r14 # if ($num&1) return 0; 112___ 113$code.=<<___ if ($flavour !~ /3[12]/); 114 cghi $num,96 # 115 bhr %r14 # if($num>96) return 0; 116___ 117$code.=<<___; 118 stm${g} %r3,%r15,3*$SIZE_T($sp) 119 120 lghi $rp,-$stdframe-8 # leave room for carry bit 121 lcgr $j,$num # -$num 122 lgr %r0,$sp 123 la $rp,0($rp,$sp) 124 la $sp,0($j,$rp) # alloca 125 st${g} %r0,0($sp) # back chain 126 127 sra $num,3 # restore $num 128 la $bp,0($j,$bp) # restore $bp 129 ahi $num,-1 # adjust $num for inner loop 130 lg $n0,0($n0) # pull n0 131 _dswap $n0 132 133 lg $bi,0($bp) 134 _dswap $bi 135 lg $alo,0($ap) 136 _dswap $alo 137 mlgr $ahi,$bi # ap[0]*bp[0] 138 lgr $AHI,$ahi 139 140 lgr $mn0,$alo # "tp[0]"*n0 141 msgr $mn0,$n0 142 143 lg $nlo,0($np) # 144 _dswap $nlo 145 mlgr $nhi,$mn0 # np[0]*m1 146 algr $nlo,$alo # +="tp[0]" 147 lghi $NHI,0 148 alcgr $NHI,$nhi 149 150 la $j,8 # j=1 151 lr $count,$num 152 153.align 16 154.L1st: 155 lg $alo,0($j,$ap) 156 _dswap $alo 157 mlgr $ahi,$bi # ap[j]*bp[0] 158 algr $alo,$AHI 159 lghi $AHI,0 160 alcgr $AHI,$ahi 161 162 lg $nlo,0($j,$np) 163 _dswap $nlo 164 mlgr $nhi,$mn0 # np[j]*m1 165 algr $nlo,$NHI 166 lghi $NHI,0 167 alcgr $nhi,$NHI # +="tp[j]" 168 algr $nlo,$alo 169 alcgr $NHI,$nhi 170 171 stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= 172 la $j,8($j) # j++ 173 brct $count,.L1st 174 175 algr $NHI,$AHI 176 lghi $AHI,0 177 alcgr $AHI,$AHI # upmost overflow bit 178 stg $NHI,$stdframe-8($j,$sp) 179 stg $AHI,$stdframe($j,$sp) 180 la $bp,8($bp) # bp++ 181 182.Louter: 183 lg $bi,0($bp) # bp[i] 184 _dswap $bi 185 lg $alo,0($ap) 186 _dswap $alo 187 mlgr $ahi,$bi # ap[0]*bp[i] 188 alg $alo,$stdframe($sp) # +=tp[0] 189 lghi $AHI,0 190 alcgr $AHI,$ahi 191 192 lgr $mn0,$alo 193 msgr $mn0,$n0 # tp[0]*n0 194 195 lg $nlo,0($np) # np[0] 196 _dswap $nlo 197 mlgr $nhi,$mn0 # np[0]*m1 198 algr $nlo,$alo # +="tp[0]" 199 lghi $NHI,0 200 alcgr $NHI,$nhi 201 202 la $j,8 # j=1 203 lr $count,$num 204 205.align 16 206.Linner: 207 lg $alo,0($j,$ap) 208 _dswap $alo 209 mlgr $ahi,$bi # ap[j]*bp[i] 210 algr $alo,$AHI 211 lghi $AHI,0 212 alcgr $ahi,$AHI 213 alg $alo,$stdframe($j,$sp)# +=tp[j] 214 alcgr $AHI,$ahi 215 216 lg $nlo,0($j,$np) 217 _dswap $nlo 218 mlgr $nhi,$mn0 # np[j]*m1 219 algr $nlo,$NHI 220 lghi $NHI,0 221 alcgr $nhi,$NHI 222 algr $nlo,$alo # +="tp[j]" 223 alcgr $NHI,$nhi 224 225 stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= 226 la $j,8($j) # j++ 227 brct $count,.Linner 228 229 algr $NHI,$AHI 230 lghi $AHI,0 231 alcgr $AHI,$AHI 232 alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit 233 lghi $ahi,0 234 alcgr $AHI,$ahi # new upmost overflow bit 235 stg $NHI,$stdframe-8($j,$sp) 236 stg $AHI,$stdframe($j,$sp) 237 238 la $bp,8($bp) # bp++ 239 cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num] 240 jne .Louter 241 242 l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp 243 la $ap,$stdframe($sp) 244 ahi $num,1 # restore $num, incidentally clears "borrow" 245 246 la $j,0 247 lr $count,$num 248.Lsub: lg $alo,0($j,$ap) 249 lg $nlo,0($j,$np) 250 _dswap $nlo 251 slbgr $alo,$nlo 252 stg $alo,0($j,$rp) 253 la $j,8($j) 254 brct $count,.Lsub 255 lghi $ahi,0 256 slbgr $AHI,$ahi # handle upmost carry 257 lghi $NHI,-1 258 xgr $NHI,$AHI 259 260 la $j,0 261 lgr $count,$num 262.Lcopy: lg $ahi,$stdframe($j,$sp) # conditional copy 263 lg $alo,0($j,$rp) 264 ngr $ahi,$AHI 265 ngr $alo,$NHI 266 ogr $alo,$ahi 267 _dswap $alo 268 stg $j,$stdframe($j,$sp) # zap tp 269 stg $alo,0($j,$rp) 270 la $j,8($j) 271 brct $count,.Lcopy 272 273 la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp) 274 lm${g} %r6,%r15,0(%r1) 275 lghi %r2,1 # signal "processed" 276 br %r14 277.size bn_mul_mont,.-bn_mul_mont 278.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" 279___ 280 281foreach (split("\n",$code)) { 282 s/\`([^\`]*)\`/eval $1/ge; 283 s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e; 284 print $_,"\n"; 285} 286close STDOUT or die "error closing STDOUT: $!"; 287