xref: /openssl/crypto/bn/asm/rsaz-4k-avx512.pl (revision 7ed6de99)
1# Copyright 2021-2024 The OpenSSL Project Authors. All Rights Reserved.
2# Copyright (c) 2021, Intel Corporation. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8#
9#
10# Originally written by Sergey Kirillov and Andrey Matyukov
11# Intel Corporation
12#
13# March 2021
14#
15# Initial release.
16#
17# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
18#
19# IceLake-Client @ 1.3GHz
20# |---------+-----------------------+---------------+-------------|
21# |         | OpenSSL 3.0.0-alpha15 | this          | Unit        |
22# |---------+-----------------------+---------------+-------------|
23# | rsa4096 | 14 301 4300           | 5 813 953     | cycles/sign |
24# |         | 90.9                  | 223.6 / +146% | sign/s      |
25# |---------+-----------------------+---------------+-------------|
26#
27
28# $output is the last argument if it looks like a file (it has an extension)
29# $flavour is the first argument if it doesn't look like a file
30$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
31$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
32
33$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
34$avx512ifma=0;
35
36$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
37( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
38( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
39die "can't locate x86_64-xlate.pl";
40
41if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
42        =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
43    $avx512ifma = ($1>=2.26);
44}
45
46if (!$avx512ifma && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
47       `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
48    $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
49}
50
51if (!$avx512ifma && `$ENV{CC} -v 2>&1`
52    =~ /(Apple)?\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
53    my $ver = $3 + $4/100.0 + $5/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
54    if ($1) {
55        # Apple conditions, they use a different version series, see
56        # https://en.wikipedia.org/wiki/Xcode#Xcode_7.0_-_10.x_(since_Free_On-Device_Development)_2
57        # clang 7.0.0 is Apple clang 10.0.1
58        $avx512ifma = ($ver>=10.0001)
59    } else {
60        $avx512ifma = ($ver>=7.0);
61    }
62}
63
64open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
65    or die "can't call $xlate: $!";
66*STDOUT=*OUT;
67
68if ($avx512ifma>0) {{{
69@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
70
71###############################################################################
72# Almost Montgomery Multiplication (AMM) for 40-digit number in radix 2^52.
73#
74# AMM is defined as presented in the paper [1].
75#
76# The input and output are presented in 2^52 radix domain, i.e.
77#   |res|, |a|, |b|, |m| are arrays of 40 64-bit qwords with 12 high bits zeroed.
78#   |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
79#
80# NB: the AMM implementation does not perform "conditional" subtraction step
81# specified in the original algorithm as according to the Lemma 1 from the paper
82# [2], the result will be always < 2*m and can be used as a direct input to
83# the next AMM iteration.  This post-condition is true, provided the correct
84# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e.  s >= n + 2 * k,
85# which matches our case: 2080 > 2048 + 2 * 1.
86#
87# [1] Gueron, S. Efficient software implementations of modular exponentiation.
88#     DOI: 10.1007/s13389-012-0031-5
89# [2] Gueron, S. Enhanced Montgomery Multiplication.
90#     DOI: 10.1007/3-540-36400-5_5
91#
92# void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res,
93#                                    const BN_ULONG *a,
94#                                    const BN_ULONG *b,
95#                                    const BN_ULONG *m,
96#                                    BN_ULONG k0);
97###############################################################################
98{
99# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
100my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
101
102my $mask52     = "%rax";
103my $acc0_0     = "%r9";
104my $acc0_0_low = "%r9d";
105my $acc0_1     = "%r15";
106my $acc0_1_low = "%r15d";
107my $b_ptr      = "%r11";
108
109my $iter = "%ebx";
110
111my $zero = "%ymm0";
112my $Bi   = "%ymm1";
113my $Yi   = "%ymm2";
114my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h) = map("%ymm$_",(3..12));
115my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,$R4_1,$R4_1h) = map("%ymm$_",(13..22));
116
117# Registers mapping for normalization
118my ($T0,$T0h,$T1,$T1h,$T2,$T2h,$T3,$T3h,$T4,$T4h) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (23..29)));
119
120sub amm52x40_x1() {
121# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
122#                of data for corresponding AMM operation;
123# _b_offset    - offset in the |b| array pointing to the next qword digit;
124my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_R4,$_R4h,$_k0) = @_;
125my $_R0_xmm = $_R0;
126$_R0_xmm =~ s/%y/%x/;
127$code.=<<___;
128    movq    $_b_offset($b_ptr), %r13             # b[i]
129
130    vpbroadcastq    %r13, $Bi                    # broadcast b[i]
131    movq    $_data_offset($a), %rdx
132    mulx    %r13, %r13, %r12                     # a[0]*b[i] = (t0,t2)
133    addq    %r13, $_acc                          # acc += t0
134    movq    %r12, %r10
135    adcq    \$0, %r10                            # t2 += CF
136
137    movq    $_k0, %r13
138    imulq   $_acc, %r13                          # acc * k0
139    andq    $mask52, %r13                        # yi = (acc * k0) & mask52
140
141    vpbroadcastq    %r13, $Yi                    # broadcast y[i]
142    movq    $_data_offset($m), %rdx
143    mulx    %r13, %r13, %r12                     # yi * m[0] = (t0,t1)
144    addq    %r13, $_acc                          # acc += t0
145    adcq    %r12, %r10                           # t2 += (t1 + CF)
146
147    shrq    \$52, $_acc
148    salq    \$12, %r10
149    or      %r10, $_acc                          # acc = ((acc >> 52) | (t2 << 12))
150
151    vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
152    vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
153    vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
154    vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
155    vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
156    vpmadd52luq `$_data_offset+64*2+32`($a), $Bi, $_R2h
157    vpmadd52luq `$_data_offset+64*3`($a), $Bi, $_R3
158    vpmadd52luq `$_data_offset+64*3+32`($a), $Bi, $_R3h
159    vpmadd52luq `$_data_offset+64*4`($a), $Bi, $_R4
160    vpmadd52luq `$_data_offset+64*4+32`($a), $Bi, $_R4h
161
162    vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
163    vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
164    vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
165    vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
166    vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
167    vpmadd52luq `$_data_offset+64*2+32`($m), $Yi, $_R2h
168    vpmadd52luq `$_data_offset+64*3`($m), $Yi, $_R3
169    vpmadd52luq `$_data_offset+64*3+32`($m), $Yi, $_R3h
170    vpmadd52luq `$_data_offset+64*4`($m), $Yi, $_R4
171    vpmadd52luq `$_data_offset+64*4+32`($m), $Yi, $_R4h
172
173    # Shift accumulators right by 1 qword, zero extending the highest one
174    valignq     \$1, $_R0, $_R0h, $_R0
175    valignq     \$1, $_R0h, $_R1, $_R0h
176    valignq     \$1, $_R1, $_R1h, $_R1
177    valignq     \$1, $_R1h, $_R2, $_R1h
178    valignq     \$1, $_R2, $_R2h, $_R2
179    valignq     \$1, $_R2h, $_R3, $_R2h
180    valignq     \$1, $_R3, $_R3h, $_R3
181    valignq     \$1, $_R3h, $_R4, $_R3h
182    valignq     \$1, $_R4, $_R4h, $_R4
183    valignq     \$1, $_R4h, $zero, $_R4h
184
185    vmovq   $_R0_xmm, %r13
186    addq    %r13, $_acc    # acc += R0[0]
187
188    vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
189    vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
190    vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
191    vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
192    vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
193    vpmadd52huq `$_data_offset+64*2+32`($a), $Bi, $_R2h
194    vpmadd52huq `$_data_offset+64*3`($a), $Bi, $_R3
195    vpmadd52huq `$_data_offset+64*3+32`($a), $Bi, $_R3h
196    vpmadd52huq `$_data_offset+64*4`($a), $Bi, $_R4
197    vpmadd52huq `$_data_offset+64*4+32`($a), $Bi, $_R4h
198
199    vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
200    vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
201    vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
202    vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
203    vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
204    vpmadd52huq `$_data_offset+64*2+32`($m), $Yi, $_R2h
205    vpmadd52huq `$_data_offset+64*3`($m), $Yi, $_R3
206    vpmadd52huq `$_data_offset+64*3+32`($m), $Yi, $_R3h
207    vpmadd52huq `$_data_offset+64*4`($m), $Yi, $_R4
208    vpmadd52huq `$_data_offset+64*4+32`($m), $Yi, $_R4h
209___
210}
211
212# Normalization routine: handles carry bits and gets bignum qwords to normalized
213# 2^52 representation.
214#
215# Uses %r8-14,%e[abcd]x
216sub amm52x40_x1_norm {
217my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_R2h,$_R3,$_R3h,$_R4,$_R4h) = @_;
218$code.=<<___;
219    # Put accumulator to low qword in R0
220    vpbroadcastq    $_acc, $T0
221    vpblendd \$3, $T0, $_R0, $_R0
222
223    # Extract "carries" (12 high bits) from each QW of the bignum
224    # Save them to LSB of QWs in T0..Tn
225    vpsrlq    \$52, $_R0,   $T0
226    vpsrlq    \$52, $_R0h,  $T0h
227    vpsrlq    \$52, $_R1,   $T1
228    vpsrlq    \$52, $_R1h,  $T1h
229    vpsrlq    \$52, $_R2,   $T2
230    vpsrlq    \$52, $_R2h,  $T2h
231    vpsrlq    \$52, $_R3,   $T3
232    vpsrlq    \$52, $_R3h,  $T3h
233    vpsrlq    \$52, $_R4,   $T4
234    vpsrlq    \$52, $_R4h,  $T4h
235
236    # "Shift left" T0..Tn by 1 QW
237    valignq \$3, $T4,  $T4h,  $T4h
238    valignq \$3, $T3h,  $T4,  $T4
239    valignq \$3, $T3,  $T3h,  $T3h
240    valignq \$3, $T2h,  $T3,  $T3
241    valignq \$3, $T2,  $T2h,  $T2h
242    valignq \$3, $T1h,  $T2,  $T2
243    valignq \$3, $T1,   $T1h, $T1h
244    valignq \$3, $T0h,  $T1,  $T1
245    valignq \$3, $T0,   $T0h, $T0h
246    valignq \$3, .Lzeros(%rip), $T0,  $T0
247
248    # Drop "carries" from R0..Rn QWs
249    vpandq    .Lmask52x4(%rip), $_R0,  $_R0
250    vpandq    .Lmask52x4(%rip), $_R0h, $_R0h
251    vpandq    .Lmask52x4(%rip), $_R1,  $_R1
252    vpandq    .Lmask52x4(%rip), $_R1h, $_R1h
253    vpandq    .Lmask52x4(%rip), $_R2,  $_R2
254    vpandq    .Lmask52x4(%rip), $_R2h, $_R2h
255    vpandq    .Lmask52x4(%rip), $_R3,  $_R3
256    vpandq    .Lmask52x4(%rip), $_R3h, $_R3h
257    vpandq    .Lmask52x4(%rip), $_R4,  $_R4
258    vpandq    .Lmask52x4(%rip), $_R4h, $_R4h
259
260    # Sum R0..Rn with corresponding adjusted carries
261    vpaddq  $T0,  $_R0,  $_R0
262    vpaddq  $T0h, $_R0h, $_R0h
263    vpaddq  $T1,  $_R1,  $_R1
264    vpaddq  $T1h, $_R1h, $_R1h
265    vpaddq  $T2,  $_R2,  $_R2
266    vpaddq  $T2h, $_R2h, $_R2h
267    vpaddq  $T3,  $_R3,  $_R3
268    vpaddq  $T3h, $_R3h, $_R3h
269    vpaddq  $T4,  $_R4,  $_R4
270    vpaddq  $T4h, $_R4h, $_R4h
271
272    # Now handle carry bits from this addition
273    # Get mask of QWs whose 52-bit parts overflow
274    vpcmpuq    \$6,.Lmask52x4(%rip),${_R0},%k1    # OP=nle (i.e. gt)
275    vpcmpuq    \$6,.Lmask52x4(%rip),${_R0h},%k2
276    kmovb      %k1,%r14d
277    kmovb      %k2,%r13d
278    shl        \$4,%r13b
279    or         %r13b,%r14b
280
281    vpcmpuq    \$6,.Lmask52x4(%rip),${_R1},%k1
282    vpcmpuq    \$6,.Lmask52x4(%rip),${_R1h},%k2
283    kmovb      %k1,%r13d
284    kmovb      %k2,%r12d
285    shl        \$4,%r12b
286    or         %r12b,%r13b
287
288    vpcmpuq    \$6,.Lmask52x4(%rip),${_R2},%k1
289    vpcmpuq    \$6,.Lmask52x4(%rip),${_R2h},%k2
290    kmovb      %k1,%r12d
291    kmovb      %k2,%r11d
292    shl        \$4,%r11b
293    or         %r11b,%r12b
294
295    vpcmpuq    \$6,.Lmask52x4(%rip),${_R3},%k1
296    vpcmpuq    \$6,.Lmask52x4(%rip),${_R3h},%k2
297    kmovb      %k1,%r11d
298    kmovb      %k2,%r10d
299    shl        \$4,%r10b
300    or         %r10b,%r11b
301
302    vpcmpuq    \$6,.Lmask52x4(%rip),${_R4},%k1
303    vpcmpuq    \$6,.Lmask52x4(%rip),${_R4h},%k2
304    kmovb      %k1,%r10d
305    kmovb      %k2,%r9d
306    shl        \$4,%r9b
307    or         %r9b,%r10b
308
309    addb       %r14b,%r14b
310    adcb       %r13b,%r13b
311    adcb       %r12b,%r12b
312    adcb       %r11b,%r11b
313    adcb       %r10b,%r10b
314
315    # Get mask of QWs whose 52-bit parts saturated
316    vpcmpuq    \$0,.Lmask52x4(%rip),${_R0},%k1    # OP=eq
317    vpcmpuq    \$0,.Lmask52x4(%rip),${_R0h},%k2
318    kmovb      %k1,%r9d
319    kmovb      %k2,%r8d
320    shl        \$4,%r8b
321    or         %r8b,%r9b
322
323    vpcmpuq    \$0,.Lmask52x4(%rip),${_R1},%k1
324    vpcmpuq    \$0,.Lmask52x4(%rip),${_R1h},%k2
325    kmovb      %k1,%r8d
326    kmovb      %k2,%edx
327    shl        \$4,%dl
328    or         %dl,%r8b
329
330    vpcmpuq    \$0,.Lmask52x4(%rip),${_R2},%k1
331    vpcmpuq    \$0,.Lmask52x4(%rip),${_R2h},%k2
332    kmovb      %k1,%edx
333    kmovb      %k2,%ecx
334    shl        \$4,%cl
335    or         %cl,%dl
336
337    vpcmpuq    \$0,.Lmask52x4(%rip),${_R3},%k1
338    vpcmpuq    \$0,.Lmask52x4(%rip),${_R3h},%k2
339    kmovb      %k1,%ecx
340    kmovb      %k2,%ebx
341    shl        \$4,%bl
342    or         %bl,%cl
343
344    vpcmpuq    \$0,.Lmask52x4(%rip),${_R4},%k1
345    vpcmpuq    \$0,.Lmask52x4(%rip),${_R4h},%k2
346    kmovb      %k1,%ebx
347    kmovb      %k2,%eax
348    shl        \$4,%al
349    or         %al,%bl
350
351    addb     %r9b,%r14b
352    adcb     %r8b,%r13b
353    adcb     %dl,%r12b
354    adcb     %cl,%r11b
355    adcb     %bl,%r10b
356
357    xor      %r9b,%r14b
358    xor      %r8b,%r13b
359    xor      %dl,%r12b
360    xor      %cl,%r11b
361    xor      %bl,%r10b
362
363    kmovb    %r14d,%k1
364    shr      \$4,%r14b
365    kmovb    %r14d,%k2
366    kmovb    %r13d,%k3
367    shr      \$4,%r13b
368    kmovb    %r13d,%k4
369    kmovb    %r12d,%k5
370    shr      \$4,%r12b
371    kmovb    %r12d,%k6
372    kmovb    %r11d,%k7
373
374    vpsubq  .Lmask52x4(%rip), $_R0,  ${_R0}{%k1}
375    vpsubq  .Lmask52x4(%rip), $_R0h, ${_R0h}{%k2}
376    vpsubq  .Lmask52x4(%rip), $_R1,  ${_R1}{%k3}
377    vpsubq  .Lmask52x4(%rip), $_R1h, ${_R1h}{%k4}
378    vpsubq  .Lmask52x4(%rip), $_R2,  ${_R2}{%k5}
379    vpsubq  .Lmask52x4(%rip), $_R2h, ${_R2h}{%k6}
380    vpsubq  .Lmask52x4(%rip), $_R3,  ${_R3}{%k7}
381
382    vpandq  .Lmask52x4(%rip), $_R0,  $_R0
383    vpandq  .Lmask52x4(%rip), $_R0h, $_R0h
384    vpandq  .Lmask52x4(%rip), $_R1,  $_R1
385    vpandq  .Lmask52x4(%rip), $_R1h, $_R1h
386    vpandq  .Lmask52x4(%rip), $_R2,  $_R2
387    vpandq  .Lmask52x4(%rip), $_R2h, $_R2h
388    vpandq  .Lmask52x4(%rip), $_R3,  $_R3
389
390    shr    \$4,%r11b
391    kmovb   %r11d,%k1
392    kmovb   %r10d,%k2
393    shr    \$4,%r10b
394    kmovb   %r10d,%k3
395
396    vpsubq  .Lmask52x4(%rip), $_R3h, ${_R3h}{%k1}
397    vpsubq  .Lmask52x4(%rip), $_R4,  ${_R4}{%k2}
398    vpsubq  .Lmask52x4(%rip), $_R4h, ${_R4h}{%k3}
399
400    vpandq  .Lmask52x4(%rip), $_R3h, $_R3h
401    vpandq  .Lmask52x4(%rip), $_R4,  $_R4
402    vpandq  .Lmask52x4(%rip), $_R4h, $_R4h
403___
404}
405
406$code.=<<___;
407.text
408
409.globl  ossl_rsaz_amm52x40_x1_ifma256
410.type   ossl_rsaz_amm52x40_x1_ifma256,\@function,5
411.align 32
412ossl_rsaz_amm52x40_x1_ifma256:
413.cfi_startproc
414    endbranch
415    push    %rbx
416.cfi_push   %rbx
417    push    %rbp
418.cfi_push   %rbp
419    push    %r12
420.cfi_push   %r12
421    push    %r13
422.cfi_push   %r13
423    push    %r14
424.cfi_push   %r14
425    push    %r15
426.cfi_push   %r15
427___
428$code.=<<___ if ($win64);
429    lea     -168(%rsp),%rsp                 # 16*10 + (8 bytes to get correct 16-byte SIMD alignment)
430    vmovdqa64   %xmm6, `0*16`(%rsp)         # save non-volatile registers
431    vmovdqa64   %xmm7, `1*16`(%rsp)
432    vmovdqa64   %xmm8, `2*16`(%rsp)
433    vmovdqa64   %xmm9, `3*16`(%rsp)
434    vmovdqa64   %xmm10,`4*16`(%rsp)
435    vmovdqa64   %xmm11,`5*16`(%rsp)
436    vmovdqa64   %xmm12,`6*16`(%rsp)
437    vmovdqa64   %xmm13,`7*16`(%rsp)
438    vmovdqa64   %xmm14,`8*16`(%rsp)
439    vmovdqa64   %xmm15,`9*16`(%rsp)
440.Lossl_rsaz_amm52x40_x1_ifma256_body:
441___
442$code.=<<___;
443    # Zeroing accumulators
444    vpxord   $zero, $zero, $zero
445    vmovdqa64   $zero, $R0_0
446    vmovdqa64   $zero, $R0_0h
447    vmovdqa64   $zero, $R1_0
448    vmovdqa64   $zero, $R1_0h
449    vmovdqa64   $zero, $R2_0
450    vmovdqa64   $zero, $R2_0h
451    vmovdqa64   $zero, $R3_0
452    vmovdqa64   $zero, $R3_0h
453    vmovdqa64   $zero, $R4_0
454    vmovdqa64   $zero, $R4_0h
455
456    xorl    $acc0_0_low, $acc0_0_low
457
458    movq    $b, $b_ptr                       # backup address of b
459    movq    \$0xfffffffffffff, $mask52       # 52-bit mask
460
461    # Loop over 40 digits unrolled by 4
462    mov     \$10, $iter
463
464.align 32
465.Lloop10:
466___
467    foreach my $idx (0..3) {
468        &amm52x40_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,$k0);
469    }
470$code.=<<___;
471    lea    `4*8`($b_ptr), $b_ptr
472    dec    $iter
473    jne    .Lloop10
474___
475    &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
476$code.=<<___;
477
478    vmovdqu64   $R0_0,  `0*32`($res)
479    vmovdqu64   $R0_0h, `1*32`($res)
480    vmovdqu64   $R1_0,  `2*32`($res)
481    vmovdqu64   $R1_0h, `3*32`($res)
482    vmovdqu64   $R2_0,  `4*32`($res)
483    vmovdqu64   $R2_0h, `5*32`($res)
484    vmovdqu64   $R3_0,  `6*32`($res)
485    vmovdqu64   $R3_0h, `7*32`($res)
486    vmovdqu64   $R4_0,  `8*32`($res)
487    vmovdqu64   $R4_0h, `9*32`($res)
488
489    vzeroupper
490    lea     (%rsp),%rax
491.cfi_def_cfa_register   %rax
492___
493$code.=<<___ if ($win64);
494    vmovdqa64   `0*16`(%rax),%xmm6
495    vmovdqa64   `1*16`(%rax),%xmm7
496    vmovdqa64   `2*16`(%rax),%xmm8
497    vmovdqa64   `3*16`(%rax),%xmm9
498    vmovdqa64   `4*16`(%rax),%xmm10
499    vmovdqa64   `5*16`(%rax),%xmm11
500    vmovdqa64   `6*16`(%rax),%xmm12
501    vmovdqa64   `7*16`(%rax),%xmm13
502    vmovdqa64   `8*16`(%rax),%xmm14
503    vmovdqa64   `9*16`(%rax),%xmm15
504    lea  168(%rsp),%rax
505___
506$code.=<<___;
507    mov  0(%rax),%r15
508.cfi_restore    %r15
509    mov  8(%rax),%r14
510.cfi_restore    %r14
511    mov  16(%rax),%r13
512.cfi_restore    %r13
513    mov  24(%rax),%r12
514.cfi_restore    %r12
515    mov  32(%rax),%rbp
516.cfi_restore    %rbp
517    mov  40(%rax),%rbx
518.cfi_restore    %rbx
519    lea  48(%rax),%rsp       # restore rsp
520.cfi_def_cfa %rsp,8
521.Lossl_rsaz_amm52x40_x1_ifma256_epilogue:
522
523    ret
524.cfi_endproc
525.size   ossl_rsaz_amm52x40_x1_ifma256, .-ossl_rsaz_amm52x40_x1_ifma256
526___
527
528$code.=<<___;
529.section .rodata align=32
530.align 32
531.Lmask52x4:
532    .quad   0xfffffffffffff
533    .quad   0xfffffffffffff
534    .quad   0xfffffffffffff
535    .quad   0xfffffffffffff
536___
537
538###############################################################################
539# Dual Almost Montgomery Multiplication for 40-digit number in radix 2^52
540#
541# See description of ossl_rsaz_amm52x40_x1_ifma256() above for details about Almost
542# Montgomery Multiplication algorithm and function input parameters description.
543#
544# This function does two AMMs for two independent inputs, hence dual.
545#
546# void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG out[2][40],
547#                                    const BN_ULONG a[2][40],
548#                                    const BN_ULONG b[2][40],
549#                                    const BN_ULONG m[2][40],
550#                                    const BN_ULONG k0[2]);
551###############################################################################
552
553$code.=<<___;
554.text
555
556.globl  ossl_rsaz_amm52x40_x2_ifma256
557.type   ossl_rsaz_amm52x40_x2_ifma256,\@function,5
558.align 32
559ossl_rsaz_amm52x40_x2_ifma256:
560.cfi_startproc
561    endbranch
562    push    %rbx
563.cfi_push   %rbx
564    push    %rbp
565.cfi_push   %rbp
566    push    %r12
567.cfi_push   %r12
568    push    %r13
569.cfi_push   %r13
570    push    %r14
571.cfi_push   %r14
572    push    %r15
573.cfi_push   %r15
574___
575$code.=<<___ if ($win64);
576    lea     -168(%rsp),%rsp
577    vmovdqa64   %xmm6, `0*16`(%rsp)        # save non-volatile registers
578    vmovdqa64   %xmm7, `1*16`(%rsp)
579    vmovdqa64   %xmm8, `2*16`(%rsp)
580    vmovdqa64   %xmm9, `3*16`(%rsp)
581    vmovdqa64   %xmm10,`4*16`(%rsp)
582    vmovdqa64   %xmm11,`5*16`(%rsp)
583    vmovdqa64   %xmm12,`6*16`(%rsp)
584    vmovdqa64   %xmm13,`7*16`(%rsp)
585    vmovdqa64   %xmm14,`8*16`(%rsp)
586    vmovdqa64   %xmm15,`9*16`(%rsp)
587.Lossl_rsaz_amm52x40_x2_ifma256_body:
588___
589$code.=<<___;
590    # Zeroing accumulators
591    vpxord   $zero, $zero, $zero
592    vmovdqa64   $zero, $R0_0
593    vmovdqa64   $zero, $R0_0h
594    vmovdqa64   $zero, $R1_0
595    vmovdqa64   $zero, $R1_0h
596    vmovdqa64   $zero, $R2_0
597    vmovdqa64   $zero, $R2_0h
598    vmovdqa64   $zero, $R3_0
599    vmovdqa64   $zero, $R3_0h
600    vmovdqa64   $zero, $R4_0
601    vmovdqa64   $zero, $R4_0h
602
603    vmovdqa64   $zero, $R0_1
604    vmovdqa64   $zero, $R0_1h
605    vmovdqa64   $zero, $R1_1
606    vmovdqa64   $zero, $R1_1h
607    vmovdqa64   $zero, $R2_1
608    vmovdqa64   $zero, $R2_1h
609    vmovdqa64   $zero, $R3_1
610    vmovdqa64   $zero, $R3_1h
611    vmovdqa64   $zero, $R4_1
612    vmovdqa64   $zero, $R4_1h
613
614
615    xorl    $acc0_0_low, $acc0_0_low
616    xorl    $acc0_1_low, $acc0_1_low
617
618    movq    $b, $b_ptr                       # backup address of b
619    movq    \$0xfffffffffffff, $mask52       # 52-bit mask
620
621    mov    \$40, $iter
622
623.align 32
624.Lloop40:
625___
626    &amm52x40_x1(   0,   0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h,"($k0)");
627    # 40*8 = offset of the next dimension in two-dimension array
628    &amm52x40_x1(40*8,40*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,$R4_1,$R4_1h,"8($k0)");
629$code.=<<___;
630    lea    8($b_ptr), $b_ptr
631    dec    $iter
632    jne    .Lloop40
633___
634    &amm52x40_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$R2_0h,$R3_0,$R3_0h,$R4_0,$R4_0h);
635    &amm52x40_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,$R2_1h,$R3_1,$R3_1h,$R4_1,$R4_1h);
636$code.=<<___;
637
638    vmovdqu64   $R0_0,  `0*32`($res)
639    vmovdqu64   $R0_0h, `1*32`($res)
640    vmovdqu64   $R1_0,  `2*32`($res)
641    vmovdqu64   $R1_0h, `3*32`($res)
642    vmovdqu64   $R2_0,  `4*32`($res)
643    vmovdqu64   $R2_0h, `5*32`($res)
644    vmovdqu64   $R3_0,  `6*32`($res)
645    vmovdqu64   $R3_0h, `7*32`($res)
646    vmovdqu64   $R4_0,  `8*32`($res)
647    vmovdqu64   $R4_0h, `9*32`($res)
648
649    vmovdqu64   $R0_1,  `10*32`($res)
650    vmovdqu64   $R0_1h, `11*32`($res)
651    vmovdqu64   $R1_1,  `12*32`($res)
652    vmovdqu64   $R1_1h, `13*32`($res)
653    vmovdqu64   $R2_1,  `14*32`($res)
654    vmovdqu64   $R2_1h, `15*32`($res)
655    vmovdqu64   $R3_1,  `16*32`($res)
656    vmovdqu64   $R3_1h, `17*32`($res)
657    vmovdqu64   $R4_1,  `18*32`($res)
658    vmovdqu64   $R4_1h, `19*32`($res)
659
660    vzeroupper
661    lea     (%rsp),%rax
662.cfi_def_cfa_register   %rax
663___
664$code.=<<___ if ($win64);
665    vmovdqa64   `0*16`(%rax),%xmm6
666    vmovdqa64   `1*16`(%rax),%xmm7
667    vmovdqa64   `2*16`(%rax),%xmm8
668    vmovdqa64   `3*16`(%rax),%xmm9
669    vmovdqa64   `4*16`(%rax),%xmm10
670    vmovdqa64   `5*16`(%rax),%xmm11
671    vmovdqa64   `6*16`(%rax),%xmm12
672    vmovdqa64   `7*16`(%rax),%xmm13
673    vmovdqa64   `8*16`(%rax),%xmm14
674    vmovdqa64   `9*16`(%rax),%xmm15
675    lea     168(%rsp),%rax
676___
677$code.=<<___;
678    mov  0(%rax),%r15
679.cfi_restore    %r15
680    mov  8(%rax),%r14
681.cfi_restore    %r14
682    mov  16(%rax),%r13
683.cfi_restore    %r13
684    mov  24(%rax),%r12
685.cfi_restore    %r12
686    mov  32(%rax),%rbp
687.cfi_restore    %rbp
688    mov  40(%rax),%rbx
689.cfi_restore    %rbx
690    lea  48(%rax),%rsp
691.cfi_def_cfa    %rsp,8
692.Lossl_rsaz_amm52x40_x2_ifma256_epilogue:
693    ret
694.cfi_endproc
695.size   ossl_rsaz_amm52x40_x2_ifma256, .-ossl_rsaz_amm52x40_x2_ifma256
696___
697}
698
699###############################################################################
700# Constant time extraction from the precomputed table of powers base^i, where
701#    i = 0..2^EXP_WIN_SIZE-1
702#
703# The input |red_table| contains precomputations for two independent base values.
704# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
705#
706# Extracted value (output) is 2 40 digits numbers in 2^52 radix.
707#
708# void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
709#                                        const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][40],
710#                                        int red_table_idx1, int red_table_idx2);
711#
712# EXP_WIN_SIZE = 5
713###############################################################################
714{
715# input parameters
716my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
717                                                        ("%rdi","%rsi","%rdx","%rcx");  # Unix order
718
719my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
720my ($t6,$t7,$t8,$t9) = map("%ymm$_", (16..19));
721my ($tmp,$cur_idx,$idx1,$idx2,$ones) = map("%ymm$_", (20..24));
722
723my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
724my $t0xmm = $t0;
725$t0xmm =~ s/%y/%x/;
726
727sub get_table_value_consttime() {
728my ($_idx,$_offset) = @_;
729$code.=<<___;
730    vpxorq   $cur_idx, $cur_idx, $cur_idx
731.align 32
732.Lloop_$_offset:
733    vpcmpq  \$0, $cur_idx, $_idx, %k1      # mask of (idx == cur_idx)
734___
735foreach (0..9) {
736$code.=<<___;
737    vmovdqu64  `$_offset+${_}*32`($red_tbl), $tmp   # load data from red_tbl
738    vpblendmq  $tmp, $t[$_], ${t[$_]}{%k1}          # extract data when mask is not zero
739___
740}
741$code.=<<___;
742    vpaddq  $ones, $cur_idx, $cur_idx # increment cur_idx
743    addq    \$`2*40*8`, $red_tbl
744    cmpq    $red_tbl, %rax
745    jne .Lloop_$_offset
746___
747}
748
749$code.=<<___;
750.text
751
752.align 32
753.globl  ossl_extract_multiplier_2x40_win5
754.type   ossl_extract_multiplier_2x40_win5,\@abi-omnipotent
755ossl_extract_multiplier_2x40_win5:
756.cfi_startproc
757    endbranch
758    vmovdqa64   .Lones(%rip), $ones         # broadcast ones
759    vpbroadcastq    $red_tbl_idx1, $idx1
760    vpbroadcastq    $red_tbl_idx2, $idx2
761    leaq   `(1<<5)*2*40*8`($red_tbl), %rax  # holds end of the tbl
762
763    # backup red_tbl address
764    movq    $red_tbl, %r10
765
766    # zeroing t0..n, cur_idx
767    vpxor   $t0xmm, $t0xmm, $t0xmm
768___
769foreach (1..9) {
770    $code.="vmovdqa64   $t0, $t[$_] \n";
771}
772
773&get_table_value_consttime($idx1, 0);
774foreach (0..9) {
775    $code.="vmovdqu64   $t[$_], `(0+$_)*32`($out) \n";
776}
777$code.="movq    %r10, $red_tbl \n";
778&get_table_value_consttime($idx2, 40*8);
779foreach (0..9) {
780    $code.="vmovdqu64   $t[$_], `(10+$_)*32`($out) \n";
781}
782$code.=<<___;
783
784    ret
785.cfi_endproc
786.size   ossl_extract_multiplier_2x40_win5, .-ossl_extract_multiplier_2x40_win5
787___
788$code.=<<___;
789.section .rodata align=32
790.align 32
791.Lones:
792    .quad   1,1,1,1
793.Lzeros:
794    .quad   0,0,0,0
795___
796}
797
798if ($win64) {
799$rec="%rcx";
800$frame="%rdx";
801$context="%r8";
802$disp="%r9";
803
804$code.=<<___;
805.extern     __imp_RtlVirtualUnwind
806.type   rsaz_avx_handler,\@abi-omnipotent
807.align  16
808rsaz_avx_handler:
809    push    %rsi
810    push    %rdi
811    push    %rbx
812    push    %rbp
813    push    %r12
814    push    %r13
815    push    %r14
816    push    %r15
817    pushfq
818    sub     \$64,%rsp
819
820    mov     120($context),%rax # pull context->Rax
821    mov     248($context),%rbx # pull context->Rip
822
823    mov     8($disp),%rsi      # disp->ImageBase
824    mov     56($disp),%r11     # disp->HandlerData
825
826    mov     0(%r11),%r10d      # HandlerData[0]
827    lea     (%rsi,%r10),%r10   # prologue label
828    cmp     %r10,%rbx          # context->Rip<.Lprologue
829    jb  .Lcommon_seh_tail
830
831    mov     4(%r11),%r10d      # HandlerData[1]
832    lea     (%rsi,%r10),%r10   # epilogue label
833    cmp     %r10,%rbx          # context->Rip>=.Lepilogue
834    jae     .Lcommon_seh_tail
835
836    mov     152($context),%rax # pull context->Rsp
837
838    lea     (%rax),%rsi         # %xmm save area
839    lea     512($context),%rdi  # & context.Xmm6
840    mov     \$20,%ecx           # 10*sizeof(%xmm0)/sizeof(%rax)
841    .long   0xa548f3fc          # cld; rep movsq
842
843    lea     `48+168`(%rax),%rax
844
845    mov     -8(%rax),%rbx
846    mov     -16(%rax),%rbp
847    mov     -24(%rax),%r12
848    mov     -32(%rax),%r13
849    mov     -40(%rax),%r14
850    mov     -48(%rax),%r15
851    mov     %rbx,144($context) # restore context->Rbx
852    mov     %rbp,160($context) # restore context->Rbp
853    mov     %r12,216($context) # restore context->R12
854    mov     %r13,224($context) # restore context->R13
855    mov     %r14,232($context) # restore context->R14
856    mov     %r15,240($context) # restore context->R14
857
858.Lcommon_seh_tail:
859    mov     8(%rax),%rdi
860    mov     16(%rax),%rsi
861    mov     %rax,152($context) # restore context->Rsp
862    mov     %rsi,168($context) # restore context->Rsi
863    mov     %rdi,176($context) # restore context->Rdi
864
865    mov     40($disp),%rdi     # disp->ContextRecord
866    mov     $context,%rsi      # context
867    mov     \$154,%ecx         # sizeof(CONTEXT)
868    .long   0xa548f3fc         # cld; rep movsq
869
870    mov     $disp,%rsi
871    xor     %rcx,%rcx          # arg1, UNW_FLAG_NHANDLER
872    mov     8(%rsi),%rdx       # arg2, disp->ImageBase
873    mov     0(%rsi),%r8        # arg3, disp->ControlPc
874    mov     16(%rsi),%r9       # arg4, disp->FunctionEntry
875    mov     40(%rsi),%r10      # disp->ContextRecord
876    lea     56(%rsi),%r11      # &disp->HandlerData
877    lea     24(%rsi),%r12      # &disp->EstablisherFrame
878    mov     %r10,32(%rsp)      # arg5
879    mov     %r11,40(%rsp)      # arg6
880    mov     %r12,48(%rsp)      # arg7
881    mov     %rcx,56(%rsp)      # arg8, (NULL)
882    call    *__imp_RtlVirtualUnwind(%rip)
883
884    mov     \$1,%eax           # ExceptionContinueSearch
885    add     \$64,%rsp
886    popfq
887    pop     %r15
888    pop     %r14
889    pop     %r13
890    pop     %r12
891    pop     %rbp
892    pop     %rbx
893    pop     %rdi
894    pop     %rsi
895    ret
896.size   rsaz_avx_handler,.-rsaz_avx_handler
897
898.section    .pdata
899.align  4
900    .rva    .LSEH_begin_ossl_rsaz_amm52x40_x1_ifma256
901    .rva    .LSEH_end_ossl_rsaz_amm52x40_x1_ifma256
902    .rva    .LSEH_info_ossl_rsaz_amm52x40_x1_ifma256
903
904    .rva    .LSEH_begin_ossl_rsaz_amm52x40_x2_ifma256
905    .rva    .LSEH_end_ossl_rsaz_amm52x40_x2_ifma256
906    .rva    .LSEH_info_ossl_rsaz_amm52x40_x2_ifma256
907
908.section    .xdata
909.align  8
910.LSEH_info_ossl_rsaz_amm52x40_x1_ifma256:
911    .byte   9,0,0,0
912    .rva    rsaz_avx_handler
913    .rva    .Lossl_rsaz_amm52x40_x1_ifma256_body,.Lossl_rsaz_amm52x40_x1_ifma256_epilogue
914.LSEH_info_ossl_rsaz_amm52x40_x2_ifma256:
915    .byte   9,0,0,0
916    .rva    rsaz_avx_handler
917    .rva    .Lossl_rsaz_amm52x40_x2_ifma256_body,.Lossl_rsaz_amm52x40_x2_ifma256_epilogue
918___
919}
920}}} else {{{                # fallback for old assembler
921$code.=<<___;
922.text
923
924.globl  ossl_rsaz_amm52x40_x1_ifma256
925.globl  ossl_rsaz_amm52x40_x2_ifma256
926.globl  ossl_extract_multiplier_2x40_win5
927.type   ossl_rsaz_amm52x40_x1_ifma256,\@abi-omnipotent
928ossl_rsaz_amm52x40_x1_ifma256:
929ossl_rsaz_amm52x40_x2_ifma256:
930ossl_extract_multiplier_2x40_win5:
931    .byte   0x0f,0x0b    # ud2
932    ret
933.size   ossl_rsaz_amm52x40_x1_ifma256, .-ossl_rsaz_amm52x40_x1_ifma256
934___
935}}}
936
937$code =~ s/\`([^\`]*)\`/eval $1/gem;
938print $code;
939close STDOUT or die "error closing STDOUT: $!";
940