xref: /libuv/src/unix/core.c (revision c6d43bea)
1 /* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2  * Permission is hereby granted, free of charge, to any person obtaining a copy
3  * of this software and associated documentation files (the "Software"), to
4  * deal in the Software without restriction, including without limitation the
5  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
6  * sell copies of the Software, and to permit persons to whom the Software is
7  * furnished to do so, subject to the following conditions:
8  *
9  * The above copyright notice and this permission notice shall be included in
10  * all copies or substantial portions of the Software.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
15  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
16  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
17  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
18  * IN THE SOFTWARE.
19  */
20 
21 #include "uv.h"
22 #include "internal.h"
23 #include "strtok.h"
24 
25 #include <stddef.h> /* NULL */
26 #include <stdio.h> /* printf */
27 #include <stdlib.h>
28 #include <string.h> /* strerror */
29 #include <errno.h>
30 #include <assert.h>
31 #include <unistd.h>
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>  /* O_CLOEXEC */
35 #include <sys/ioctl.h>
36 #include <sys/socket.h>
37 #include <sys/un.h>
38 #include <netinet/in.h>
39 #include <arpa/inet.h>
40 #include <limits.h> /* INT_MAX, PATH_MAX, IOV_MAX */
41 #include <sys/uio.h> /* writev */
42 #include <sys/resource.h> /* getrusage */
43 #include <pwd.h>
44 #include <grp.h>
45 #include <sys/utsname.h>
46 #include <sys/time.h>
47 #include <time.h> /* clock_gettime */
48 
49 #ifdef __sun
50 # include <sys/filio.h>
51 # include <sys/wait.h>
52 #endif
53 
54 #if defined(__APPLE__)
55 # include <sys/filio.h>
56 # include <sys/sysctl.h>
57 #endif /* defined(__APPLE__) */
58 
59 
60 #if defined(__APPLE__) && !TARGET_OS_IPHONE
61 # include <crt_externs.h>
62 # include <mach-o/dyld.h> /* _NSGetExecutablePath */
63 # define environ (*_NSGetEnviron())
64 #else /* defined(__APPLE__) && !TARGET_OS_IPHONE */
65 extern char** environ;
66 #endif /* !(defined(__APPLE__) && !TARGET_OS_IPHONE) */
67 
68 
69 #if defined(__DragonFly__)      || \
70     defined(__FreeBSD__)        || \
71     defined(__NetBSD__)         || \
72     defined(__OpenBSD__)
73 # include <sys/sysctl.h>
74 # include <sys/filio.h>
75 # include <sys/wait.h>
76 # include <sys/param.h>
77 # if defined(__FreeBSD__)
78 #  include <sys/cpuset.h>
79 #  define uv__accept4 accept4
80 # endif
81 # if defined(__NetBSD__)
82 #  define uv__accept4(a, b, c, d) paccept((a), (b), (c), NULL, (d))
83 # endif
84 #endif
85 
86 #if defined(__MVS__)
87 # include <sys/ioctl.h>
88 # include "zos-sys-info.h"
89 #endif
90 
91 #if defined(__linux__)
92 # include <sched.h>
93 # include <sys/syscall.h>
94 # define gettid() syscall(SYS_gettid)
95 # define uv__accept4 accept4
96 #endif
97 
98 #if defined(__FreeBSD__)
99 # include <sys/param.h>
100 # include <sys/cpuset.h>
101 #endif
102 
103 #if defined(__NetBSD__)
104 # include <sched.h>
105 #endif
106 
107 #if defined(__linux__) && defined(__SANITIZE_THREAD__) && defined(__clang__)
108 # include <sanitizer/linux_syscall_hooks.h>
109 #endif
110 
111 static void uv__run_pending(uv_loop_t* loop);
112 
113 /* Verify that uv_buf_t is ABI-compatible with struct iovec. */
114 STATIC_ASSERT(sizeof(uv_buf_t) == sizeof(struct iovec));
115 STATIC_ASSERT(sizeof(((uv_buf_t*) 0)->base) ==
116               sizeof(((struct iovec*) 0)->iov_base));
117 STATIC_ASSERT(sizeof(((uv_buf_t*) 0)->len) ==
118               sizeof(((struct iovec*) 0)->iov_len));
119 STATIC_ASSERT(offsetof(uv_buf_t, base) == offsetof(struct iovec, iov_base));
120 STATIC_ASSERT(offsetof(uv_buf_t, len) == offsetof(struct iovec, iov_len));
121 
122 
123 /* https://github.com/libuv/libuv/issues/1674 */
uv_clock_gettime(uv_clock_id clock_id,uv_timespec64_t * ts)124 int uv_clock_gettime(uv_clock_id clock_id, uv_timespec64_t* ts) {
125   struct timespec t;
126   int r;
127 
128   if (ts == NULL)
129     return UV_EFAULT;
130 
131   switch (clock_id) {
132     default:
133       return UV_EINVAL;
134     case UV_CLOCK_MONOTONIC:
135       r = clock_gettime(CLOCK_MONOTONIC, &t);
136       break;
137     case UV_CLOCK_REALTIME:
138       r = clock_gettime(CLOCK_REALTIME, &t);
139       break;
140   }
141 
142   if (r)
143     return UV__ERR(errno);
144 
145   ts->tv_sec = t.tv_sec;
146   ts->tv_nsec = t.tv_nsec;
147 
148   return 0;
149 }
150 
151 
uv_hrtime(void)152 uint64_t uv_hrtime(void) {
153   return uv__hrtime(UV_CLOCK_PRECISE);
154 }
155 
156 
uv_close(uv_handle_t * handle,uv_close_cb close_cb)157 void uv_close(uv_handle_t* handle, uv_close_cb close_cb) {
158   assert(!uv__is_closing(handle));
159 
160   handle->flags |= UV_HANDLE_CLOSING;
161   handle->close_cb = close_cb;
162 
163   switch (handle->type) {
164   case UV_NAMED_PIPE:
165     uv__pipe_close((uv_pipe_t*)handle);
166     break;
167 
168   case UV_TTY:
169     uv__tty_close((uv_tty_t*)handle);
170     break;
171 
172   case UV_TCP:
173     uv__tcp_close((uv_tcp_t*)handle);
174     break;
175 
176   case UV_UDP:
177     uv__udp_close((uv_udp_t*)handle);
178     break;
179 
180   case UV_PREPARE:
181     uv__prepare_close((uv_prepare_t*)handle);
182     break;
183 
184   case UV_CHECK:
185     uv__check_close((uv_check_t*)handle);
186     break;
187 
188   case UV_IDLE:
189     uv__idle_close((uv_idle_t*)handle);
190     break;
191 
192   case UV_ASYNC:
193     uv__async_close((uv_async_t*)handle);
194     break;
195 
196   case UV_TIMER:
197     uv__timer_close((uv_timer_t*)handle);
198     break;
199 
200   case UV_PROCESS:
201     uv__process_close((uv_process_t*)handle);
202     break;
203 
204   case UV_FS_EVENT:
205     uv__fs_event_close((uv_fs_event_t*)handle);
206 #if defined(__sun) || defined(__MVS__)
207     /*
208      * On Solaris, illumos, and z/OS we will not be able to dissociate the
209      * watcher for an event which is pending delivery, so we cannot always call
210      * uv__make_close_pending() straight away. The backend will call the
211      * function once the event has cleared.
212      */
213     return;
214 #endif
215     break;
216 
217   case UV_POLL:
218     uv__poll_close((uv_poll_t*)handle);
219     break;
220 
221   case UV_FS_POLL:
222     uv__fs_poll_close((uv_fs_poll_t*)handle);
223     /* Poll handles use file system requests, and one of them may still be
224      * running. The poll code will call uv__make_close_pending() for us. */
225     return;
226 
227   case UV_SIGNAL:
228     uv__signal_close((uv_signal_t*) handle);
229     break;
230 
231   default:
232     assert(0);
233   }
234 
235   uv__make_close_pending(handle);
236 }
237 
uv__socket_sockopt(uv_handle_t * handle,int optname,int * value)238 int uv__socket_sockopt(uv_handle_t* handle, int optname, int* value) {
239   int r;
240   int fd;
241   socklen_t len;
242 
243   if (handle == NULL || value == NULL)
244     return UV_EINVAL;
245 
246   if (handle->type == UV_TCP || handle->type == UV_NAMED_PIPE)
247     fd = uv__stream_fd((uv_stream_t*) handle);
248   else if (handle->type == UV_UDP)
249     fd = ((uv_udp_t *) handle)->io_watcher.fd;
250   else
251     return UV_ENOTSUP;
252 
253   len = sizeof(*value);
254 
255   if (*value == 0)
256     r = getsockopt(fd, SOL_SOCKET, optname, value, &len);
257   else
258     r = setsockopt(fd, SOL_SOCKET, optname, (const void*) value, len);
259 
260   if (r < 0)
261     return UV__ERR(errno);
262 
263   return 0;
264 }
265 
uv__make_close_pending(uv_handle_t * handle)266 void uv__make_close_pending(uv_handle_t* handle) {
267   assert(handle->flags & UV_HANDLE_CLOSING);
268   assert(!(handle->flags & UV_HANDLE_CLOSED));
269   handle->next_closing = handle->loop->closing_handles;
270   handle->loop->closing_handles = handle;
271 }
272 
uv__getiovmax(void)273 int uv__getiovmax(void) {
274 #if defined(IOV_MAX)
275   return IOV_MAX;
276 #elif defined(_SC_IOV_MAX)
277   static _Atomic int iovmax_cached = -1;
278   int iovmax;
279 
280   iovmax = atomic_load_explicit(&iovmax_cached, memory_order_relaxed);
281   if (iovmax != -1)
282     return iovmax;
283 
284   /* On some embedded devices (arm-linux-uclibc based ip camera),
285    * sysconf(_SC_IOV_MAX) can not get the correct value. The return
286    * value is -1 and the errno is EINPROGRESS. Degrade the value to 1.
287    */
288   iovmax = sysconf(_SC_IOV_MAX);
289   if (iovmax == -1)
290     iovmax = 1;
291 
292   atomic_store_explicit(&iovmax_cached, iovmax, memory_order_relaxed);
293 
294   return iovmax;
295 #else
296   return 1024;
297 #endif
298 }
299 
300 
uv__finish_close(uv_handle_t * handle)301 static void uv__finish_close(uv_handle_t* handle) {
302   uv_signal_t* sh;
303 
304   /* Note: while the handle is in the UV_HANDLE_CLOSING state now, it's still
305    * possible for it to be active in the sense that uv__is_active() returns
306    * true.
307    *
308    * A good example is when the user calls uv_shutdown(), immediately followed
309    * by uv_close(). The handle is considered active at this point because the
310    * completion of the shutdown req is still pending.
311    */
312   assert(handle->flags & UV_HANDLE_CLOSING);
313   assert(!(handle->flags & UV_HANDLE_CLOSED));
314   handle->flags |= UV_HANDLE_CLOSED;
315 
316   switch (handle->type) {
317     case UV_PREPARE:
318     case UV_CHECK:
319     case UV_IDLE:
320     case UV_ASYNC:
321     case UV_TIMER:
322     case UV_PROCESS:
323     case UV_FS_EVENT:
324     case UV_FS_POLL:
325     case UV_POLL:
326       break;
327 
328     case UV_SIGNAL:
329       /* If there are any caught signals "trapped" in the signal pipe,
330        * we can't call the close callback yet. Reinserting the handle
331        * into the closing queue makes the event loop spin but that's
332        * okay because we only need to deliver the pending events.
333        */
334       sh = (uv_signal_t*) handle;
335       if (sh->caught_signals > sh->dispatched_signals) {
336         handle->flags ^= UV_HANDLE_CLOSED;
337         uv__make_close_pending(handle);  /* Back into the queue. */
338         return;
339       }
340       break;
341 
342     case UV_NAMED_PIPE:
343     case UV_TCP:
344     case UV_TTY:
345       uv__stream_destroy((uv_stream_t*)handle);
346       break;
347 
348     case UV_UDP:
349       uv__udp_finish_close((uv_udp_t*)handle);
350       break;
351 
352     default:
353       assert(0);
354       break;
355   }
356 
357   uv__handle_unref(handle);
358   uv__queue_remove(&handle->handle_queue);
359 
360   if (handle->close_cb) {
361     handle->close_cb(handle);
362   }
363 }
364 
365 
uv__run_closing_handles(uv_loop_t * loop)366 static void uv__run_closing_handles(uv_loop_t* loop) {
367   uv_handle_t* p;
368   uv_handle_t* q;
369 
370   p = loop->closing_handles;
371   loop->closing_handles = NULL;
372 
373   while (p) {
374     q = p->next_closing;
375     uv__finish_close(p);
376     p = q;
377   }
378 }
379 
380 
uv_is_closing(const uv_handle_t * handle)381 int uv_is_closing(const uv_handle_t* handle) {
382   return uv__is_closing(handle);
383 }
384 
385 
uv_backend_fd(const uv_loop_t * loop)386 int uv_backend_fd(const uv_loop_t* loop) {
387   return loop->backend_fd;
388 }
389 
390 
uv__loop_alive(const uv_loop_t * loop)391 static int uv__loop_alive(const uv_loop_t* loop) {
392   return uv__has_active_handles(loop) ||
393          uv__has_active_reqs(loop) ||
394          !uv__queue_empty(&loop->pending_queue) ||
395          loop->closing_handles != NULL;
396 }
397 
398 
uv__backend_timeout(const uv_loop_t * loop)399 static int uv__backend_timeout(const uv_loop_t* loop) {
400   if (loop->stop_flag == 0 &&
401       /* uv__loop_alive(loop) && */
402       (uv__has_active_handles(loop) || uv__has_active_reqs(loop)) &&
403       uv__queue_empty(&loop->pending_queue) &&
404       uv__queue_empty(&loop->idle_handles) &&
405       (loop->flags & UV_LOOP_REAP_CHILDREN) == 0 &&
406       loop->closing_handles == NULL)
407     return uv__next_timeout(loop);
408   return 0;
409 }
410 
411 
uv_backend_timeout(const uv_loop_t * loop)412 int uv_backend_timeout(const uv_loop_t* loop) {
413   if (uv__queue_empty(&loop->watcher_queue))
414     return uv__backend_timeout(loop);
415   /* Need to call uv_run to update the backend fd state. */
416   return 0;
417 }
418 
419 
uv_loop_alive(const uv_loop_t * loop)420 int uv_loop_alive(const uv_loop_t* loop) {
421   return uv__loop_alive(loop);
422 }
423 
424 
uv_run(uv_loop_t * loop,uv_run_mode mode)425 int uv_run(uv_loop_t* loop, uv_run_mode mode) {
426   int timeout;
427   int r;
428   int can_sleep;
429 
430   r = uv__loop_alive(loop);
431   if (!r)
432     uv__update_time(loop);
433 
434   /* Maintain backwards compatibility by processing timers before entering the
435    * while loop for UV_RUN_DEFAULT. Otherwise timers only need to be executed
436    * once, which should be done after polling in order to maintain proper
437    * execution order of the conceptual event loop. */
438   if (mode == UV_RUN_DEFAULT && r != 0 && loop->stop_flag == 0) {
439     uv__update_time(loop);
440     uv__run_timers(loop);
441   }
442 
443   while (r != 0 && loop->stop_flag == 0) {
444     can_sleep =
445         uv__queue_empty(&loop->pending_queue) &&
446         uv__queue_empty(&loop->idle_handles);
447 
448     uv__run_pending(loop);
449     uv__run_idle(loop);
450     uv__run_prepare(loop);
451 
452     timeout = 0;
453     if ((mode == UV_RUN_ONCE && can_sleep) || mode == UV_RUN_DEFAULT)
454       timeout = uv__backend_timeout(loop);
455 
456     uv__metrics_inc_loop_count(loop);
457 
458     uv__io_poll(loop, timeout);
459 
460     /* Process immediate callbacks (e.g. write_cb) a small fixed number of
461      * times to avoid loop starvation.*/
462     for (r = 0; r < 8 && !uv__queue_empty(&loop->pending_queue); r++)
463       uv__run_pending(loop);
464 
465     /* Run one final update on the provider_idle_time in case uv__io_poll
466      * returned because the timeout expired, but no events were received. This
467      * call will be ignored if the provider_entry_time was either never set (if
468      * the timeout == 0) or was already updated b/c an event was received.
469      */
470     uv__metrics_update_idle_time(loop);
471 
472     uv__run_check(loop);
473     uv__run_closing_handles(loop);
474 
475     uv__update_time(loop);
476     uv__run_timers(loop);
477 
478     r = uv__loop_alive(loop);
479     if (mode == UV_RUN_ONCE || mode == UV_RUN_NOWAIT)
480       break;
481   }
482 
483   /* The if statement lets gcc compile it to a conditional store. Avoids
484    * dirtying a cache line.
485    */
486   if (loop->stop_flag != 0)
487     loop->stop_flag = 0;
488 
489   return r;
490 }
491 
492 
uv_update_time(uv_loop_t * loop)493 void uv_update_time(uv_loop_t* loop) {
494   uv__update_time(loop);
495 }
496 
497 
uv_is_active(const uv_handle_t * handle)498 int uv_is_active(const uv_handle_t* handle) {
499   return uv__is_active(handle);
500 }
501 
502 
503 /* Open a socket in non-blocking close-on-exec mode, atomically if possible. */
uv__socket(int domain,int type,int protocol)504 int uv__socket(int domain, int type, int protocol) {
505   int sockfd;
506   int err;
507 
508 #if defined(SOCK_NONBLOCK) && defined(SOCK_CLOEXEC)
509   sockfd = socket(domain, type | SOCK_NONBLOCK | SOCK_CLOEXEC, protocol);
510   if (sockfd != -1)
511     return sockfd;
512 
513   if (errno != EINVAL)
514     return UV__ERR(errno);
515 #endif
516 
517   sockfd = socket(domain, type, protocol);
518   if (sockfd == -1)
519     return UV__ERR(errno);
520 
521   err = uv__nonblock(sockfd, 1);
522   if (err == 0)
523     err = uv__cloexec(sockfd, 1);
524 
525   if (err) {
526     uv__close(sockfd);
527     return err;
528   }
529 
530 #if defined(SO_NOSIGPIPE)
531   {
532     int on = 1;
533     setsockopt(sockfd, SOL_SOCKET, SO_NOSIGPIPE, &on, sizeof(on));
534   }
535 #endif
536 
537   return sockfd;
538 }
539 
540 /* get a file pointer to a file in read-only and close-on-exec mode */
uv__open_file(const char * path)541 FILE* uv__open_file(const char* path) {
542   int fd;
543   FILE* fp;
544 
545   fd = uv__open_cloexec(path, O_RDONLY);
546   if (fd < 0)
547     return NULL;
548 
549    fp = fdopen(fd, "r");
550    if (fp == NULL)
551      uv__close(fd);
552 
553    return fp;
554 }
555 
556 
uv__accept(int sockfd)557 int uv__accept(int sockfd) {
558   int peerfd;
559   int err;
560 
561   (void) &err;
562   assert(sockfd >= 0);
563 
564   do
565 #ifdef uv__accept4
566     peerfd = uv__accept4(sockfd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
567 #else
568     peerfd = accept(sockfd, NULL, NULL);
569 #endif
570   while (peerfd == -1 && errno == EINTR);
571 
572   if (peerfd == -1)
573     return UV__ERR(errno);
574 
575 #ifndef uv__accept4
576   err = uv__cloexec(peerfd, 1);
577   if (err == 0)
578     err = uv__nonblock(peerfd, 1);
579 
580   if (err != 0) {
581     uv__close(peerfd);
582     return err;
583   }
584 #endif
585 
586   return peerfd;
587 }
588 
589 
590 /* close() on macos has the "interesting" quirk that it fails with EINTR
591  * without closing the file descriptor when a thread is in the cancel state.
592  * That's why libuv calls close$NOCANCEL() instead.
593  *
594  * glibc on linux has a similar issue: close() is a cancellation point and
595  * will unwind the thread when it's in the cancel state. Work around that
596  * by making the system call directly. Musl libc is unaffected.
597  */
uv__close_nocancel(int fd)598 int uv__close_nocancel(int fd) {
599 #if defined(__APPLE__)
600 #pragma GCC diagnostic push
601 #pragma GCC diagnostic ignored "-Wdollar-in-identifier-extension"
602 #if defined(__LP64__) || TARGET_OS_IPHONE
603   extern int close$NOCANCEL(int);
604   return close$NOCANCEL(fd);
605 #else
606   extern int close$NOCANCEL$UNIX2003(int);
607   return close$NOCANCEL$UNIX2003(fd);
608 #endif
609 #pragma GCC diagnostic pop
610 #elif defined(__linux__) && defined(__SANITIZE_THREAD__) && defined(__clang__)
611   long rc;
612   __sanitizer_syscall_pre_close(fd);
613   rc = syscall(SYS_close, fd);
614   __sanitizer_syscall_post_close(rc, fd);
615   return rc;
616 #elif defined(__linux__) && !defined(__SANITIZE_THREAD__)
617   return syscall(SYS_close, fd);
618 #else
619   return close(fd);
620 #endif
621 }
622 
623 
uv__close_nocheckstdio(int fd)624 int uv__close_nocheckstdio(int fd) {
625   int saved_errno;
626   int rc;
627 
628   assert(fd > -1);  /* Catch uninitialized io_watcher.fd bugs. */
629 
630   saved_errno = errno;
631   rc = uv__close_nocancel(fd);
632   if (rc == -1) {
633     rc = UV__ERR(errno);
634     if (rc == UV_EINTR || rc == UV__ERR(EINPROGRESS))
635       rc = 0;    /* The close is in progress, not an error. */
636     errno = saved_errno;
637   }
638 
639   return rc;
640 }
641 
642 
uv__close(int fd)643 int uv__close(int fd) {
644   assert(fd > STDERR_FILENO);  /* Catch stdio close bugs. */
645 #if defined(__MVS__)
646   SAVE_ERRNO(epoll_file_close(fd));
647 #endif
648   return uv__close_nocheckstdio(fd);
649 }
650 
651 #if UV__NONBLOCK_IS_IOCTL
uv__nonblock_ioctl(int fd,int set)652 int uv__nonblock_ioctl(int fd, int set) {
653   int r;
654 
655   do
656     r = ioctl(fd, FIONBIO, &set);
657   while (r == -1 && errno == EINTR);
658 
659   if (r)
660     return UV__ERR(errno);
661 
662   return 0;
663 }
664 #endif
665 
666 
uv__nonblock_fcntl(int fd,int set)667 int uv__nonblock_fcntl(int fd, int set) {
668   int flags;
669   int r;
670 
671   do
672     r = fcntl(fd, F_GETFL);
673   while (r == -1 && errno == EINTR);
674 
675   if (r == -1)
676     return UV__ERR(errno);
677 
678   /* Bail out now if already set/clear. */
679   if (!!(r & O_NONBLOCK) == !!set)
680     return 0;
681 
682   if (set)
683     flags = r | O_NONBLOCK;
684   else
685     flags = r & ~O_NONBLOCK;
686 
687   do
688     r = fcntl(fd, F_SETFL, flags);
689   while (r == -1 && errno == EINTR);
690 
691   if (r)
692     return UV__ERR(errno);
693 
694   return 0;
695 }
696 
697 
uv__cloexec(int fd,int set)698 int uv__cloexec(int fd, int set) {
699   int flags;
700   int r;
701 
702   flags = 0;
703   if (set)
704     flags = FD_CLOEXEC;
705 
706   do
707     r = fcntl(fd, F_SETFD, flags);
708   while (r == -1 && errno == EINTR);
709 
710   if (r)
711     return UV__ERR(errno);
712 
713   return 0;
714 }
715 
716 
uv__recvmsg(int fd,struct msghdr * msg,int flags)717 ssize_t uv__recvmsg(int fd, struct msghdr* msg, int flags) {
718 #if defined(__ANDROID__)   || \
719     defined(__DragonFly__) || \
720     defined(__FreeBSD__)   || \
721     defined(__NetBSD__)    || \
722     defined(__OpenBSD__)   || \
723     defined(__linux__)
724   ssize_t rc;
725   rc = recvmsg(fd, msg, flags | MSG_CMSG_CLOEXEC);
726   if (rc == -1)
727     return UV__ERR(errno);
728   return rc;
729 #else
730   struct cmsghdr* cmsg;
731   int* pfd;
732   int* end;
733   ssize_t rc;
734   rc = recvmsg(fd, msg, flags);
735   if (rc == -1)
736     return UV__ERR(errno);
737   if (msg->msg_controllen == 0)
738     return rc;
739   for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL; cmsg = CMSG_NXTHDR(msg, cmsg))
740     if (cmsg->cmsg_type == SCM_RIGHTS)
741       for (pfd = (int*) CMSG_DATA(cmsg),
742            end = (int*) ((char*) cmsg + cmsg->cmsg_len);
743            pfd < end;
744            pfd += 1)
745         uv__cloexec(*pfd, 1);
746   return rc;
747 #endif
748 }
749 
750 
uv_cwd(char * buffer,size_t * size)751 int uv_cwd(char* buffer, size_t* size) {
752   char scratch[1 + UV__PATH_MAX];
753 
754   if (buffer == NULL || size == NULL || *size == 0)
755     return UV_EINVAL;
756 
757   /* Try to read directly into the user's buffer first... */
758   if (getcwd(buffer, *size) != NULL)
759     goto fixup;
760 
761   if (errno != ERANGE)
762     return UV__ERR(errno);
763 
764   /* ...or into scratch space if the user's buffer is too small
765    * so we can report how much space to provide on the next try.
766    */
767   if (getcwd(scratch, sizeof(scratch)) == NULL)
768     return UV__ERR(errno);
769 
770   buffer = scratch;
771 
772 fixup:
773 
774   *size = strlen(buffer);
775 
776   if (*size > 1 && buffer[*size - 1] == '/') {
777     *size -= 1;
778     buffer[*size] = '\0';
779   }
780 
781   if (buffer == scratch) {
782     *size += 1;
783     return UV_ENOBUFS;
784   }
785 
786   return 0;
787 }
788 
789 
uv_chdir(const char * dir)790 int uv_chdir(const char* dir) {
791   if (chdir(dir))
792     return UV__ERR(errno);
793 
794   return 0;
795 }
796 
797 
uv_disable_stdio_inheritance(void)798 void uv_disable_stdio_inheritance(void) {
799   int fd;
800 
801   /* Set the CLOEXEC flag on all open descriptors. Unconditionally try the
802    * first 16 file descriptors. After that, bail out after the first error.
803    */
804   for (fd = 0; ; fd++)
805     if (uv__cloexec(fd, 1) && fd > 15)
806       break;
807 }
808 
809 
uv_fileno(const uv_handle_t * handle,uv_os_fd_t * fd)810 int uv_fileno(const uv_handle_t* handle, uv_os_fd_t* fd) {
811   int fd_out;
812 
813   switch (handle->type) {
814   case UV_TCP:
815   case UV_NAMED_PIPE:
816   case UV_TTY:
817     fd_out = uv__stream_fd((uv_stream_t*) handle);
818     break;
819 
820   case UV_UDP:
821     fd_out = ((uv_udp_t *) handle)->io_watcher.fd;
822     break;
823 
824   case UV_POLL:
825     fd_out = ((uv_poll_t *) handle)->io_watcher.fd;
826     break;
827 
828   default:
829     return UV_EINVAL;
830   }
831 
832   if (uv__is_closing(handle) || fd_out == -1)
833     return UV_EBADF;
834 
835   *fd = fd_out;
836   return 0;
837 }
838 
839 
uv__run_pending(uv_loop_t * loop)840 static void uv__run_pending(uv_loop_t* loop) {
841   struct uv__queue* q;
842   struct uv__queue pq;
843   uv__io_t* w;
844 
845   uv__queue_move(&loop->pending_queue, &pq);
846 
847   while (!uv__queue_empty(&pq)) {
848     q = uv__queue_head(&pq);
849     uv__queue_remove(q);
850     uv__queue_init(q);
851     w = uv__queue_data(q, uv__io_t, pending_queue);
852     w->cb(loop, w, POLLOUT);
853   }
854 }
855 
856 
next_power_of_two(unsigned int val)857 static unsigned int next_power_of_two(unsigned int val) {
858   val -= 1;
859   val |= val >> 1;
860   val |= val >> 2;
861   val |= val >> 4;
862   val |= val >> 8;
863   val |= val >> 16;
864   val += 1;
865   return val;
866 }
867 
maybe_resize(uv_loop_t * loop,unsigned int len)868 static void maybe_resize(uv_loop_t* loop, unsigned int len) {
869   uv__io_t** watchers;
870   void* fake_watcher_list;
871   void* fake_watcher_count;
872   unsigned int nwatchers;
873   unsigned int i;
874 
875   if (len <= loop->nwatchers)
876     return;
877 
878   /* Preserve fake watcher list and count at the end of the watchers */
879   if (loop->watchers != NULL) {
880     fake_watcher_list = loop->watchers[loop->nwatchers];
881     fake_watcher_count = loop->watchers[loop->nwatchers + 1];
882   } else {
883     fake_watcher_list = NULL;
884     fake_watcher_count = NULL;
885   }
886 
887   nwatchers = next_power_of_two(len + 2) - 2;
888   watchers = uv__reallocf(loop->watchers,
889                           (nwatchers + 2) * sizeof(loop->watchers[0]));
890 
891   if (watchers == NULL)
892     abort();
893   for (i = loop->nwatchers; i < nwatchers; i++)
894     watchers[i] = NULL;
895   watchers[nwatchers] = fake_watcher_list;
896   watchers[nwatchers + 1] = fake_watcher_count;
897 
898   loop->watchers = watchers;
899   loop->nwatchers = nwatchers;
900 }
901 
902 
uv__io_init(uv__io_t * w,uv__io_cb cb,int fd)903 void uv__io_init(uv__io_t* w, uv__io_cb cb, int fd) {
904   assert(cb != NULL);
905   assert(fd >= -1);
906   uv__queue_init(&w->pending_queue);
907   uv__queue_init(&w->watcher_queue);
908   w->cb = cb;
909   w->fd = fd;
910   w->events = 0;
911   w->pevents = 0;
912 }
913 
914 
uv__io_start(uv_loop_t * loop,uv__io_t * w,unsigned int events)915 void uv__io_start(uv_loop_t* loop, uv__io_t* w, unsigned int events) {
916   assert(0 == (events & ~(POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI)));
917   assert(0 != events);
918   assert(w->fd >= 0);
919   assert(w->fd < INT_MAX);
920 
921   w->pevents |= events;
922   maybe_resize(loop, w->fd + 1);
923 
924 #if !defined(__sun)
925   /* The event ports backend needs to rearm all file descriptors on each and
926    * every tick of the event loop but the other backends allow us to
927    * short-circuit here if the event mask is unchanged.
928    */
929   if (w->events == w->pevents)
930     return;
931 #endif
932 
933   if (uv__queue_empty(&w->watcher_queue))
934     uv__queue_insert_tail(&loop->watcher_queue, &w->watcher_queue);
935 
936   if (loop->watchers[w->fd] == NULL) {
937     loop->watchers[w->fd] = w;
938     loop->nfds++;
939   }
940 }
941 
942 
uv__io_stop(uv_loop_t * loop,uv__io_t * w,unsigned int events)943 void uv__io_stop(uv_loop_t* loop, uv__io_t* w, unsigned int events) {
944   assert(0 == (events & ~(POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI)));
945   assert(0 != events);
946 
947   if (w->fd == -1)
948     return;
949 
950   assert(w->fd >= 0);
951 
952   /* Happens when uv__io_stop() is called on a handle that was never started. */
953   if ((unsigned) w->fd >= loop->nwatchers)
954     return;
955 
956   w->pevents &= ~events;
957 
958   if (w->pevents == 0) {
959     uv__queue_remove(&w->watcher_queue);
960     uv__queue_init(&w->watcher_queue);
961     w->events = 0;
962 
963     if (w == loop->watchers[w->fd]) {
964       assert(loop->nfds > 0);
965       loop->watchers[w->fd] = NULL;
966       loop->nfds--;
967     }
968   }
969   else if (uv__queue_empty(&w->watcher_queue))
970     uv__queue_insert_tail(&loop->watcher_queue, &w->watcher_queue);
971 }
972 
973 
uv__io_close(uv_loop_t * loop,uv__io_t * w)974 void uv__io_close(uv_loop_t* loop, uv__io_t* w) {
975   uv__io_stop(loop, w, POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI);
976   uv__queue_remove(&w->pending_queue);
977 
978   /* Remove stale events for this file descriptor */
979   if (w->fd != -1)
980     uv__platform_invalidate_fd(loop, w->fd);
981 }
982 
983 
uv__io_feed(uv_loop_t * loop,uv__io_t * w)984 void uv__io_feed(uv_loop_t* loop, uv__io_t* w) {
985   if (uv__queue_empty(&w->pending_queue))
986     uv__queue_insert_tail(&loop->pending_queue, &w->pending_queue);
987 }
988 
989 
uv__io_active(const uv__io_t * w,unsigned int events)990 int uv__io_active(const uv__io_t* w, unsigned int events) {
991   assert(0 == (events & ~(POLLIN | POLLOUT | UV__POLLRDHUP | UV__POLLPRI)));
992   assert(0 != events);
993   return 0 != (w->pevents & events);
994 }
995 
996 
uv__fd_exists(uv_loop_t * loop,int fd)997 int uv__fd_exists(uv_loop_t* loop, int fd) {
998   return (unsigned) fd < loop->nwatchers && loop->watchers[fd] != NULL;
999 }
1000 
1001 
uv_getrusage(uv_rusage_t * rusage)1002 int uv_getrusage(uv_rusage_t* rusage) {
1003   struct rusage usage;
1004 
1005   if (getrusage(RUSAGE_SELF, &usage))
1006     return UV__ERR(errno);
1007 
1008   rusage->ru_utime.tv_sec = usage.ru_utime.tv_sec;
1009   rusage->ru_utime.tv_usec = usage.ru_utime.tv_usec;
1010 
1011   rusage->ru_stime.tv_sec = usage.ru_stime.tv_sec;
1012   rusage->ru_stime.tv_usec = usage.ru_stime.tv_usec;
1013 
1014 #if !defined(__MVS__) && !defined(__HAIKU__)
1015   rusage->ru_maxrss = usage.ru_maxrss;
1016   rusage->ru_ixrss = usage.ru_ixrss;
1017   rusage->ru_idrss = usage.ru_idrss;
1018   rusage->ru_isrss = usage.ru_isrss;
1019   rusage->ru_minflt = usage.ru_minflt;
1020   rusage->ru_majflt = usage.ru_majflt;
1021   rusage->ru_nswap = usage.ru_nswap;
1022   rusage->ru_inblock = usage.ru_inblock;
1023   rusage->ru_oublock = usage.ru_oublock;
1024   rusage->ru_msgsnd = usage.ru_msgsnd;
1025   rusage->ru_msgrcv = usage.ru_msgrcv;
1026   rusage->ru_nsignals = usage.ru_nsignals;
1027   rusage->ru_nvcsw = usage.ru_nvcsw;
1028   rusage->ru_nivcsw = usage.ru_nivcsw;
1029 #endif
1030 
1031   /* Most platforms report ru_maxrss in kilobytes; macOS and Solaris are
1032    * the outliers because of course they are.
1033    */
1034 #if defined(__APPLE__)
1035   rusage->ru_maxrss /= 1024;                  /* macOS and iOS report bytes. */
1036 #elif defined(__sun)
1037   rusage->ru_maxrss *= getpagesize() / 1024;  /* Solaris reports pages. */
1038 #endif
1039 
1040   return 0;
1041 }
1042 
1043 
uv__open_cloexec(const char * path,int flags)1044 int uv__open_cloexec(const char* path, int flags) {
1045 #if defined(O_CLOEXEC)
1046   int fd;
1047 
1048   fd = open(path, flags | O_CLOEXEC);
1049   if (fd == -1)
1050     return UV__ERR(errno);
1051 
1052   return fd;
1053 #else  /* O_CLOEXEC */
1054   int err;
1055   int fd;
1056 
1057   fd = open(path, flags);
1058   if (fd == -1)
1059     return UV__ERR(errno);
1060 
1061   err = uv__cloexec(fd, 1);
1062   if (err) {
1063     uv__close(fd);
1064     return err;
1065   }
1066 
1067   return fd;
1068 #endif  /* O_CLOEXEC */
1069 }
1070 
1071 
uv__slurp(const char * filename,char * buf,size_t len)1072 int uv__slurp(const char* filename, char* buf, size_t len) {
1073   ssize_t n;
1074   int fd;
1075 
1076   assert(len > 0);
1077 
1078   fd = uv__open_cloexec(filename, O_RDONLY);
1079   if (fd < 0)
1080     return fd;
1081 
1082   do
1083     n = read(fd, buf, len - 1);
1084   while (n == -1 && errno == EINTR);
1085 
1086   if (uv__close_nocheckstdio(fd))
1087     abort();
1088 
1089   if (n < 0)
1090     return UV__ERR(errno);
1091 
1092   buf[n] = '\0';
1093 
1094   return 0;
1095 }
1096 
1097 
uv__dup2_cloexec(int oldfd,int newfd)1098 int uv__dup2_cloexec(int oldfd, int newfd) {
1099 #if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__linux__)
1100   int r;
1101 
1102   r = dup3(oldfd, newfd, O_CLOEXEC);
1103   if (r == -1)
1104     return UV__ERR(errno);
1105 
1106   return r;
1107 #else
1108   int err;
1109   int r;
1110 
1111   r = dup2(oldfd, newfd);  /* Never retry. */
1112   if (r == -1)
1113     return UV__ERR(errno);
1114 
1115   err = uv__cloexec(newfd, 1);
1116   if (err != 0) {
1117     uv__close(newfd);
1118     return err;
1119   }
1120 
1121   return r;
1122 #endif
1123 }
1124 
1125 
uv_os_homedir(char * buffer,size_t * size)1126 int uv_os_homedir(char* buffer, size_t* size) {
1127   uv_passwd_t pwd;
1128   size_t len;
1129   int r;
1130 
1131   /* Check if the HOME environment variable is set first. The task of
1132      performing input validation on buffer and size is taken care of by
1133      uv_os_getenv(). */
1134   r = uv_os_getenv("HOME", buffer, size);
1135 
1136   if (r != UV_ENOENT)
1137     return r;
1138 
1139   /* HOME is not set, so call uv_os_get_passwd() */
1140   r = uv_os_get_passwd(&pwd);
1141 
1142   if (r != 0) {
1143     return r;
1144   }
1145 
1146   len = strlen(pwd.homedir);
1147 
1148   if (len >= *size) {
1149     *size = len + 1;
1150     uv_os_free_passwd(&pwd);
1151     return UV_ENOBUFS;
1152   }
1153 
1154   memcpy(buffer, pwd.homedir, len + 1);
1155   *size = len;
1156   uv_os_free_passwd(&pwd);
1157 
1158   return 0;
1159 }
1160 
1161 
uv_os_tmpdir(char * buffer,size_t * size)1162 int uv_os_tmpdir(char* buffer, size_t* size) {
1163   const char* buf;
1164   size_t len;
1165 
1166   if (buffer == NULL || size == NULL || *size == 0)
1167     return UV_EINVAL;
1168 
1169 #define CHECK_ENV_VAR(name)                                                   \
1170   do {                                                                        \
1171     buf = getenv(name);                                                       \
1172     if (buf != NULL)                                                          \
1173       goto return_buffer;                                                     \
1174   }                                                                           \
1175   while (0)
1176 
1177   /* Check the TMPDIR, TMP, TEMP, and TEMPDIR environment variables in order */
1178   CHECK_ENV_VAR("TMPDIR");
1179   CHECK_ENV_VAR("TMP");
1180   CHECK_ENV_VAR("TEMP");
1181   CHECK_ENV_VAR("TEMPDIR");
1182 
1183 #undef CHECK_ENV_VAR
1184 
1185   /* No temp environment variables defined */
1186   #if defined(__ANDROID__)
1187     buf = "/data/local/tmp";
1188   #else
1189     buf = "/tmp";
1190   #endif
1191 
1192 return_buffer:
1193   len = strlen(buf);
1194 
1195   if (len >= *size) {
1196     *size = len + 1;
1197     return UV_ENOBUFS;
1198   }
1199 
1200   /* The returned directory should not have a trailing slash. */
1201   if (len > 1 && buf[len - 1] == '/') {
1202     len--;
1203   }
1204 
1205   memcpy(buffer, buf, len + 1);
1206   buffer[len] = '\0';
1207   *size = len;
1208 
1209   return 0;
1210 }
1211 
1212 
uv__getpwuid_r(uv_passwd_t * pwd,uid_t uid)1213 static int uv__getpwuid_r(uv_passwd_t *pwd, uid_t uid) {
1214   struct passwd pw;
1215   struct passwd* result;
1216   char* buf;
1217   size_t bufsize;
1218   size_t name_size;
1219   size_t homedir_size;
1220   size_t shell_size;
1221   int r;
1222 
1223   if (pwd == NULL)
1224     return UV_EINVAL;
1225 
1226   /* Calling sysconf(_SC_GETPW_R_SIZE_MAX) would get the suggested size, but it
1227    * is frequently 1024 or 4096, so we can just use that directly. The pwent
1228    * will not usually be large. */
1229   for (bufsize = 2000;; bufsize *= 2) {
1230     buf = uv__malloc(bufsize);
1231 
1232     if (buf == NULL)
1233       return UV_ENOMEM;
1234 
1235     do
1236       r = getpwuid_r(uid, &pw, buf, bufsize, &result);
1237     while (r == EINTR);
1238 
1239     if (r != 0 || result == NULL)
1240       uv__free(buf);
1241 
1242     if (r != ERANGE)
1243       break;
1244   }
1245 
1246   if (r != 0)
1247     return UV__ERR(r);
1248 
1249   if (result == NULL)
1250     return UV_ENOENT;
1251 
1252   /* Allocate memory for the username, shell, and home directory */
1253   name_size = strlen(pw.pw_name) + 1;
1254   homedir_size = strlen(pw.pw_dir) + 1;
1255   shell_size = strlen(pw.pw_shell) + 1;
1256   pwd->username = uv__malloc(name_size + homedir_size + shell_size);
1257 
1258   if (pwd->username == NULL) {
1259     uv__free(buf);
1260     return UV_ENOMEM;
1261   }
1262 
1263   /* Copy the username */
1264   memcpy(pwd->username, pw.pw_name, name_size);
1265 
1266   /* Copy the home directory */
1267   pwd->homedir = pwd->username + name_size;
1268   memcpy(pwd->homedir, pw.pw_dir, homedir_size);
1269 
1270   /* Copy the shell */
1271   pwd->shell = pwd->homedir + homedir_size;
1272   memcpy(pwd->shell, pw.pw_shell, shell_size);
1273 
1274   /* Copy the uid and gid */
1275   pwd->uid = pw.pw_uid;
1276   pwd->gid = pw.pw_gid;
1277 
1278   uv__free(buf);
1279 
1280   return 0;
1281 }
1282 
1283 
uv_os_get_group(uv_group_t * grp,uv_uid_t gid)1284 int uv_os_get_group(uv_group_t* grp, uv_uid_t gid) {
1285 #if defined(__ANDROID__) && __ANDROID_API__ < 24
1286   /* This function getgrgid_r() was added in Android N (level 24) */
1287   return UV_ENOSYS;
1288 #else
1289   struct group gp;
1290   struct group* result;
1291   char* buf;
1292   char* gr_mem;
1293   size_t bufsize;
1294   size_t name_size;
1295   long members;
1296   size_t mem_size;
1297   int r;
1298 
1299   if (grp == NULL)
1300     return UV_EINVAL;
1301 
1302   /* Calling sysconf(_SC_GETGR_R_SIZE_MAX) would get the suggested size, but it
1303    * is frequently 1024 or 4096, so we can just use that directly. The pwent
1304    * will not usually be large. */
1305   for (bufsize = 2000;; bufsize *= 2) {
1306     buf = uv__malloc(bufsize);
1307 
1308     if (buf == NULL)
1309       return UV_ENOMEM;
1310 
1311     do
1312       r = getgrgid_r(gid, &gp, buf, bufsize, &result);
1313     while (r == EINTR);
1314 
1315     if (r != 0 || result == NULL)
1316       uv__free(buf);
1317 
1318     if (r != ERANGE)
1319       break;
1320   }
1321 
1322   if (r != 0)
1323     return UV__ERR(r);
1324 
1325   if (result == NULL)
1326     return UV_ENOENT;
1327 
1328   /* Allocate memory for the groupname and members. */
1329   name_size = strlen(gp.gr_name) + 1;
1330   members = 0;
1331   mem_size = sizeof(char*);
1332   for (r = 0; gp.gr_mem[r] != NULL; r++) {
1333     mem_size += strlen(gp.gr_mem[r]) + 1 + sizeof(char*);
1334     members++;
1335   }
1336 
1337   gr_mem = uv__malloc(name_size + mem_size);
1338   if (gr_mem == NULL) {
1339     uv__free(buf);
1340     return UV_ENOMEM;
1341   }
1342 
1343   /* Copy the members */
1344   grp->members = (char**) gr_mem;
1345   grp->members[members] = NULL;
1346   gr_mem = (char*) &grp->members[members + 1];
1347   for (r = 0; r < members; r++) {
1348     grp->members[r] = gr_mem;
1349     strcpy(gr_mem, gp.gr_mem[r]);
1350     gr_mem += strlen(gr_mem) + 1;
1351   }
1352   assert(gr_mem == (char*)grp->members + mem_size);
1353 
1354   /* Copy the groupname */
1355   grp->groupname = gr_mem;
1356   memcpy(grp->groupname, gp.gr_name, name_size);
1357   gr_mem += name_size;
1358 
1359   /* Copy the gid */
1360   grp->gid = gp.gr_gid;
1361 
1362   uv__free(buf);
1363 
1364   return 0;
1365 #endif
1366 }
1367 
1368 
uv_os_get_passwd(uv_passwd_t * pwd)1369 int uv_os_get_passwd(uv_passwd_t* pwd) {
1370   return uv__getpwuid_r(pwd, geteuid());
1371 }
1372 
1373 
uv_os_get_passwd2(uv_passwd_t * pwd,uv_uid_t uid)1374 int uv_os_get_passwd2(uv_passwd_t* pwd, uv_uid_t uid) {
1375   return uv__getpwuid_r(pwd, uid);
1376 }
1377 
1378 
uv_translate_sys_error(int sys_errno)1379 int uv_translate_sys_error(int sys_errno) {
1380   /* If < 0 then it's already a libuv error. */
1381   return sys_errno <= 0 ? sys_errno : -sys_errno;
1382 }
1383 
1384 
uv_os_environ(uv_env_item_t ** envitems,int * count)1385 int uv_os_environ(uv_env_item_t** envitems, int* count) {
1386   int i, j, cnt;
1387   uv_env_item_t* envitem;
1388 
1389   *envitems = NULL;
1390   *count = 0;
1391 
1392   for (i = 0; environ[i] != NULL; i++);
1393 
1394   *envitems = uv__calloc(i, sizeof(**envitems));
1395 
1396   if (*envitems == NULL)
1397     return UV_ENOMEM;
1398 
1399   for (j = 0, cnt = 0; j < i; j++) {
1400     char* buf;
1401     char* ptr;
1402 
1403     if (environ[j] == NULL)
1404       break;
1405 
1406     buf = uv__strdup(environ[j]);
1407     if (buf == NULL)
1408       goto fail;
1409 
1410     ptr = strchr(buf, '=');
1411     if (ptr == NULL) {
1412       uv__free(buf);
1413       continue;
1414     }
1415 
1416     *ptr = '\0';
1417 
1418     envitem = &(*envitems)[cnt];
1419     envitem->name = buf;
1420     envitem->value = ptr + 1;
1421 
1422     cnt++;
1423   }
1424 
1425   *count = cnt;
1426   return 0;
1427 
1428 fail:
1429   for (i = 0; i < cnt; i++) {
1430     envitem = &(*envitems)[cnt];
1431     uv__free(envitem->name);
1432   }
1433   uv__free(*envitems);
1434 
1435   *envitems = NULL;
1436   *count = 0;
1437   return UV_ENOMEM;
1438 }
1439 
1440 
uv_os_getenv(const char * name,char * buffer,size_t * size)1441 int uv_os_getenv(const char* name, char* buffer, size_t* size) {
1442   char* var;
1443   size_t len;
1444 
1445   if (name == NULL || buffer == NULL || size == NULL || *size == 0)
1446     return UV_EINVAL;
1447 
1448   var = getenv(name);
1449 
1450   if (var == NULL)
1451     return UV_ENOENT;
1452 
1453   len = strlen(var);
1454 
1455   if (len >= *size) {
1456     *size = len + 1;
1457     return UV_ENOBUFS;
1458   }
1459 
1460   memcpy(buffer, var, len + 1);
1461   *size = len;
1462 
1463   return 0;
1464 }
1465 
1466 
uv_os_setenv(const char * name,const char * value)1467 int uv_os_setenv(const char* name, const char* value) {
1468   if (name == NULL || value == NULL)
1469     return UV_EINVAL;
1470 
1471   if (setenv(name, value, 1) != 0)
1472     return UV__ERR(errno);
1473 
1474   return 0;
1475 }
1476 
1477 
uv_os_unsetenv(const char * name)1478 int uv_os_unsetenv(const char* name) {
1479   if (name == NULL)
1480     return UV_EINVAL;
1481 
1482   if (unsetenv(name) != 0)
1483     return UV__ERR(errno);
1484 
1485   return 0;
1486 }
1487 
1488 
uv_os_gethostname(char * buffer,size_t * size)1489 int uv_os_gethostname(char* buffer, size_t* size) {
1490   /*
1491     On some platforms, if the input buffer is not large enough, gethostname()
1492     succeeds, but truncates the result. libuv can detect this and return ENOBUFS
1493     instead by creating a large enough buffer and comparing the hostname length
1494     to the size input.
1495   */
1496   char buf[UV_MAXHOSTNAMESIZE];
1497   size_t len;
1498 
1499   if (buffer == NULL || size == NULL || *size == 0)
1500     return UV_EINVAL;
1501 
1502   if (gethostname(buf, sizeof(buf)) != 0)
1503     return UV__ERR(errno);
1504 
1505   buf[sizeof(buf) - 1] = '\0'; /* Null terminate, just to be safe. */
1506   len = strlen(buf);
1507 
1508   if (len >= *size) {
1509     *size = len + 1;
1510     return UV_ENOBUFS;
1511   }
1512 
1513   memcpy(buffer, buf, len + 1);
1514   *size = len;
1515   return 0;
1516 }
1517 
1518 
uv_get_osfhandle(int fd)1519 uv_os_fd_t uv_get_osfhandle(int fd) {
1520   return fd;
1521 }
1522 
uv_open_osfhandle(uv_os_fd_t os_fd)1523 int uv_open_osfhandle(uv_os_fd_t os_fd) {
1524   return os_fd;
1525 }
1526 
uv_os_getpid(void)1527 uv_pid_t uv_os_getpid(void) {
1528   return getpid();
1529 }
1530 
1531 
uv_os_getppid(void)1532 uv_pid_t uv_os_getppid(void) {
1533   return getppid();
1534 }
1535 
uv_cpumask_size(void)1536 int uv_cpumask_size(void) {
1537 #if UV__CPU_AFFINITY_SUPPORTED
1538   return CPU_SETSIZE;
1539 #else
1540   return UV_ENOTSUP;
1541 #endif
1542 }
1543 
uv_os_getpriority(uv_pid_t pid,int * priority)1544 int uv_os_getpriority(uv_pid_t pid, int* priority) {
1545   int r;
1546 
1547   if (priority == NULL)
1548     return UV_EINVAL;
1549 
1550   errno = 0;
1551   r = getpriority(PRIO_PROCESS, (int) pid);
1552 
1553   if (r == -1 && errno != 0)
1554     return UV__ERR(errno);
1555 
1556   *priority = r;
1557   return 0;
1558 }
1559 
1560 
uv_os_setpriority(uv_pid_t pid,int priority)1561 int uv_os_setpriority(uv_pid_t pid, int priority) {
1562   if (priority < UV_PRIORITY_HIGHEST || priority > UV_PRIORITY_LOW)
1563     return UV_EINVAL;
1564 
1565   if (setpriority(PRIO_PROCESS, (int) pid, priority) != 0)
1566     return UV__ERR(errno);
1567 
1568   return 0;
1569 }
1570 
1571 /**
1572  * If the function succeeds, the return value is 0.
1573  * If the function fails, the return value is non-zero.
1574  * for Linux, when schedule policy is SCHED_OTHER (default), priority is 0.
1575  * So the output parameter priority is actually the nice value.
1576 */
uv_thread_getpriority(uv_thread_t tid,int * priority)1577 int uv_thread_getpriority(uv_thread_t tid, int* priority) {
1578   int r;
1579   int policy;
1580   struct sched_param param;
1581 #ifdef __linux__
1582   pid_t pid = gettid();
1583 #endif
1584 
1585   if (priority == NULL)
1586     return UV_EINVAL;
1587 
1588   r = pthread_getschedparam(tid, &policy, &param);
1589   if (r != 0)
1590     return UV__ERR(errno);
1591 
1592 #ifdef __linux__
1593   if (SCHED_OTHER == policy && pthread_equal(tid, pthread_self())) {
1594     errno = 0;
1595     r = getpriority(PRIO_PROCESS, pid);
1596     if (r == -1 && errno != 0)
1597       return UV__ERR(errno);
1598     *priority = r;
1599     return 0;
1600   }
1601 #endif
1602 
1603   *priority = param.sched_priority;
1604   return 0;
1605 }
1606 
1607 #ifdef __linux__
set_nice_for_calling_thread(int priority)1608 static int set_nice_for_calling_thread(int priority) {
1609   int r;
1610   int nice;
1611 
1612   if (priority < UV_THREAD_PRIORITY_LOWEST || priority > UV_THREAD_PRIORITY_HIGHEST)
1613     return UV_EINVAL;
1614 
1615   pid_t pid = gettid();
1616   nice = 0 - priority * 2;
1617   r = setpriority(PRIO_PROCESS, pid, nice);
1618   if (r != 0)
1619     return UV__ERR(errno);
1620   return 0;
1621 }
1622 #endif
1623 
1624 /**
1625  * If the function succeeds, the return value is 0.
1626  * If the function fails, the return value is non-zero.
1627 */
uv_thread_setpriority(uv_thread_t tid,int priority)1628 int uv_thread_setpriority(uv_thread_t tid, int priority) {
1629 #if !defined(__GNU__)
1630   int r;
1631   int min;
1632   int max;
1633   int range;
1634   int prio;
1635   int policy;
1636   struct sched_param param;
1637 
1638   if (priority < UV_THREAD_PRIORITY_LOWEST || priority > UV_THREAD_PRIORITY_HIGHEST)
1639     return UV_EINVAL;
1640 
1641   r = pthread_getschedparam(tid, &policy, &param);
1642   if (r != 0)
1643     return UV__ERR(errno);
1644 
1645 #ifdef __linux__
1646 /**
1647  * for Linux, when schedule policy is SCHED_OTHER (default), priority must be 0,
1648  * we should set the nice value in this case.
1649 */
1650   if (SCHED_OTHER == policy && pthread_equal(tid, pthread_self()))
1651     return set_nice_for_calling_thread(priority);
1652 #endif
1653 
1654 #ifdef __PASE__
1655   min = 1;
1656   max = 127;
1657 #else
1658   min = sched_get_priority_min(policy);
1659   max = sched_get_priority_max(policy);
1660 #endif
1661 
1662   if (min == -1 || max == -1)
1663     return UV__ERR(errno);
1664 
1665   range = max - min;
1666 
1667   switch (priority) {
1668     case UV_THREAD_PRIORITY_HIGHEST:
1669       prio = max;
1670       break;
1671     case UV_THREAD_PRIORITY_ABOVE_NORMAL:
1672       prio = min + range * 3 / 4;
1673       break;
1674     case UV_THREAD_PRIORITY_NORMAL:
1675       prio = min + range / 2;
1676       break;
1677     case UV_THREAD_PRIORITY_BELOW_NORMAL:
1678       prio = min + range / 4;
1679       break;
1680     case UV_THREAD_PRIORITY_LOWEST:
1681       prio = min;
1682       break;
1683     default:
1684       return 0;
1685   }
1686 
1687   if (param.sched_priority != prio) {
1688     param.sched_priority = prio;
1689     r = pthread_setschedparam(tid, policy, &param);
1690     if (r != 0)
1691       return UV__ERR(errno);
1692   }
1693 
1694   return 0;
1695 #else  /* !defined(__GNU__) */
1696   /* Simulate success on systems where thread priority is not implemented. */
1697   return 0;
1698 #endif  /* !defined(__GNU__) */
1699 }
1700 
uv_os_uname(uv_utsname_t * buffer)1701 int uv_os_uname(uv_utsname_t* buffer) {
1702   struct utsname buf;
1703   int r;
1704 
1705   if (buffer == NULL)
1706     return UV_EINVAL;
1707 
1708   if (uname(&buf) == -1) {
1709     r = UV__ERR(errno);
1710     goto error;
1711   }
1712 
1713   r = uv__strscpy(buffer->sysname, buf.sysname, sizeof(buffer->sysname));
1714   if (r == UV_E2BIG)
1715     goto error;
1716 
1717 #ifdef _AIX
1718   r = snprintf(buffer->release,
1719                sizeof(buffer->release),
1720                "%s.%s",
1721                buf.version,
1722                buf.release);
1723   if (r >= sizeof(buffer->release)) {
1724     r = UV_E2BIG;
1725     goto error;
1726   }
1727 #else
1728   r = uv__strscpy(buffer->release, buf.release, sizeof(buffer->release));
1729   if (r == UV_E2BIG)
1730     goto error;
1731 #endif
1732 
1733   r = uv__strscpy(buffer->version, buf.version, sizeof(buffer->version));
1734   if (r == UV_E2BIG)
1735     goto error;
1736 
1737 #if defined(_AIX) || defined(__PASE__)
1738   r = uv__strscpy(buffer->machine, "ppc64", sizeof(buffer->machine));
1739 #else
1740   r = uv__strscpy(buffer->machine, buf.machine, sizeof(buffer->machine));
1741 #endif
1742 
1743   if (r == UV_E2BIG)
1744     goto error;
1745 
1746   return 0;
1747 
1748 error:
1749   buffer->sysname[0] = '\0';
1750   buffer->release[0] = '\0';
1751   buffer->version[0] = '\0';
1752   buffer->machine[0] = '\0';
1753   return r;
1754 }
1755 
uv__getsockpeername(const uv_handle_t * handle,uv__peersockfunc func,struct sockaddr * name,int * namelen)1756 int uv__getsockpeername(const uv_handle_t* handle,
1757                         uv__peersockfunc func,
1758                         struct sockaddr* name,
1759                         int* namelen) {
1760   socklen_t socklen;
1761   uv_os_fd_t fd;
1762   int r;
1763 
1764   r = uv_fileno(handle, &fd);
1765   if (r < 0)
1766     return r;
1767 
1768   /* sizeof(socklen_t) != sizeof(int) on some systems. */
1769   socklen = (socklen_t) *namelen;
1770 
1771   if (func(fd, name, &socklen))
1772     return UV__ERR(errno);
1773 
1774   *namelen = (int) socklen;
1775   return 0;
1776 }
1777 
uv_gettimeofday(uv_timeval64_t * tv)1778 int uv_gettimeofday(uv_timeval64_t* tv) {
1779   struct timeval time;
1780 
1781   if (tv == NULL)
1782     return UV_EINVAL;
1783 
1784   if (gettimeofday(&time, NULL) != 0)
1785     return UV__ERR(errno);
1786 
1787   tv->tv_sec = (int64_t) time.tv_sec;
1788   tv->tv_usec = (int32_t) time.tv_usec;
1789   return 0;
1790 }
1791 
uv_sleep(unsigned int msec)1792 void uv_sleep(unsigned int msec) {
1793   struct timespec timeout;
1794   int rc;
1795 
1796   timeout.tv_sec = msec / 1000;
1797   timeout.tv_nsec = (msec % 1000) * 1000 * 1000;
1798 
1799   do
1800     rc = nanosleep(&timeout, &timeout);
1801   while (rc == -1 && errno == EINTR);
1802 
1803   assert(rc == 0);
1804 }
1805 
uv__search_path(const char * prog,char * buf,size_t * buflen)1806 int uv__search_path(const char* prog, char* buf, size_t* buflen) {
1807   char abspath[UV__PATH_MAX];
1808   size_t abspath_size;
1809   char trypath[UV__PATH_MAX];
1810   char* cloned_path;
1811   char* path_env;
1812   char* token;
1813   char* itr;
1814 
1815   if (buf == NULL || buflen == NULL || *buflen == 0)
1816     return UV_EINVAL;
1817 
1818   /*
1819    * Possibilities for prog:
1820    * i) an absolute path such as: /home/user/myprojects/nodejs/node
1821    * ii) a relative path such as: ./node or ../myprojects/nodejs/node
1822    * iii) a bare filename such as "node", after exporting PATH variable
1823    *     to its location.
1824    */
1825 
1826   /* Case i) and ii) absolute or relative paths */
1827   if (strchr(prog, '/') != NULL) {
1828     if (realpath(prog, abspath) != abspath)
1829       return UV__ERR(errno);
1830 
1831     abspath_size = strlen(abspath);
1832 
1833     *buflen -= 1;
1834     if (*buflen > abspath_size)
1835       *buflen = abspath_size;
1836 
1837     memcpy(buf, abspath, *buflen);
1838     buf[*buflen] = '\0';
1839 
1840     return 0;
1841   }
1842 
1843   /* Case iii). Search PATH environment variable */
1844   cloned_path = NULL;
1845   token = NULL;
1846   path_env = getenv("PATH");
1847 
1848   if (path_env == NULL)
1849     return UV_EINVAL;
1850 
1851   cloned_path = uv__strdup(path_env);
1852   if (cloned_path == NULL)
1853     return UV_ENOMEM;
1854 
1855   token = uv__strtok(cloned_path, ":", &itr);
1856   while (token != NULL) {
1857     snprintf(trypath, sizeof(trypath) - 1, "%s/%s", token, prog);
1858     if (realpath(trypath, abspath) == abspath) {
1859       /* Check the match is executable */
1860       if (access(abspath, X_OK) == 0) {
1861         abspath_size = strlen(abspath);
1862 
1863         *buflen -= 1;
1864         if (*buflen > abspath_size)
1865           *buflen = abspath_size;
1866 
1867         memcpy(buf, abspath, *buflen);
1868         buf[*buflen] = '\0';
1869 
1870         uv__free(cloned_path);
1871         return 0;
1872       }
1873     }
1874     token = uv__strtok(NULL, ":", &itr);
1875   }
1876   uv__free(cloned_path);
1877 
1878   /* Out of tokens (path entries), and no match found */
1879   return UV_EINVAL;
1880 }
1881 
1882 #if defined(__linux__) || defined (__FreeBSD__)
1883 # define uv__cpu_count(cpuset) CPU_COUNT(cpuset)
1884 #elif defined(__NetBSD__)
uv__cpu_count(cpuset_t * set)1885 static int uv__cpu_count(cpuset_t* set) {
1886   int rc;
1887   cpuid_t i;
1888 
1889   rc = 0;
1890   for (i = 0;; i++) {
1891     int r = cpuset_isset(i, set);
1892     if (r < 0)
1893       break;
1894     if (r)
1895       rc++;
1896   }
1897 
1898   return rc;
1899 }
1900 #endif /* __NetBSD__ */
1901 
uv_available_parallelism(void)1902 unsigned int uv_available_parallelism(void) {
1903   long rc = -1;
1904 
1905 #ifdef __linux__
1906   cpu_set_t set;
1907 
1908   memset(&set, 0, sizeof(set));
1909 
1910   /* sysconf(_SC_NPROCESSORS_ONLN) in musl calls sched_getaffinity() but in
1911    * glibc it's... complicated... so for consistency try sched_getaffinity()
1912    * before falling back to sysconf(_SC_NPROCESSORS_ONLN).
1913    */
1914   if (0 == sched_getaffinity(0, sizeof(set), &set))
1915     rc = uv__cpu_count(&set);
1916 #elif defined(__MVS__)
1917   rc = __get_num_online_cpus();
1918   if (rc < 1)
1919     rc = 1;
1920 
1921   return (unsigned) rc;
1922 #elif defined(__FreeBSD__)
1923   cpuset_t set;
1924 
1925   memset(&set, 0, sizeof(set));
1926 
1927   if (0 == cpuset_getaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1, sizeof(set), &set))
1928     rc = uv__cpu_count(&set);
1929 #elif defined(__NetBSD__)
1930   cpuset_t* set = cpuset_create();
1931   if (set != NULL) {
1932     if (0 == sched_getaffinity_np(getpid(), sizeof(set), &set))
1933       rc = uv__cpu_count(&set);
1934     cpuset_destroy(set);
1935   }
1936 #elif defined(__APPLE__)
1937   int nprocs;
1938   size_t i;
1939   size_t len = sizeof(nprocs);
1940   static const char *mib[] = {
1941     "hw.activecpu",
1942     "hw.logicalcpu",
1943     "hw.ncpu"
1944   };
1945 
1946   for (i = 0; i < ARRAY_SIZE(mib); i++) {
1947     if (0 == sysctlbyname(mib[i], &nprocs, &len, NULL, 0) &&
1948 	      len == sizeof(nprocs) &&
1949 	      nprocs > 0) {
1950       rc = nprocs;
1951       break;
1952     }
1953   }
1954 #elif defined(__OpenBSD__)
1955   int nprocs;
1956   size_t i;
1957   size_t len = sizeof(nprocs);
1958   static int mib[][2] = {
1959 # ifdef HW_NCPUONLINE
1960     { CTL_HW, HW_NCPUONLINE },
1961 # endif
1962     { CTL_HW, HW_NCPU }
1963   };
1964 
1965   for (i = 0; i < ARRAY_SIZE(mib); i++) {
1966     if (0 == sysctl(mib[i], ARRAY_SIZE(mib[i]), &nprocs, &len, NULL, 0) &&
1967 	len == sizeof(nprocs) &&
1968         nprocs > 0) {
1969       rc = nprocs;
1970       break;
1971     }
1972   }
1973 #endif /* __linux__ */
1974 
1975   if (rc < 0)
1976     rc = sysconf(_SC_NPROCESSORS_ONLN);
1977 
1978 #ifdef __linux__
1979   {
1980     double rc_with_cgroup;
1981     uv__cpu_constraint c = {0, 0, 0.0};
1982 
1983     if (uv__get_constrained_cpu(&c) == 0 && c.period_length > 0) {
1984       rc_with_cgroup = (double)c.quota_per_period / c.period_length * c.proportions;
1985       if (rc_with_cgroup < rc)
1986         rc = (long)rc_with_cgroup; /* Casting is safe since rc_with_cgroup < rc < LONG_MAX */
1987     }
1988   }
1989 #endif  /* __linux__ */
1990 
1991   if (rc < 1)
1992     rc = 1;
1993 
1994   return (unsigned) rc;
1995 }
1996 
uv__sock_reuseport(int fd)1997 int uv__sock_reuseport(int fd) {
1998   int on = 1;
1999 #if defined(__FreeBSD__) && __FreeBSD__ >= 12 && defined(SO_REUSEPORT_LB)
2000   /* FreeBSD 12 introduced a new socket option named SO_REUSEPORT_LB
2001    * with the capability of load balancing, it's the substitution of
2002    * the SO_REUSEPORTs on Linux and DragonFlyBSD. */
2003   if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT_LB, &on, sizeof(on)))
2004     return UV__ERR(errno);
2005 #elif (defined(__linux__) || \
2006       defined(_AIX73) || \
2007       (defined(__DragonFly__) && __DragonFly_version >= 300600) || \
2008       (defined(UV__SOLARIS_11_4) && UV__SOLARIS_11_4)) && \
2009       defined(SO_REUSEPORT)
2010   /* On Linux 3.9+, the SO_REUSEPORT implementation distributes connections
2011    * evenly across all of the threads (or processes) that are blocked in
2012    * accept() on the same port. As with TCP, SO_REUSEPORT distributes datagrams
2013    * evenly across all of the receiving threads (or process).
2014    *
2015    * DragonFlyBSD 3.6.0 extended SO_REUSEPORT to distribute workload to
2016    * available sockets, which made it the equivalent of Linux's SO_REUSEPORT.
2017    *
2018    * AIX 7.2.5 added the feature that would add the capability to distribute
2019    * incoming connections or datagrams across all listening ports for SO_REUSEPORT.
2020    *
2021    * Solaris 11 supported SO_REUSEPORT, but it's implemented only for
2022    * binding to the same address and port, without load balancing.
2023    * Solaris 11.4 extended SO_REUSEPORT with the capability of load balancing.
2024    */
2025   if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on)))
2026     return UV__ERR(errno);
2027 #else
2028   (void) (fd);
2029   (void) (on);
2030   /* SO_REUSEPORTs do not have the capability of load balancing on platforms
2031    * other than those mentioned above. The semantics are completely different,
2032    * therefore we shouldn't enable it, but fail this operation to indicate that
2033    * UV_[TCP/UDP]_REUSEPORT is not supported on these platforms. */
2034   return UV_ENOTSUP;
2035 #endif
2036 
2037   return 0;
2038 }
2039