xref: /PHP-8.2/ext/pcre/pcre2lib/sljit/sljitLir.h (revision 32cceb75)
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
29 
30 /*
31    ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33    ------------------------------------------------------------------------
34 
35    Short description
36     Advantages:
37       - The execution can be continued from any LIR instruction. In other
38         words, it is possible to jump to any label from anywhere, even from
39         a code fragment, which is compiled later, if both compiled code
40         shares the same context. See sljit_emit_enter for more details
41       - Supports self modifying code: target of (conditional) jump and call
42         instructions and some constant values can be dynamically modified
43         during runtime
44         - although it is not suggested to do it frequently
45         - can be used for inline caching: save an important value once
46           in the instruction stream
47         - since this feature limits the optimization possibilities, a
48           special flag must be passed at compile time when these
49           instructions are emitted
50       - A fixed stack space can be allocated for local variables
51       - The compiler is thread-safe
52       - The compiler is highly configurable through preprocessor macros.
53         You can disable unneeded features (multithreading in single
54         threaded applications), and you can use your own system functions
55         (including memory allocators). See sljitConfig.h
56     Disadvantages:
57       - No automatic register allocation, and temporary results are
58         not stored on the stack. (hence the name comes)
59     In practice:
60       - This approach is very effective for interpreters
61         - One of the saved registers typically points to a stack interface
62         - It can jump to any exception handler anytime (even if it belongs
63           to another function)
64         - Hot paths can be modified during runtime reflecting the changes
65           of the fastest execution path of the dynamic language
66         - SLJIT supports complex memory addressing modes
67         - mainly position and context independent code (except some cases)
68 
69     For valgrind users:
70       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72 
73 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
74 #include "sljitConfigPre.h"
75 #endif /* SLJIT_HAVE_CONFIG_PRE */
76 
77 #include "sljitConfig.h"
78 
79 /* The following header file defines useful macros for fine tuning
80 sljit based code generators. They are listed in the beginning
81 of sljitConfigInternal.h */
82 
83 #include "sljitConfigInternal.h"
84 
85 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
86 #include "sljitConfigPost.h"
87 #endif /* SLJIT_HAVE_CONFIG_POST */
88 
89 #ifdef __cplusplus
90 extern "C" {
91 #endif
92 
93 /* --------------------------------------------------------------------- */
94 /*  Error codes                                                          */
95 /* --------------------------------------------------------------------- */
96 
97 /* Indicates no error. */
98 #define SLJIT_SUCCESS			0
99 /* After the call of sljit_generate_code(), the error code of the compiler
100    is set to this value to avoid future sljit calls (in debug mode at least).
101    The complier should be freed after sljit_generate_code(). */
102 #define SLJIT_ERR_COMPILED		1
103 /* Cannot allocate non executable memory. */
104 #define SLJIT_ERR_ALLOC_FAILED		2
105 /* Cannot allocate executable memory.
106    Only for sljit_generate_code() */
107 #define SLJIT_ERR_EX_ALLOC_FAILED	3
108 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
109 #define SLJIT_ERR_UNSUPPORTED		4
110 /* An ivalid argument is passed to any SLJIT function. */
111 #define SLJIT_ERR_BAD_ARGUMENT		5
112 /* Dynamic code modification is not enabled. */
113 #define SLJIT_ERR_DYN_CODE_MOD		6
114 
115 /* --------------------------------------------------------------------- */
116 /*  Registers                                                            */
117 /* --------------------------------------------------------------------- */
118 
119 /*
120   Scratch (R) registers: registers whose may not preserve their values
121   across function calls.
122 
123   Saved (S) registers: registers whose preserve their values across
124   function calls.
125 
126   The scratch and saved register sets are overlap. The last scratch register
127   is the first saved register, the one before the last is the second saved
128   register, and so on.
129 
130   If an architecture provides two scratch and three saved registers,
131   its scratch and saved register sets are the following:
132 
133      R0   |        |   R0 is always a scratch register
134      R1   |        |   R1 is always a scratch register
135     [R2]  |   S2   |   R2 and S2 represent the same physical register
136     [R3]  |   S1   |   R3 and S1 represent the same physical register
137     [R4]  |   S0   |   R4 and S0 represent the same physical register
138 
139   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
140         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
141 
142   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
143         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
144         are virtual on x86-32. See below.
145 
146   The purpose of this definition is convenience: saved registers can
147   be used as extra scratch registers. For example four registers can
148   be specified as scratch registers and the fifth one as saved register
149   on the CPU above and any user code which requires four scratch
150   registers can run unmodified. The SLJIT compiler automatically saves
151   the content of the two extra scratch register on the stack. Scratch
152   registers can also be preserved by saving their value on the stack
153   but this needs to be done manually.
154 
155   Note: To emphasize that registers assigned to R2-R4 are saved
156         registers, they are enclosed by square brackets.
157 
158   Note: sljit_emit_enter and sljit_set_context defines whether a register
159         is S or R register. E.g: when 3 scratches and 1 saved is mapped
160         by sljit_emit_enter, the allowed register set will be: R0-R2 and
161         S0. Although S2 is mapped to the same position as R2, it does not
162         available in the current configuration. Furthermore the S1 register
163         is not available at all.
164 */
165 
166 /* Scratch registers. */
167 #define SLJIT_R0	1
168 #define SLJIT_R1	2
169 #define SLJIT_R2	3
170 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
171    are allocated on the stack). These registers are called virtual
172    and cannot be used for memory addressing (cannot be part of
173    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
174    limitation on other CPUs. See sljit_get_register_index(). */
175 #define SLJIT_R3	4
176 #define SLJIT_R4	5
177 #define SLJIT_R5	6
178 #define SLJIT_R6	7
179 #define SLJIT_R7	8
180 #define SLJIT_R8	9
181 #define SLJIT_R9	10
182 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
183    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
184 #define SLJIT_R(i)	(1 + (i))
185 
186 /* Saved registers. */
187 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
188 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
189 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
190 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
191    are allocated on the stack). These registers are called virtual
192    and cannot be used for memory addressing (cannot be part of
193    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
194    limitation on other CPUs. See sljit_get_register_index(). */
195 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
196 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
197 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
198 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
199 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
200 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
201 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
202 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
203    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
204 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
205 
206 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
207 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
208 
209 /* The SLJIT_SP provides direct access to the linear stack space allocated by
210    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
211    The immediate offset is extended by the relative stack offset automatically.
212    The sljit_get_local_base can be used to obtain the absolute offset. */
213 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
214 
215 /* Return with machine word. */
216 
217 #define SLJIT_RETURN_REG	SLJIT_R0
218 
219 /* --------------------------------------------------------------------- */
220 /*  Floating point registers                                             */
221 /* --------------------------------------------------------------------- */
222 
223 /* Each floating point register can store a 32 or a 64 bit precision
224    value. The FR and FS register sets are overlap in the same way as R
225    and S register sets. See above. */
226 
227 /* Floating point scratch registers. */
228 #define SLJIT_FR0	1
229 #define SLJIT_FR1	2
230 #define SLJIT_FR2	3
231 #define SLJIT_FR3	4
232 #define SLJIT_FR4	5
233 #define SLJIT_FR5	6
234 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
235    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
236 #define SLJIT_FR(i)	(1 + (i))
237 
238 /* Floating point saved registers. */
239 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
240 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
241 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
242 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
243 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
244 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
245 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
246    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
247 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
248 
249 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
250 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
251 
252 /* --------------------------------------------------------------------- */
253 /*  Argument type definitions                                            */
254 /* --------------------------------------------------------------------- */
255 
256 /* The following argument type definitions are used by sljit_emit_enter,
257    sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
258 
259    As for sljit_emit_call and sljit_emit_icall, the first integer argument
260    must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
261    Similarly the first floating point argument must be placed into SLJIT_FR0,
262    the second one into SLJIT_FR1, and so on.
263 
264    As for sljit_emit_enter, the integer arguments can be stored in scratch
265    or saved registers. The first integer argument without _R postfix is
266    stored in SLJIT_S0, the next one in SLJIT_S1, and so on. The integer
267    arguments with _R postfix are placed into scratch registers. The index
268    of the scratch register is the count of the previous integer arguments
269    starting from SLJIT_R0. The floating point arguments are always placed
270    into SLJIT_FR0, SLJIT_FR1, and so on.
271 
272    Note: if a function is called by sljit_emit_call/sljit_emit_icall and
273          an argument is stored in a scratch register by sljit_emit_enter,
274          that argument uses the same scratch register index for both
275          integer and floating point arguments.
276 
277    Example function definition:
278      sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
279          sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
280 
281    Argument type definition:
282      SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
283         | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
284         | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)
285 
286    Short form of argument type definition:
287      SLJIT_ARGS4(32, P, F64, 32, F32)
288 
289    Argument passing:
290      arg_a must be placed in SLJIT_R0
291      arg_c must be placed in SLJIT_R1
292      arg_b must be placed in SLJIT_FR0
293      arg_d must be placed in SLJIT_FR1
294 
295    Examples for argument processing by sljit_emit_enter:
296      SLJIT_ARGS4(VOID, P, 32_R, F32, W)
297      Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1
298 
299      SLJIT_ARGS4(VOID, W, W_R, W, W_R)
300      Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3
301 
302      SLJIT_ARGS4(VOID, F64, W, F32, W_R)
303      Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1
304 
305      Note: it is recommended to pass the scratch arguments first
306      followed by the saved arguments:
307 
308        SLJIT_ARGS4(VOID, W_R, W_R, W, W)
309        Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
310 */
311 
312 /* The following flag is only allowed for the integer arguments of
313    sljit_emit_enter. When the flag is set, the integer argument is
314    stored in a scratch register instead of a saved register. */
315 #define SLJIT_ARG_TYPE_SCRATCH_REG 0x8
316 
317 /* Void result, can only be used by SLJIT_ARG_RETURN. */
318 #define SLJIT_ARG_TYPE_VOID	0
319 /* Machine word sized integer argument or result. */
320 #define SLJIT_ARG_TYPE_W	1
321 #define SLJIT_ARG_TYPE_W_R	(SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
322 /* 32 bit integer argument or result. */
323 #define SLJIT_ARG_TYPE_32	2
324 #define SLJIT_ARG_TYPE_32_R	(SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
325 /* Pointer sized integer argument or result. */
326 #define SLJIT_ARG_TYPE_P	3
327 #define SLJIT_ARG_TYPE_P_R	(SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
328 /* 64 bit floating point argument or result. */
329 #define SLJIT_ARG_TYPE_F64	4
330 /* 32 bit floating point argument or result. */
331 #define SLJIT_ARG_TYPE_F32	5
332 
333 #define SLJIT_ARG_SHIFT 4
334 #define SLJIT_ARG_RETURN(type) (type)
335 #define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))
336 
337 /* Simplified argument list definitions.
338 
339    The following definition:
340        SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)
341 
342    can be shortened to:
343        SLJIT_ARGS1(W, F32)
344 */
345 
346 #define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type
347 
348 #define SLJIT_ARGS0(ret) \
349 	SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))
350 
351 #define SLJIT_ARGS1(ret, arg1) \
352 	(SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
353 
354 #define SLJIT_ARGS2(ret, arg1, arg2) \
355 	(SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
356 
357 #define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
358 	(SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
359 
360 #define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
361 	(SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
362 
363 /* --------------------------------------------------------------------- */
364 /*  Main structures and functions                                        */
365 /* --------------------------------------------------------------------- */
366 
367 /*
368 	The following structures are private, and can be changed in the
369 	future. Keeping them here allows code inlining.
370 */
371 
372 struct sljit_memory_fragment {
373 	struct sljit_memory_fragment *next;
374 	sljit_uw used_size;
375 	/* Must be aligned to sljit_sw. */
376 	sljit_u8 memory[1];
377 };
378 
379 struct sljit_label {
380 	struct sljit_label *next;
381 	sljit_uw addr;
382 	/* The maximum size difference. */
383 	sljit_uw size;
384 };
385 
386 struct sljit_jump {
387 	struct sljit_jump *next;
388 	sljit_uw addr;
389 	sljit_uw flags;
390 	union {
391 		sljit_uw target;
392 		struct sljit_label *label;
393 	} u;
394 };
395 
396 struct sljit_put_label {
397 	struct sljit_put_label *next;
398 	struct sljit_label *label;
399 	sljit_uw addr;
400 	sljit_uw flags;
401 };
402 
403 struct sljit_const {
404 	struct sljit_const *next;
405 	sljit_uw addr;
406 };
407 
408 struct sljit_compiler {
409 	sljit_s32 error;
410 	sljit_s32 options;
411 
412 	struct sljit_label *labels;
413 	struct sljit_jump *jumps;
414 	struct sljit_put_label *put_labels;
415 	struct sljit_const *consts;
416 	struct sljit_label *last_label;
417 	struct sljit_jump *last_jump;
418 	struct sljit_const *last_const;
419 	struct sljit_put_label *last_put_label;
420 
421 	void *allocator_data;
422 	void *exec_allocator_data;
423 	struct sljit_memory_fragment *buf;
424 	struct sljit_memory_fragment *abuf;
425 
426 	/* Used scratch registers. */
427 	sljit_s32 scratches;
428 	/* Used saved registers. */
429 	sljit_s32 saveds;
430 	/* Used float scratch registers. */
431 	sljit_s32 fscratches;
432 	/* Used float saved registers. */
433 	sljit_s32 fsaveds;
434 	/* Local stack size. */
435 	sljit_s32 local_size;
436 	/* Code size. */
437 	sljit_uw size;
438 	/* Relative offset of the executable mapping from the writable mapping. */
439 	sljit_sw executable_offset;
440 	/* Executable size for statistical purposes. */
441 	sljit_uw executable_size;
442 
443 #if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
444 	sljit_s32 status_flags_state;
445 #endif
446 
447 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
448 	sljit_s32 args_size;
449 	sljit_s32 locals_offset;
450 	sljit_s32 scratches_offset;
451 #endif
452 
453 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
454 	sljit_s32 mode32;
455 #endif
456 
457 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
458 	/* Constant pool handling. */
459 	sljit_uw *cpool;
460 	sljit_u8 *cpool_unique;
461 	sljit_uw cpool_diff;
462 	sljit_uw cpool_fill;
463 	/* Other members. */
464 	/* Contains pointer, "ldr pc, [...]" pairs. */
465 	sljit_uw patches;
466 #endif
467 
468 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
469 	/* Temporary fields. */
470 	sljit_uw shift_imm;
471 #endif /* SLJIT_CONFIG_ARM_V5 || SLJIT_CONFIG_ARM_V7 */
472 
473 #if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
474 	sljit_uw args_size;
475 #endif
476 
477 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
478 	sljit_u32 imm;
479 #endif
480 
481 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
482 	sljit_s32 delay_slot;
483 	sljit_s32 cache_arg;
484 	sljit_sw cache_argw;
485 #endif
486 
487 #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
488 	sljit_uw args_size;
489 #endif
490 
491 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
492 	sljit_s32 delay_slot;
493 	sljit_s32 cache_arg;
494 	sljit_sw cache_argw;
495 #endif
496 
497 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
498 	/* Need to allocate register save area to make calls. */
499 	sljit_s32 mode;
500 #endif
501 
502 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
503 	FILE* verbose;
504 #endif
505 
506 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
507 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
508 	/* Flags specified by the last arithmetic instruction.
509 	   It contains the type of the variable flag. */
510 	sljit_s32 last_flags;
511 	/* Return value type set by entry functions. */
512 	sljit_s32 last_return;
513 	/* Local size passed to entry functions. */
514 	sljit_s32 logical_local_size;
515 #endif
516 
517 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
518 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
519 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
520 	/* Trust arguments when the API function is called. */
521 	sljit_s32 skip_checks;
522 #endif
523 };
524 
525 /* --------------------------------------------------------------------- */
526 /*  Main functions                                                       */
527 /* --------------------------------------------------------------------- */
528 
529 /* Creates an sljit compiler. The allocator_data is required by some
530    custom memory managers. This pointer is passed to SLJIT_MALLOC
531    and SLJIT_FREE macros. Most allocators (including the default
532    one) ignores this value, and it is recommended to pass NULL
533    as a dummy value for allocator_data. The exec_allocator_data
534    has the same purpose but this one is passed to SLJIT_MALLOC_EXEC /
535    SLJIT_MALLOC_FREE functions.
536 
537    Returns NULL if failed. */
538 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data, void *exec_allocator_data);
539 
540 /* Frees everything except the compiled machine code. */
541 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
542 
543 /* Returns the current error code. If an error is occurred, future sljit
544    calls which uses the same compiler argument returns early with the same
545    error code. Thus there is no need for checking the error after every
546    call, it is enough to do it before the code is compiled. Removing
547    these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)548 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
549 
550 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
551    if an error was detected before. After the error code is set
552    the compiler behaves as if the allocation failure happened
553    during an sljit function call. This can greatly simplify error
554    checking, since only the compiler status needs to be checked
555    after the compilation. */
556 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
557 
558 /*
559    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
560    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
561    compiler, and freed by sljit_free_compiler. The returned pointer is
562    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
563    the compiling, and no need to worry about freeing them. The size is
564    enough to contain at most 16 pointers. If the size is outside of the range,
565    the function will return with NULL. However, this return value does not
566    indicate that there is no more memory (does not set the current error code
567    of the compiler to out-of-memory status).
568 */
569 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
570 
571 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
572 /* Passing NULL disables verbose. */
573 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
574 #endif
575 
576 /*
577    Create executable code from the sljit instruction stream. This is the final step
578    of the code generation so no more instructions can be added after this call.
579 */
580 
581 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
582 
583 /* Free executable code. */
584 
585 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
586 
587 /*
588    When the protected executable allocator is used the JIT code is mapped
589    twice. The first mapping has read/write and the second mapping has read/exec
590    permissions. This function returns with the relative offset of the executable
591    mapping using the writable mapping as the base after the machine code is
592    successfully generated. The returned value is always 0 for the normal executable
593    allocator, since it uses only one mapping with read/write/exec permissions.
594    Dynamic code modifications requires this value.
595 
596    Before a successful code generation, this function returns with 0.
597 */
sljit_get_executable_offset(struct sljit_compiler * compiler)598 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
599 
600 /*
601    The executable memory consumption of the generated code can be retrieved by
602    this function. The returned value can be used for statistical purposes.
603 
604    Before a successful code generation, this function returns with 0.
605 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)606 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
607 
608 /* Returns with non-zero if the feature or limitation type passed as its
609    argument is present on the current CPU.
610 
611    Some features (e.g. floating point operations) require hardware (CPU)
612    support while others (e.g. move with update) are emulated if not available.
613    However even if a feature is emulated, specialized code paths can be faster
614    than the emulation. Some limitations are emulated as well so their general
615    case is supported but it has extra performance costs. */
616 
617 /* [Not emulated] Floating-point support is available. */
618 #define SLJIT_HAS_FPU			0
619 /* [Limitation] Some registers are virtual registers. */
620 #define SLJIT_HAS_VIRTUAL_REGISTERS	1
621 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
622 #define SLJIT_HAS_ZERO_REGISTER		2
623 /* [Emulated] Count leading zero is supported. */
624 #define SLJIT_HAS_CLZ			3
625 /* [Emulated] Conditional move is supported. */
626 #define SLJIT_HAS_CMOV			4
627 /* [Emulated] Conditional move is supported. */
628 #define SLJIT_HAS_PREFETCH		5
629 
630 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
631 /* [Not emulated] SSE2 support is available on x86. */
632 #define SLJIT_HAS_SSE2			100
633 #endif
634 
635 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
636 
637 /* Instruction generation. Returns with any error code. If there is no
638    error, they return with SLJIT_SUCCESS. */
639 
640 /*
641    The executable code is a function from the viewpoint of the C
642    language. The function calls must obey to the ABI (Application
643    Binary Interface) of the platform, which specify the purpose of
644    machine registers and stack handling among other things. The
645    sljit_emit_enter function emits the necessary instructions for
646    setting up a new context for the executable code and moves function
647    arguments to the saved registers. Furthermore the options argument
648    can be used to pass configuration options to the compiler. The
649    available options are listed before sljit_emit_enter.
650 
651    The function argument list is the combination of SLJIT_ARGx
652    (SLJIT_DEF_ARG1) macros. Currently maximum 4 arguments are
653    supported. The first integer argument is loaded into SLJIT_S0,
654    the second one is loaded into SLJIT_S1, and so on. Similarly,
655    the first floating point argument is loaded into SLJIT_FR0,
656    the second one is loaded into SLJIT_FR1, and so on. Furthermore
657    the register set used by the function must be declared as well.
658    The number of scratch and saved registers used by the function
659    must be passed to sljit_emit_enter. Only R registers between R0
660    and "scratches" argument can be used later. E.g. if "scratches"
661    is set to 2, the scratch register set will be limited to SLJIT_R0
662     and SLJIT_R1. The S registers and the floating point registers
663    ("fscratches" and "fsaveds") are specified in a similar manner.
664    The sljit_emit_enter is also capable of allocating a stack space
665    for local variables. The "local_size" argument contains the size
666    in bytes of this local area and its staring address is stored
667    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
668    SLJIT_SP + local_size (exclusive) can be modified freely until
669    the function returns. The stack space is not initialized.
670 
671    Note: the following conditions must met:
672          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
673          0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
674          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
675          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
676          0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
677          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
678 
679    Note: the compiler can use saved registers as scratch registers,
680          but the opposite is not supported
681 
682    Note: every call of sljit_emit_enter and sljit_set_context
683          overwrites the previous context.
684 */
685 
686 /* The compiled function uses cdecl calling
687  * convention instead of SLJIT_FUNC. */
688 #define SLJIT_ENTER_CDECL 0x00000001
689 
690 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
691 #define SLJIT_MAX_LOCAL_SIZE	65536
692 
693 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
694 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
695 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
696 
697 /* The machine code has a context (which contains the local stack space size,
698    number of used registers, etc.) which initialized by sljit_emit_enter. Several
699    functions (such as sljit_emit_return) requres this context to be able to generate
700    the appropriate code. However, some code fragments (like inline cache) may have
701    no normal entry point so their context is unknown for the compiler. Their context
702    can be provided to the compiler by the sljit_set_context function.
703 
704    Note: every call of sljit_emit_enter and sljit_set_context overwrites
705          the previous context. */
706 
707 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
708 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
709 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
710 
711 /* Return from machine code. The sljit_emit_return_void function does not return with
712    any value. The sljit_emit_return function returns with a single value which stores
713    the result of a data move instruction. The instruction is specified by the op
714    argument, and must be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1). */
715 
716 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);
717 
718 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
719 	sljit_s32 src, sljit_sw srcw);
720 
721 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
722    Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
723    values of all registers and stack frame. The return address is stored in the
724    dst argument of sljit_emit_fast_enter, and this return address can be passed
725    to SLJIT_FAST_RETURN to continue the execution after the fast call.
726 
727    Fast calls are cheap operations (usually only a single call instruction is
728    emitted) but they do not preserve any registers. However the callee function
729    can freely use / update any registers and stack values which can be
730    efficiently exploited by various optimizations. Registers can be saved
731    manually by the callee function if needed.
732 
733    Although returning to different address by SLJIT_FAST_RETURN is possible,
734    this address usually cannot be predicted by the return address predictor of
735    modern CPUs which may reduce performance. Furthermore certain security
736    enhancement technologies such as Intel Control-flow Enforcement Technology
737    (CET) may disallow returning to a different address.
738 
739    Flags: - (does not modify flags). */
740 
741 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
742 
743 /*
744    Source and destination operands for arithmetical instructions
745     imm              - a simple immediate value (cannot be used as a destination)
746     reg              - any of the registers (immediate argument must be 0)
747     [imm]            - absolute immediate memory address
748     [reg+imm]        - indirect memory address
749     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
750                        useful for (byte, half, int, sljit_sw) array access
751                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
752 */
753 
754 /*
755    IMPORTANT NOTE: memory access MUST be naturally aligned unless
756                    SLJIT_UNALIGNED macro is defined and its value is 1.
757 
758      length | alignment
759    ---------+-----------
760      byte   | 1 byte (any physical_address is accepted)
761      half   | 2 byte (physical_address & 0x1 == 0)
762      int    | 4 byte (physical_address & 0x3 == 0)
763      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
764             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
765     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
766             | on 64 bit machines)
767 
768    Note:   Different architectures have different addressing limitations.
769            A single instruction is enough for the following addressing
770            modes. Other adrressing modes are emulated by instruction
771            sequences. This information could help to improve those code
772            generators which focuses only a few architectures.
773 
774    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
775            [reg+(reg<<imm)] is supported
776            [imm], -2^32+1 <= imm <= 2^32-1 is supported
777            Write-back is not supported
778    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
779                 bytes, any halfs or floating point values)
780            [reg+(reg<<imm)] is supported
781            Write-back is supported
782    arm-t2: [reg+imm], -255 <= imm <= 4095
783            [reg+(reg<<imm)] is supported
784            Write back is supported only for [reg+imm], where -255 <= imm <= 255
785    arm64:  [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
786            [reg+(reg<<imm)] is supported
787            Write back is supported only for [reg+imm], where -256 <= imm <= 255
788    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
789                 signed load on 64 bit requires immediates divisible by 4.
790                 [reg+imm] is not supported for signed 8 bit values.
791            [reg+reg] is supported
792            Write-back is supported except for one instruction: 32 bit signed
793                 load with [reg+imm] addressing mode on 64 bit.
794    mips:   [reg+imm], -65536 <= imm <= 65535
795    sparc:  [reg+imm], -4096 <= imm <= 4095
796            [reg+reg] is supported
797    s390x:  [reg+imm], -2^19 <= imm < 2^19
798            [reg+reg] is supported
799            Write-back is not supported
800 */
801 
802 /* Macros for specifying operand types. */
803 #define SLJIT_MEM		0x80
804 #define SLJIT_MEM0()		(SLJIT_MEM)
805 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
806 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
807 #define SLJIT_IMM		0x40
808 
809 /* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
810    32 bit CPUs. When this option is set for an arithmetic operation, only
811    the lower 32 bit of the input registers are used, and the CPU status
812    flags are set according to the 32 bit result. Although the higher 32 bit
813    of the input and the result registers are not defined by SLJIT, it might
814    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
815    requirements all source registers must be the result of those operations
816    where this option was also set. Memory loads read 32 bit values rather
817    than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
818    mixed. The only exception is SLJIT_MOV32 whose source register can hold
819    any 32 or 64 bit value, and it is converted to a 32 bit compatible format
820    first. This conversion is free (no instructions are emitted) on most CPUs.
821    A 32 bit value can also be converted to a 64 bit value by SLJIT_MOV_S32
822    (sign extension) or SLJIT_MOV_U32 (zero extension).
823 
824    As for floating-point operations, this option sets 32 bit single
825    precision mode. Similar to the integer operations, all register arguments
826    must be the result of those operations where this option was also set.
827 
828    Note: memory addressing always uses 64 bit values on 64 bit systems so
829          the result of a 32 bit operation must not be used with SLJIT_MEMx
830          macros.
831 
832    This option is part of the instruction name, so there is no need to
833    manually set it. E.g:
834 
835      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
836 #define SLJIT_32		0x100
837 
838 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
839    to the result of an operation. Other CPUs (MIPS) do not have status
840    flags, and results must be stored in registers. To cover both architecture
841    types efficiently only two flags are defined by SLJIT:
842 
843     * Zero (equal) flag: it is set if the result is zero
844     * Variable flag: its value is defined by the last arithmetic operation
845 
846    SLJIT instructions can set any or both of these flags. The value of
847    these flags is undefined if the instruction does not specify their value.
848    The description of each instruction contains the list of allowed flag
849    types.
850 
851    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
852 
853      sljit_op2(..., SLJIT_ADD, ...)
854        Both the zero and variable flags are undefined so they can
855        have any value after the operation is completed.
856 
857      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
858        Sets the zero flag if the result is zero, clears it otherwise.
859        The variable flag is undefined.
860 
861      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
862        Sets the variable flag if an integer overflow occurs, clears
863        it otherwise. The zero flag is undefined.
864 
865      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
866        Sets the zero flag if the result is zero, clears it otherwise.
867        Sets the variable flag if unsigned overflow (carry) occurs,
868        clears it otherwise.
869 
870    If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
871    unchanged.
872 
873    Using these flags can reduce the number of emitted instructions. E.g. a
874    fast loop can be implemented by decreasing a counter register and set the
875    zero flag to jump back if the counter register has not reached zero.
876 
877    Motivation: although CPUs can set a large number of flags, usually their
878    values are ignored or only one of them is used. Emulating a large number
879    of flags on systems without flag register is complicated so SLJIT
880    instructions must specify the flag they want to use and only that flag
881    will be emulated. The last arithmetic instruction can be repeated if
882    multiple flags need to be checked.
883 */
884 
885 /* Set Zero status flag. */
886 #define SLJIT_SET_Z			0x0200
887 /* Set the variable status flag if condition is true.
888    See comparison types. */
889 #define SLJIT_SET(condition)			((condition) << 10)
890 
891 /* Notes:
892      - you cannot postpone conditional jump instructions except if noted that
893        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
894      - flag combinations: '|' means 'logical or'. */
895 
896 /* Starting index of opcodes for sljit_emit_op0. */
897 #define SLJIT_OP0_BASE			0
898 
899 /* Flags: - (does not modify flags)
900    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
901          It falls back to SLJIT_NOP in those cases. */
902 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
903 /* Flags: - (does not modify flags)
904    Note: may or may not cause an extra cycle wait
905          it can even decrease the runtime in a few cases. */
906 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
907 /* Flags: - (may destroy flags)
908    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
909    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
910 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
911 /* Flags: - (may destroy flags)
912    Signed multiplication of SLJIT_R0 and SLJIT_R1.
913    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
914 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
915 /* Flags: - (may destroy flags)
916    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
917    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
918    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
919 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
920 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_32)
921 /* Flags: - (may destroy flags)
922    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
923    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
924    Note: if SLJIT_R1 is 0, the behaviour is undefined.
925    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
926          the behaviour is undefined. */
927 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
928 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_32)
929 /* Flags: - (may destroy flags)
930    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
931    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
932    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
933 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
934 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_32)
935 /* Flags: - (may destroy flags)
936    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
937    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
938    Note: if SLJIT_R1 is 0, the behaviour is undefined.
939    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
940          the behaviour is undefined. */
941 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
942 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_32)
943 /* Flags: - (does not modify flags)
944    ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
945    when Intel Control-flow Enforcement Technology (CET) is enabled.
946    No instruction for other architectures.  */
947 #define SLJIT_ENDBR			(SLJIT_OP0_BASE + 8)
948 /* Flags: - (may destroy flags)
949    Skip stack frames before return.  */
950 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN	(SLJIT_OP0_BASE + 9)
951 
952 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
953 
954 /* Starting index of opcodes for sljit_emit_op1. */
955 #define SLJIT_OP1_BASE			32
956 
957 /* The MOV instruction transfers data from source to destination.
958 
959    MOV instruction suffixes:
960 
961    U8  - unsigned 8 bit data transfer
962    S8  - signed 8 bit data transfer
963    U16 - unsigned 16 bit data transfer
964    S16 - signed 16 bit data transfer
965    U32 - unsigned int (32 bit) data transfer
966    S32 - signed int (32 bit) data transfer
967    P   - pointer (sljit_p) data transfer
968 */
969 
970 /* Flags: - (does not modify flags) */
971 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
972 /* Flags: - (does not modify flags) */
973 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
974 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_32)
975 /* Flags: - (does not modify flags) */
976 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
977 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_32)
978 /* Flags: - (does not modify flags) */
979 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
980 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_32)
981 /* Flags: - (does not modify flags) */
982 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
983 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_32)
984 /* Flags: - (does not modify flags)
985    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
986 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
987 /* Flags: - (does not modify flags)
988    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
989 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
990 /* Flags: - (does not modify flags) */
991 #define SLJIT_MOV32			(SLJIT_OP1_BASE + 7)
992 /* Flags: - (does not modify flags)
993    Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
994          where all x64 features are available, e.g. 16 register) or similar
995          compiling modes */
996 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 8)
997 /* Flags: Z
998    Note: immediate source argument is not supported */
999 #define SLJIT_NOT			(SLJIT_OP1_BASE + 9)
1000 #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_32)
1001 /* Count leading zeroes
1002    Flags: - (may destroy flags)
1003    Note: immediate source argument is not supported */
1004 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 10)
1005 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_32)
1006 
1007 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
1008 	sljit_s32 dst, sljit_sw dstw,
1009 	sljit_s32 src, sljit_sw srcw);
1010 
1011 /* Starting index of opcodes for sljit_emit_op2. */
1012 #define SLJIT_OP2_BASE			96
1013 
1014 /* Flags: Z | OVERFLOW | CARRY */
1015 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
1016 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_32)
1017 /* Flags: CARRY */
1018 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
1019 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_32)
1020 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
1021           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
1022           SIG_LESS_EQUAL | CARRY */
1023 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
1024 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_32)
1025 /* Flags: CARRY */
1026 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
1027 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_32)
1028 /* Note: integer mul
1029    Flags: OVERFLOW */
1030 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
1031 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_32)
1032 /* Flags: Z */
1033 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
1034 #define SLJIT_AND32			(SLJIT_AND | SLJIT_32)
1035 /* Flags: Z */
1036 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
1037 #define SLJIT_OR32			(SLJIT_OR | SLJIT_32)
1038 /* Flags: Z */
1039 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
1040 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_32)
1041 /* Flags: Z
1042    Let bit_length be the length of the shift operation: 32 or 64.
1043    If src2 is immediate, src2w is masked by (bit_length - 1).
1044    Otherwise, if the content of src2 is outside the range from 0
1045    to bit_length - 1, the result is undefined. */
1046 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
1047 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_32)
1048 /* Flags: Z
1049    Let bit_length be the length of the shift operation: 32 or 64.
1050    If src2 is immediate, src2w is masked by (bit_length - 1).
1051    Otherwise, if the content of src2 is outside the range from 0
1052    to bit_length - 1, the result is undefined. */
1053 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
1054 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_32)
1055 /* Flags: Z
1056    Let bit_length be the length of the shift operation: 32 or 64.
1057    If src2 is immediate, src2w is masked by (bit_length - 1).
1058    Otherwise, if the content of src2 is outside the range from 0
1059    to bit_length - 1, the result is undefined. */
1060 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
1061 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_32)
1062 
1063 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1064 	sljit_s32 dst, sljit_sw dstw,
1065 	sljit_s32 src1, sljit_sw src1w,
1066 	sljit_s32 src2, sljit_sw src2w);
1067 
1068 /* The sljit_emit_op2u function is the same as sljit_emit_op2 except the result is discarded. */
1069 
1070 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
1071 	sljit_s32 src1, sljit_sw src1w,
1072 	sljit_s32 src2, sljit_sw src2w);
1073 
1074 /* Starting index of opcodes for sljit_emit_op2. */
1075 #define SLJIT_OP_SRC_BASE		128
1076 
1077 /* Note: src cannot be an immedate value
1078    Flags: - (does not modify flags) */
1079 #define SLJIT_FAST_RETURN		(SLJIT_OP_SRC_BASE + 0)
1080 /* Skip stack frames before fast return.
1081    Note: src cannot be an immedate value
1082    Flags: may destroy flags. */
1083 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN	(SLJIT_OP_SRC_BASE + 1)
1084 /* Prefetch value into the level 1 data cache
1085    Note: if the target CPU does not support data prefetch,
1086          no instructions are emitted.
1087    Note: this instruction never fails, even if the memory address is invalid.
1088    Flags: - (does not modify flags) */
1089 #define SLJIT_PREFETCH_L1		(SLJIT_OP_SRC_BASE + 2)
1090 /* Prefetch value into the level 2 data cache
1091    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1092          does not support this instruction form.
1093    Note: this instruction never fails, even if the memory address is invalid.
1094    Flags: - (does not modify flags) */
1095 #define SLJIT_PREFETCH_L2		(SLJIT_OP_SRC_BASE + 3)
1096 /* Prefetch value into the level 3 data cache
1097    Note: same as SLJIT_PREFETCH_L2 if the target CPU
1098          does not support this instruction form.
1099    Note: this instruction never fails, even if the memory address is invalid.
1100    Flags: - (does not modify flags) */
1101 #define SLJIT_PREFETCH_L3		(SLJIT_OP_SRC_BASE + 4)
1102 /* Prefetch a value which is only used once (and can be discarded afterwards)
1103    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1104          does not support this instruction form.
1105    Note: this instruction never fails, even if the memory address is invalid.
1106    Flags: - (does not modify flags) */
1107 #define SLJIT_PREFETCH_ONCE		(SLJIT_OP_SRC_BASE + 5)
1108 
1109 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1110 	sljit_s32 src, sljit_sw srcw);
1111 
1112 /* Starting index of opcodes for sljit_emit_fop1. */
1113 #define SLJIT_FOP1_BASE			160
1114 
1115 /* Flags: - (does not modify flags) */
1116 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
1117 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_32)
1118 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1119    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1120    Rounding mode when the destination is W or I: round towards zero. */
1121 /* Flags: - (may destroy flags) */
1122 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
1123 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
1124 /* Flags: - (may destroy flags) */
1125 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
1126 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
1127 /* Flags: - (may destroy flags) */
1128 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
1129 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
1130 /* Flags: - (may destroy flags) */
1131 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
1132 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_32)
1133 /* Flags: - (may destroy flags) */
1134 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
1135 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
1136 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1137    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1138 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
1139 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_32)
1140 /* Flags: - (may destroy flags) */
1141 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
1142 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_32)
1143 /* Flags: - (may destroy flags) */
1144 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
1145 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_32)
1146 
1147 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1148 	sljit_s32 dst, sljit_sw dstw,
1149 	sljit_s32 src, sljit_sw srcw);
1150 
1151 /* Starting index of opcodes for sljit_emit_fop2. */
1152 #define SLJIT_FOP2_BASE			192
1153 
1154 /* Flags: - (may destroy flags) */
1155 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
1156 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_32)
1157 /* Flags: - (may destroy flags) */
1158 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
1159 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_32)
1160 /* Flags: - (may destroy flags) */
1161 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
1162 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_32)
1163 /* Flags: - (may destroy flags) */
1164 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
1165 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_32)
1166 
1167 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1168 	sljit_s32 dst, sljit_sw dstw,
1169 	sljit_s32 src1, sljit_sw src1w,
1170 	sljit_s32 src2, sljit_sw src2w);
1171 
1172 /* Label and jump instructions. */
1173 
1174 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1175 
1176 /* Invert (negate) conditional type: xor (^) with 0x1 */
1177 
1178 /* Integer comparison types. */
1179 #define SLJIT_EQUAL			0
1180 #define SLJIT_ZERO			SLJIT_EQUAL
1181 #define SLJIT_NOT_EQUAL			1
1182 #define SLJIT_NOT_ZERO			SLJIT_NOT_EQUAL
1183 
1184 #define SLJIT_LESS			2
1185 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
1186 #define SLJIT_GREATER_EQUAL		3
1187 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
1188 #define SLJIT_GREATER			4
1189 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
1190 #define SLJIT_LESS_EQUAL		5
1191 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
1192 #define SLJIT_SIG_LESS			6
1193 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
1194 #define SLJIT_SIG_GREATER_EQUAL		7
1195 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1196 #define SLJIT_SIG_GREATER		8
1197 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
1198 #define SLJIT_SIG_LESS_EQUAL		9
1199 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1200 
1201 #define SLJIT_OVERFLOW			10
1202 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
1203 #define SLJIT_NOT_OVERFLOW		11
1204 
1205 /* Unlike other flags, sljit_emit_jump may destroy this flag. */
1206 #define SLJIT_CARRY			12
1207 #define SLJIT_SET_CARRY			SLJIT_SET(SLJIT_CARRY)
1208 #define SLJIT_NOT_CARRY			13
1209 
1210 /* Floating point comparison types. */
1211 #define SLJIT_EQUAL_F64			14
1212 #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_32)
1213 #define SLJIT_SET_EQUAL_F		SLJIT_SET(SLJIT_EQUAL_F64)
1214 #define SLJIT_NOT_EQUAL_F64		15
1215 #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_32)
1216 #define SLJIT_SET_NOT_EQUAL_F		SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1217 #define SLJIT_LESS_F64			16
1218 #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_32)
1219 #define SLJIT_SET_LESS_F		SLJIT_SET(SLJIT_LESS_F64)
1220 #define SLJIT_GREATER_EQUAL_F64		17
1221 #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_32)
1222 #define SLJIT_SET_GREATER_EQUAL_F	SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1223 #define SLJIT_GREATER_F64		18
1224 #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_32)
1225 #define SLJIT_SET_GREATER_F		SLJIT_SET(SLJIT_GREATER_F64)
1226 #define SLJIT_LESS_EQUAL_F64		19
1227 #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_32)
1228 #define SLJIT_SET_LESS_EQUAL_F		SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1229 #define SLJIT_UNORDERED_F64		20
1230 #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_32)
1231 #define SLJIT_SET_UNORDERED_F		SLJIT_SET(SLJIT_UNORDERED_F64)
1232 #define SLJIT_ORDERED_F64		21
1233 #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_32)
1234 #define SLJIT_SET_ORDERED_F		SLJIT_SET(SLJIT_ORDERED_F64)
1235 
1236 /* Unconditional jump types. */
1237 #define SLJIT_JUMP			22
1238 	/* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1239 #define SLJIT_FAST_CALL			23
1240 	/* Called function must be declared with the SLJIT_FUNC attribute. */
1241 #define SLJIT_CALL			24
1242 	/* Called function must be declared with cdecl attribute.
1243 	   This is the default attribute for C functions. */
1244 #define SLJIT_CALL_CDECL		25
1245 
1246 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1247 #define SLJIT_REWRITABLE_JUMP		0x1000
1248 /* When this flag is passed, the execution of the current function ends and
1249    the called function returns to the caller of the current function. The
1250    stack usage is reduced before the call, but it is not necessarily reduced
1251    to zero. In the latter case the compiler needs to allocate space for some
1252    arguments and the return register must be kept as well.
1253 
1254    This feature is highly experimental and not supported on SPARC platform
1255    at the moment. */
1256 #define SLJIT_CALL_RETURN			0x2000
1257 
1258 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1259     type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1260     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1261 
1262    Flags: does not modify flags. */
1263 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1264 
1265 /* Emit a C compiler (ABI) compatible function call.
1266     type must be SLJIT_CALL or SLJIT_CALL_CDECL
1267     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and SLJIT_CALL_RETURN
1268     arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1269 
1270    Flags: destroy all flags. */
1271 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1272 
1273 /* Basic arithmetic comparison. In most architectures it is implemented as
1274    an compare operation followed by a sljit_emit_jump. However some
1275    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1276    It is suggested to use this comparison form when appropriate.
1277     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1278     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1279 
1280    Flags: may destroy flags. */
1281 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1282 	sljit_s32 src1, sljit_sw src1w,
1283 	sljit_s32 src2, sljit_sw src2w);
1284 
1285 /* Basic floating point comparison. In most architectures it is implemented as
1286    an SLJIT_FCMP operation (setting appropriate flags) followed by a
1287    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1288    special optimizations here. It is suggested to use this comparison form
1289    when appropriate.
1290     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1291     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1292    Flags: destroy flags.
1293    Note: if either operand is NaN, the behaviour is undefined for
1294          types up to SLJIT_S_LESS_EQUAL. */
1295 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1296 	sljit_s32 src1, sljit_sw src1w,
1297 	sljit_s32 src2, sljit_sw src2w);
1298 
1299 /* Set the destination of the jump to this label. */
1300 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1301 /* Set the destination address of the jump to this label. */
1302 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1303 
1304 /* Emit an indirect jump or fast call.
1305    Direct form: set src to SLJIT_IMM() and srcw to the address
1306    Indirect form: any other valid addressing mode
1307     type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1308 
1309    Flags: does not modify flags. */
1310 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1311 
1312 /* Emit a C compiler (ABI) compatible function call.
1313    Direct form: set src to SLJIT_IMM() and srcw to the address
1314    Indirect form: any other valid addressing mode
1315     type must be SLJIT_CALL or SLJIT_CALL_CDECL
1316     type can be combined (or'ed) with SLJIT_CALL_RETURN
1317     arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1318 
1319    Flags: destroy all flags. */
1320 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1321 
1322 /* Perform the operation using the conditional flags as the second argument.
1323    Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1324    represented by the type is 1, if the condition represented by the type
1325    is fulfilled, and 0 otherwise.
1326 
1327    If op == SLJIT_MOV, SLJIT_MOV32:
1328      Set dst to the value represented by the type (0 or 1).
1329      Flags: - (does not modify flags)
1330    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1331      Performs the binary operation using dst as the first, and the value
1332      represented by type as the second argument. Result is written into dst.
1333      Flags: Z (may destroy flags) */
1334 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1335 	sljit_s32 dst, sljit_sw dstw,
1336 	sljit_s32 type);
1337 
1338 /* Emit a conditional mov instruction which moves source to destination,
1339    if the condition is satisfied. Unlike other arithmetic operations this
1340    instruction does not support memory access.
1341 
1342    type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1343    dst_reg must be a valid register and it can be combined
1344       with SLJIT_32 to perform a 32 bit arithmetic operation
1345    src must be register or immediate (SLJIT_IMM)
1346 
1347    Flags: - (does not modify flags) */
1348 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1349 	sljit_s32 dst_reg,
1350 	sljit_s32 src, sljit_sw srcw);
1351 
1352 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1353 
1354 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1355    Instead the function returns with SLJIT_SUCCESS if the instruction
1356    form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1357    allows runtime checking of available instruction forms. */
1358 #define SLJIT_MEM_SUPP		0x0200
1359 /* Memory load operation. This is the default. */
1360 #define SLJIT_MEM_LOAD		0x0000
1361 /* Memory store operation. */
1362 #define SLJIT_MEM_STORE		0x0400
1363 /* Base register is updated before the memory access. */
1364 #define SLJIT_MEM_PRE		0x0800
1365 /* Base register is updated after the memory access. */
1366 #define SLJIT_MEM_POST		0x1000
1367 
1368 /* Emit a single memory load or store with update instruction. When the
1369    requested instruction form is not supported by the CPU, it returns
1370    with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1371    allows specializing tight loops based on the supported instruction
1372    forms (see SLJIT_MEM_SUPP flag).
1373 
1374    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1375      combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1376      or SLJIT_MEM_POST must be specified.
1377    reg is the source or destination register, and must be
1378      different from the base register of the mem operand
1379    mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1380 
1381    Flags: - (does not modify flags) */
1382 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1383 	sljit_s32 reg,
1384 	sljit_s32 mem, sljit_sw memw);
1385 
1386 /* Same as sljit_emit_mem except the followings:
1387 
1388    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1389      combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1390      or SLJIT_MEM_POST must be specified.
1391    freg is the source or destination floating point register */
1392 
1393 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1394 	sljit_s32 freg,
1395 	sljit_s32 mem, sljit_sw memw);
1396 
1397 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1398    anything to negate the effect of relative addressing. For example if an
1399    array of sljit_sw values is stored on the stack from offset 0x40, and R0
1400    contains the offset of an array item plus 0x120, this item can be
1401    overwritten by two SLJIT instructions:
1402 
1403    sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1404    sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1405 
1406    Flags: - (may destroy flags) */
1407 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1408 
1409 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1410    Flags: - (does not modify flags) */
1411 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1412 
1413 /* Store the value of a label (see: sljit_set_put_label)
1414    Flags: - (does not modify flags) */
1415 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1416 
1417 /* Set the value stored by put_label to this label. */
1418 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1419 
1420 /* After the code generation the address for label, jump and const instructions
1421    are computed. Since these structures are freed by sljit_free_compiler, the
1422    addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1423 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1424 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1425 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1426 
1427 /* Only the address and executable offset are required to perform dynamic
1428    code modifications. See sljit_get_executable_offset function. */
1429 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1430 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1431 
1432 /* --------------------------------------------------------------------- */
1433 /*  Miscellaneous utility functions                                      */
1434 /* --------------------------------------------------------------------- */
1435 
1436 #define SLJIT_MAJOR_VERSION	0
1437 #define SLJIT_MINOR_VERSION	94
1438 
1439 /* Get the human readable name of the platform. Can be useful on platforms
1440    like ARM, where ARM and Thumb2 functions can be mixed, and
1441    it is useful to know the type of the code generator. */
1442 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1443 
1444 /* Portable helper function to get an offset of a member. */
1445 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1446 
1447 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1448 
1449 /* The sljit_stack structure and its manipulation functions provides
1450    an implementation for a top-down stack. The stack top is stored
1451    in the end field of the sljit_stack structure and the stack goes
1452    down to the min_start field, so the memory region reserved for
1453    this stack is between min_start (inclusive) and end (exclusive)
1454    fields. However the application can only use the region between
1455    start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1456    function can be used to extend this region up to min_start.
1457 
1458    This feature uses the "address space reserve" feature of modern
1459    operating systems. Instead of allocating a large memory block
1460    applications can allocate a small memory region and extend it
1461    later without moving the content of the memory area. Therefore
1462    after a successful resize by sljit_stack_resize all pointers into
1463    this region are still valid.
1464 
1465    Note:
1466      this structure may not be supported by all operating systems.
1467      end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1468          4 Kbyte or more).
1469      stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1470 
1471 struct sljit_stack {
1472 	/* User data, anything can be stored here.
1473 	   Initialized to the same value as the end field. */
1474 	sljit_u8 *top;
1475 /* These members are read only. */
1476 	/* End address of the stack */
1477 	sljit_u8 *end;
1478 	/* Current start address of the stack. */
1479 	sljit_u8 *start;
1480 	/* Lowest start address of the stack. */
1481 	sljit_u8 *min_start;
1482 };
1483 
1484 /* Allocates a new stack. Returns NULL if unsuccessful.
1485    Note: see sljit_create_compiler for the explanation of allocator_data. */
1486 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1487 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1488 
1489 /* Can be used to increase (extend) or decrease (shrink) the stack
1490    memory area. Returns with new_start if successful and NULL otherwise.
1491    It always fails if new_start is less than min_start or greater or equal
1492    than end fields. The fields of the stack are not changed if the returned
1493    value is NULL (the current memory content is never lost). */
1494 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1495 
1496 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1497 
1498 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1499 
1500 /* Get the entry address of a given function (signed, unsigned result). */
1501 #define SLJIT_FUNC_ADDR(func_name)	((sljit_sw)func_name)
1502 #define SLJIT_FUNC_UADDR(func_name)	((sljit_uw)func_name)
1503 
1504 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1505 
1506 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1507 
1508 /* Get the entry address of a given function (signed, unsigned result). */
1509 #define SLJIT_FUNC_ADDR(func_name)	(*(sljit_sw*)(void*)func_name)
1510 #define SLJIT_FUNC_UADDR(func_name)	(*(sljit_uw*)(void*)func_name)
1511 
1512 /* For powerpc64, the function pointers point to a context descriptor. */
1513 struct sljit_function_context {
1514 	sljit_uw addr;
1515 	sljit_uw r2;
1516 	sljit_uw r11;
1517 };
1518 
1519 /* Fill the context arguments using the addr and the function.
1520    If func_ptr is NULL, it will not be set to the address of context
1521    If addr is NULL, the function address also comes from the func pointer. */
1522 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);
1523 
1524 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1525 
1526 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1527 /* Free unused executable memory. The allocator keeps some free memory
1528    around to reduce the number of OS executable memory allocations.
1529    This improves performance since these calls are costly. However
1530    it is sometimes desired to free all unused memory regions, e.g.
1531    before the application terminates. */
1532 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1533 #endif
1534 
1535 /* --------------------------------------------------------------------- */
1536 /*  CPU specific functions                                               */
1537 /* --------------------------------------------------------------------- */
1538 
1539 /* The following function is a helper function for sljit_emit_op_custom.
1540    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1541    SLJIT_S and SLJIT_SP registers.
1542 
1543    Note: it returns with -1 for virtual registers (only on x86-32). */
1544 
1545 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1546 
1547 /* The following function is a helper function for sljit_emit_op_custom.
1548    It returns with the real machine register index of any SLJIT_FLOAT register.
1549 
1550    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1551 
1552 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1553 
1554 /* Any instruction can be inserted into the instruction stream by
1555    sljit_emit_op_custom. It has a similar purpose as inline assembly.
1556    The size parameter must match to the instruction size of the target
1557    architecture:
1558 
1559          x86: 0 < size <= 15. The instruction argument can be byte aligned.
1560       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1561               if size == 4, the instruction argument must be 4 byte aligned.
1562    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1563 
1564 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1565 	void *instruction, sljit_u32 size);
1566 
1567 /* Flags were set by a 32 bit operation. */
1568 #define SLJIT_CURRENT_FLAGS_32			SLJIT_32
1569 
1570 /* Flags were set by an ADD or ADDC operations. */
1571 #define SLJIT_CURRENT_FLAGS_ADD			0x01
1572 /* Flags were set by a SUB, SUBC, or NEG operation. */
1573 #define SLJIT_CURRENT_FLAGS_SUB			0x02
1574 
1575 /* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
1576    Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
1577 #define SLJIT_CURRENT_FLAGS_COMPARE		0x04
1578 
1579 /* Define the currently available CPU status flags. It is usually used after
1580    an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
1581    status flags are available.
1582 
1583    The current_flags must be a valid combination of SLJIT_SET_* and
1584    SLJIT_CURRENT_FLAGS_* constants. */
1585 
1586 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1587 	sljit_s32 current_flags);
1588 
1589 #ifdef __cplusplus
1590 } /* extern "C" */
1591 #endif
1592 
1593 #endif /* SLJIT_LIR_H_ */
1594