1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80
81 #include "sljitConfigInternal.h"
82
83 /* --------------------------------------------------------------------- */
84 /* Error codes */
85 /* --------------------------------------------------------------------- */
86
87 /* Indicates no error. */
88 #define SLJIT_SUCCESS 0
89 /* After the call of sljit_generate_code(), the error code of the compiler
90 is set to this value to avoid future sljit calls (in debug mode at least).
91 The complier should be freed after sljit_generate_code(). */
92 #define SLJIT_ERR_COMPILED 1
93 /* Cannot allocate non executable memory. */
94 #define SLJIT_ERR_ALLOC_FAILED 2
95 /* Cannot allocate executable memory.
96 Only for sljit_generate_code() */
97 #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 #define SLJIT_ERR_UNSUPPORTED 4
100 /* An ivalid argument is passed to any SLJIT function. */
101 #define SLJIT_ERR_BAD_ARGUMENT 5
102
103 /* --------------------------------------------------------------------- */
104 /* Registers */
105 /* --------------------------------------------------------------------- */
106
107 /*
108 Scratch (R) registers: registers whose may not preserve their values
109 across function calls.
110
111 Saved (S) registers: registers whose preserve their values across
112 function calls.
113
114 The scratch and saved register sets are overlap. The last scratch register
115 is the first saved register, the one before the last is the second saved
116 register, and so on.
117
118 If an architecture provides two scratch and three saved registers,
119 its scratch and saved register sets are the following:
120
121 R0 | [S4] | R0 and S4 represent the same physical register
122 R1 | [S3] | R1 and S3 represent the same physical register
123 [R2] | S2 | R2 and S2 represent the same physical register
124 [R3] | S1 | R3 and S1 represent the same physical register
125 [R4] | S0 | R4 and S0 represent the same physical register
126
127 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
128 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
129
130 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
131 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
132 are virtual on x86-32. See below.
133
134 The purpose of this definition is convenience. Although a register
135 is either scratch register or saved register, SLJIT allows accessing
136 them from the other set. For example, four registers can be used as
137 scratch registers and the fifth one as saved register on the architecture
138 above. Of course the last two scratch registers (R2 and R3) from this
139 four will be saved on the stack, because they are defined as saved
140 registers in the application binary interface. Still R2 and R3 can be
141 used for referencing to these registers instead of S2 and S1, which
142 makes easier to write platform independent code. Scratch registers
143 can be saved registers in a similar way, but these extra saved
144 registers will not be preserved across function calls! Hence the
145 application must save them on those platforms, where the number of
146 saved registers is too low. This can be done by copy them onto
147 the stack and restore them after a function call.
148
149 Note: To emphasize that registers assigned to R2-R4 are saved
150 registers, they are enclosed by square brackets. S3-S4
151 are marked in a similar way.
152
153 Note: sljit_emit_enter and sljit_set_context defines whether a register
154 is S or R register. E.g: when 3 scratches and 1 saved is mapped
155 by sljit_emit_enter, the allowed register set will be: R0-R2 and
156 S0. Although S2 is mapped to the same position as R2, it does not
157 available in the current configuration. Furthermore the R3 (S1)
158 register does not available as well.
159 */
160
161 /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
162 #define SLJIT_UNUSED 0
163
164 /* Scratch registers. */
165 #define SLJIT_R0 1
166 #define SLJIT_R1 2
167 #define SLJIT_R2 3
168 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
169 are allocated on the stack). These registers are called virtual
170 and cannot be used for memory addressing (cannot be part of
171 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
172 limitation on other CPUs. See sljit_get_register_index(). */
173 #define SLJIT_R3 4
174 #define SLJIT_R4 5
175 #define SLJIT_R5 6
176 #define SLJIT_R6 7
177 #define SLJIT_R7 8
178 #define SLJIT_R8 9
179 #define SLJIT_R9 10
180 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
181 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
182 #define SLJIT_R(i) (1 + (i))
183
184 /* Saved registers. */
185 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
186 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
187 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
188 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
189 are allocated on the stack). These registers are called virtual
190 and cannot be used for memory addressing (cannot be part of
191 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
192 limitation on other CPUs. See sljit_get_register_index(). */
193 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
194 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
195 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
196 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
197 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
198 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
199 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
200 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
201 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
202 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
203
204 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
205 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
206
207 /* The SLJIT_SP provides direct access to the linear stack space allocated by
208 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
209 The immediate offset is extended by the relative stack offset automatically.
210 The sljit_get_local_base can be used to obtain the absolute offset. */
211 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
212
213 /* Return with machine word. */
214
215 #define SLJIT_RETURN_REG SLJIT_R0
216
217 /* x86 prefers specific registers for special purposes. In case of shift
218 by register it supports only SLJIT_R2 for shift argument
219 (which is the src2 argument of sljit_emit_op2). If another register is
220 used, sljit must exchange data between registers which cause a minor
221 slowdown. Other architectures has no such limitation. */
222
223 #define SLJIT_PREF_SHIFT_REG SLJIT_R2
224
225 /* --------------------------------------------------------------------- */
226 /* Floating point registers */
227 /* --------------------------------------------------------------------- */
228
229 /* Each floating point register can store a double or single precision
230 value. The FR and FS register sets are overlap in the same way as R
231 and S register sets. See above. */
232
233 /* Note: SLJIT_UNUSED as destination is not valid for floating point
234 operations, since they cannot be used for setting flags. */
235
236 /* Floating point scratch registers. */
237 #define SLJIT_FR0 1
238 #define SLJIT_FR1 2
239 #define SLJIT_FR2 3
240 #define SLJIT_FR3 4
241 #define SLJIT_FR4 5
242 #define SLJIT_FR5 6
243 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
244 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
245 #define SLJIT_FR(i) (1 + (i))
246
247 /* Floating point saved registers. */
248 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
249 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
250 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
251 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
252 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
253 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
254 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257
258 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260
261 /* --------------------------------------------------------------------- */
262 /* Main structures and functions */
263 /* --------------------------------------------------------------------- */
264
265 /*
266 The following structures are private, and can be changed in the
267 future. Keeping them here allows code inlining.
268 */
269
270 struct sljit_memory_fragment {
271 struct sljit_memory_fragment *next;
272 sljit_uw used_size;
273 /* Must be aligned to sljit_sw. */
274 sljit_ub memory[1];
275 };
276
277 struct sljit_label {
278 struct sljit_label *next;
279 sljit_uw addr;
280 /* The maximum size difference. */
281 sljit_uw size;
282 };
283
284 struct sljit_jump {
285 struct sljit_jump *next;
286 sljit_uw addr;
287 sljit_sw flags;
288 union {
289 sljit_uw target;
290 struct sljit_label* label;
291 } u;
292 };
293
294 struct sljit_const {
295 struct sljit_const *next;
296 sljit_uw addr;
297 };
298
299 struct sljit_compiler {
300 sljit_si error;
301 sljit_si options;
302
303 struct sljit_label *labels;
304 struct sljit_jump *jumps;
305 struct sljit_const *consts;
306 struct sljit_label *last_label;
307 struct sljit_jump *last_jump;
308 struct sljit_const *last_const;
309
310 void *allocator_data;
311 struct sljit_memory_fragment *buf;
312 struct sljit_memory_fragment *abuf;
313
314 /* Used scratch registers. */
315 sljit_si scratches;
316 /* Used saved registers. */
317 sljit_si saveds;
318 /* Used float scratch registers. */
319 sljit_si fscratches;
320 /* Used float saved registers. */
321 sljit_si fsaveds;
322 /* Local stack size. */
323 sljit_si local_size;
324 /* Code size. */
325 sljit_uw size;
326 /* For statistical purposes. */
327 sljit_uw executable_size;
328
329 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
330 sljit_si args;
331 #endif
332
333 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
334 sljit_si mode32;
335 #endif
336
337 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
338 sljit_si flags_saved;
339 #endif
340
341 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
342 /* Constant pool handling. */
343 sljit_uw *cpool;
344 sljit_ub *cpool_unique;
345 sljit_uw cpool_diff;
346 sljit_uw cpool_fill;
347 /* Other members. */
348 /* Contains pointer, "ldr pc, [...]" pairs. */
349 sljit_uw patches;
350 #endif
351
352 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
353 /* Temporary fields. */
354 sljit_uw shift_imm;
355 sljit_si cache_arg;
356 sljit_sw cache_argw;
357 #endif
358
359 #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
360 sljit_si cache_arg;
361 sljit_sw cache_argw;
362 #endif
363
364 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
365 sljit_si cache_arg;
366 sljit_sw cache_argw;
367 #endif
368
369 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
370 sljit_sw imm;
371 sljit_si cache_arg;
372 sljit_sw cache_argw;
373 #endif
374
375 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
376 sljit_si delay_slot;
377 sljit_si cache_arg;
378 sljit_sw cache_argw;
379 #endif
380
381 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
382 sljit_si delay_slot;
383 sljit_si cache_arg;
384 sljit_sw cache_argw;
385 #endif
386
387 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
388 sljit_si cache_arg;
389 sljit_sw cache_argw;
390 #endif
391
392 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
393 FILE* verbose;
394 #endif
395
396 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
397 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
398 /* Local size passed to the functions. */
399 sljit_si logical_local_size;
400 #endif
401
402 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
403 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
404 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
405 sljit_si skip_checks;
406 #endif
407 };
408
409 /* --------------------------------------------------------------------- */
410 /* Main functions */
411 /* --------------------------------------------------------------------- */
412
413 /* Creates an sljit compiler. The allocator_data is required by some
414 custom memory managers. This pointer is passed to SLJIT_MALLOC
415 and SLJIT_FREE macros. Most allocators (including the default
416 one) ignores this value, and it is recommended to pass NULL
417 as a dummy value for allocator_data.
418
419 Returns NULL if failed. */
420 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
421
422 /* Frees everything except the compiled machine code. */
423 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
424
425 /* Returns the current error code. If an error is occurred, future sljit
426 calls which uses the same compiler argument returns early with the same
427 error code. Thus there is no need for checking the error after every
428 call, it is enough to do it before the code is compiled. Removing
429 these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)430 static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
431
432 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
433 if an error was detected before. After the error code is set
434 the compiler behaves as if the allocation failure happened
435 during an sljit function call. This can greatly simplify error
436 checking, since only the compiler status needs to be checked
437 after the compilation. */
438 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
439
440 /*
441 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
442 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
443 compiler, and freed by sljit_free_compiler. The returned pointer is
444 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
445 the compiling, and no need to worry about freeing them. The size is
446 enough to contain at most 16 pointers. If the size is outside of the range,
447 the function will return with NULL. However, this return value does not
448 indicate that there is no more memory (does not set the current error code
449 of the compiler to out-of-memory status).
450 */
451 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
452
453 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
454 /* Passing NULL disables verbose. */
455 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
456 #endif
457
458 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
459 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
460
461 /*
462 After the machine code generation is finished we can retrieve the allocated
463 executable memory size, although this area may not be fully filled with
464 instructions depending on some optimizations. This function is useful only
465 for statistical purposes.
466
467 Before a successful code generation, this function returns with 0.
468 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)469 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
470
471 /* Instruction generation. Returns with any error code. If there is no
472 error, they return with SLJIT_SUCCESS. */
473
474 /*
475 The executable code is a function call from the viewpoint of the C
476 language. The function calls must obey to the ABI (Application
477 Binary Interface) of the platform, which specify the purpose of
478 all machine registers and stack handling among other things. The
479 sljit_emit_enter function emits the necessary instructions for
480 setting up a new context for the executable code and moves function
481 arguments to the saved registers. Furthermore the options argument
482 can be used to pass configuration options to the compiler. The
483 available options are listed before sljit_emit_enter.
484
485 The number of sljit_sw arguments passed to the generated function
486 are specified in the "args" parameter. The number of arguments must
487 be less than or equal to 3. The first argument goes to SLJIT_S0,
488 the second goes to SLJIT_S1 and so on. The register set used by
489 the function must be declared as well. The number of scratch and
490 saved registers used by the function must be passed to sljit_emit_enter.
491 Only R registers between R0 and "scratches" argument can be used
492 later. E.g. if "scratches" is set to 2, the register set will be
493 limited to R0 and R1. The S registers and the floating point
494 registers ("fscratches" and "fsaveds") are specified in a similar
495 way. The sljit_emit_enter is also capable of allocating a stack
496 space for local variables. The "local_size" argument contains the
497 size in bytes of this local area and its staring address is stored
498 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
499 SLJIT_SP + local_size (exclusive) can be modified freely until
500 the function returns. The stack space is not initialized.
501
502 Note: the following conditions must met:
503 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
504 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
505 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
506 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
507 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
508 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
509
510 Note: every call of sljit_emit_enter and sljit_set_context
511 overwrites the previous context.
512 */
513
514 /* The absolute address returned by sljit_get_local_base with
515 offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
516 #define SLJIT_DOUBLE_ALIGNMENT 0x00000001
517
518 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
519 #define SLJIT_MAX_LOCAL_SIZE 65536
520
521 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
522 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
523 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
524
525 /* The machine code has a context (which contains the local stack space size,
526 number of used registers, etc.) which initialized by sljit_emit_enter. Several
527 functions (like sljit_emit_return) requres this context to be able to generate
528 the appropriate code. However, some code fragments (like inline cache) may have
529 no normal entry point so their context is unknown for the compiler. Their context
530 can be provided to the compiler by the sljit_set_context function.
531
532 Note: every call of sljit_emit_enter and sljit_set_context overwrites
533 the previous context. */
534
535 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
536 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
537 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
538
539 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
540 function does not return with anything or any opcode between SLJIT_MOV and
541 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
542 is SLJIT_UNUSED, otherwise see below the description about source and
543 destination arguments. */
544
545 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
546 sljit_si src, sljit_sw srcw);
547
548 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
549 even the stack frame is passed to the callee. The return address is preserved in
550 dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
551 is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
552
553 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
554 instructions are needed. Excellent for small uility functions, where saving registers
555 and setting up a new stack frame would cost too much performance. However, it is still
556 possible to return to the address of the caller (or anywhere else). */
557
558 /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
559
560 /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
561 since many architectures do clever branch prediction on call / return instruction pairs. */
562
563 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
564 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
565
566 /*
567 Source and destination values for arithmetical instructions
568 imm - a simple immediate value (cannot be used as a destination)
569 reg - any of the registers (immediate argument must be 0)
570 [imm] - absolute immediate memory address
571 [reg+imm] - indirect memory address
572 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
573 useful for (byte, half, int, sljit_sw) array access
574 (fully supported by both x86 and ARM architectures, and cheap operation on others)
575 */
576
577 /*
578 IMPORATNT NOTE: memory access MUST be naturally aligned except
579 SLJIT_UNALIGNED macro is defined and its value is 1.
580
581 length | alignment
582 ---------+-----------
583 byte | 1 byte (any physical_address is accepted)
584 half | 2 byte (physical_address & 0x1 == 0)
585 int | 4 byte (physical_address & 0x3 == 0)
586 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
587 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
588 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
589 | on 64 bit machines)
590
591 Note: Different architectures have different addressing limitations.
592 A single instruction is enough for the following addressing
593 modes. Other adrressing modes are emulated by instruction
594 sequences. This information could help to improve those code
595 generators which focuses only a few architectures.
596
597 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
598 [reg+(reg<<imm)] is supported
599 [imm], -2^32+1 <= imm <= 2^32-1 is supported
600 Write-back is not supported
601 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
602 bytes, any halfs or floating point values)
603 [reg+(reg<<imm)] is supported
604 Write-back is supported
605 arm-t2: [reg+imm], -255 <= imm <= 4095
606 [reg+(reg<<imm)] is supported
607 Write back is supported only for [reg+imm], where -255 <= imm <= 255
608 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
609 signed load on 64 bit requires immediates divisible by 4.
610 [reg+imm] is not supported for signed 8 bit values.
611 [reg+reg] is supported
612 Write-back is supported except for one instruction: 32 bit signed
613 load with [reg+imm] addressing mode on 64 bit.
614 mips: [reg+imm], -65536 <= imm <= 65535
615 sparc: [reg+imm], -4096 <= imm <= 4095
616 [reg+reg] is supported
617 */
618
619 /* Register output: simply the name of the register.
620 For destination, you can use SLJIT_UNUSED as well. */
621 #define SLJIT_MEM 0x80
622 #define SLJIT_MEM0() (SLJIT_MEM)
623 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
624 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
625 #define SLJIT_IMM 0x40
626
627 /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
628 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
629 lower 32 bit of the input register(s), and set the CPU status flags according
630 to the 32 bit result. The higher 32 bits are undefined for both the input and
631 output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
632 expects it to be the sign extension of the lower 32 bit. All 32 bit operations
633 are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
634 is specified, all register arguments must be the result of other operations with
635 the same SLJIT_INT_OP flag. In other words, although a register can hold either
636 a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
637 SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
638 which can convert any source argument to SLJIT_INT_OP compatible result. This
639 conversion might be unnecessary on some CPUs like x86-64, since the upper 32
640 bit is always ignored. In this case SLJIT is clever enough to not generate any
641 instructions if the source and destination operands are the same registers.
642 Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
643 #define SLJIT_INT_OP 0x100
644
645 /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
646 it applies to floating point registers (it is even the same bit). When
647 this flag is passed, the CPU performs single precision floating point
648 operations. Similar to SLJIT_INT_OP, all register arguments must be the
649 result of other floating point operations with this flag. Affects
650 sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
651 #define SLJIT_SINGLE_OP 0x100
652
653 /* Common CPU status flags for all architectures (x86, ARM, PPC)
654 - carry flag
655 - overflow flag
656 - zero flag
657 - negative/positive flag (depends on arc)
658 On mips, these flags are emulated by software. */
659
660 /* By default, the instructions may, or may not set the CPU status flags.
661 Forcing to set or keep status flags can be done with the following flags: */
662
663 /* Note: sljit tries to emit the minimum number of instructions. Using these
664 flags can increase them, so use them wisely to avoid unnecessary code generation. */
665
666 /* Set Equal (Zero) status flag (E). */
667 #define SLJIT_SET_E 0x0200
668 /* Set unsigned status flag (U). */
669 #define SLJIT_SET_U 0x0400
670 /* Set signed status flag (S). */
671 #define SLJIT_SET_S 0x0800
672 /* Set signed overflow flag (O). */
673 #define SLJIT_SET_O 0x1000
674 /* Set carry flag (C).
675 Note: Kinda unsigned overflow, but behaves differently on various cpus. */
676 #define SLJIT_SET_C 0x2000
677 /* Do not modify the flags (K).
678 Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
679 #define SLJIT_KEEP_FLAGS 0x4000
680
681 /* Notes:
682 - you cannot postpone conditional jump instructions except if noted that
683 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
684 - flag combinations: '|' means 'logical or'. */
685
686 /* Starting index of opcodes for sljit_emit_op0. */
687 #define SLJIT_OP0_BASE 0
688
689 /* Flags: - (never set any flags)
690 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
691 It falls back to SLJIT_NOP in those cases. */
692 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
693 /* Flags: - (never set any flags)
694 Note: may or may not cause an extra cycle wait
695 it can even decrease the runtime in a few cases. */
696 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
697 /* Flags: - (may destroy flags)
698 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
699 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
700 #define SLJIT_LUMUL (SLJIT_OP0_BASE + 2)
701 /* Flags: - (may destroy flags)
702 Signed multiplication of SLJIT_R0 and SLJIT_R1.
703 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
704 #define SLJIT_LSMUL (SLJIT_OP0_BASE + 3)
705 /* Flags: I - (may destroy flags)
706 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
707 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
708 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
709 #define SLJIT_UDIVMOD (SLJIT_OP0_BASE + 4)
710 #define SLJIT_IUDIVMOD (SLJIT_UDIVMOD | SLJIT_INT_OP)
711 /* Flags: I - (may destroy flags)
712 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
713 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
714 Note: if SLJIT_R1 is 0, the behaviour is undefined.
715 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
716 the behaviour is undefined. */
717 #define SLJIT_SDIVMOD (SLJIT_OP0_BASE + 5)
718 #define SLJIT_ISDIVMOD (SLJIT_SDIVMOD | SLJIT_INT_OP)
719 /* Flags: I - (may destroy flags)
720 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
721 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
722 Note: if SLJIT_R1 is 0, the behaviour is undefined.
723 Note: SLJIT_SDIV is single precision divide. */
724 #define SLJIT_UDIVI (SLJIT_OP0_BASE + 6)
725 #define SLJIT_IUDIVI (SLJIT_UDIVI | SLJIT_INT_OP)
726 /* Flags: I - (may destroy flags)
727 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
728 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
729 Note: if SLJIT_R1 is 0, the behaviour is undefined.
730 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
731 the behaviour is undefined.
732 Note: SLJIT_SDIV is single precision divide. */
733 #define SLJIT_SDIVI (SLJIT_OP0_BASE + 7)
734 #define SLJIT_ISDIVI (SLJIT_SDIVI | SLJIT_INT_OP)
735
736 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
737
738 /* Starting index of opcodes for sljit_emit_op1. */
739 #define SLJIT_OP1_BASE 32
740
741 /* Notes for MOV instructions:
742 U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
743 or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
744 UB = unsigned byte (8 bit)
745 SB = signed byte (8 bit)
746 UH = unsigned half (16 bit)
747 SH = signed half (16 bit)
748 UI = unsigned int (32 bit)
749 SI = signed int (32 bit)
750 P = pointer (sljit_p) size */
751
752 /* Flags: - (never set any flags) */
753 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
754 /* Flags: I - (never set any flags) */
755 #define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
756 #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
757 /* Flags: I - (never set any flags) */
758 #define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
759 #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
760 /* Flags: I - (never set any flags) */
761 #define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
762 #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
763 /* Flags: I - (never set any flags) */
764 #define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
765 #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
766 /* Flags: I - (never set any flags)
767 Note: see SLJIT_INT_OP for further details. */
768 #define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
769 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
770 /* Flags: I - (never set any flags)
771 Note: see SLJIT_INT_OP for further details. */
772 #define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
773 #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
774 /* Flags: - (never set any flags) */
775 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
776 /* Flags: - (never set any flags) */
777 #define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
778 /* Flags: I - (never set any flags) */
779 #define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
780 #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
781 /* Flags: I - (never set any flags) */
782 #define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
783 #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
784 /* Flags: I - (never set any flags) */
785 #define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
786 #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
787 /* Flags: I - (never set any flags) */
788 #define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
789 #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
790 /* Flags: I - (never set any flags)
791 Note: see SLJIT_INT_OP for further details. */
792 #define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
793 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
794 /* Flags: I - (never set any flags)
795 Note: see SLJIT_INT_OP for further details. */
796 #define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
797 #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
798 /* Flags: - (never set any flags) */
799 #define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
800 /* Flags: I | E | K */
801 #define SLJIT_NOT (SLJIT_OP1_BASE + 16)
802 #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
803 /* Flags: I | E | O | K */
804 #define SLJIT_NEG (SLJIT_OP1_BASE + 17)
805 #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
806 /* Count leading zeroes
807 Flags: I | E | K
808 Important note! Sparc 32 does not support K flag, since
809 the required popc instruction is introduced only in sparc 64. */
810 #define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
811 #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
812
813 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
814 sljit_si dst, sljit_sw dstw,
815 sljit_si src, sljit_sw srcw);
816
817 /* Starting index of opcodes for sljit_emit_op2. */
818 #define SLJIT_OP2_BASE 96
819
820 /* Flags: I | E | O | C | K */
821 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
822 #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
823 /* Flags: I | C | K */
824 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
825 #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
826 /* Flags: I | E | U | S | O | C | K */
827 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
828 #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
829 /* Flags: I | C | K */
830 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
831 #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
832 /* Note: integer mul
833 Flags: I | O (see SLJIT_C_MUL_*) | K */
834 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
835 #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
836 /* Flags: I | E | K */
837 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
838 #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
839 /* Flags: I | E | K */
840 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
841 #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
842 /* Flags: I | E | K */
843 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
844 #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
845 /* Flags: I | E | K
846 Let bit_length be the length of the shift operation: 32 or 64.
847 If src2 is immediate, src2w is masked by (bit_length - 1).
848 Otherwise, if the content of src2 is outside the range from 0
849 to bit_length - 1, the result is undefined. */
850 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
851 #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
852 /* Flags: I | E | K
853 Let bit_length be the length of the shift operation: 32 or 64.
854 If src2 is immediate, src2w is masked by (bit_length - 1).
855 Otherwise, if the content of src2 is outside the range from 0
856 to bit_length - 1, the result is undefined. */
857 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
858 #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
859 /* Flags: I | E | K
860 Let bit_length be the length of the shift operation: 32 or 64.
861 If src2 is immediate, src2w is masked by (bit_length - 1).
862 Otherwise, if the content of src2 is outside the range from 0
863 to bit_length - 1, the result is undefined. */
864 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
865 #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
866
867 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
868 sljit_si dst, sljit_sw dstw,
869 sljit_si src1, sljit_sw src1w,
870 sljit_si src2, sljit_sw src2w);
871
872 /* Returns with non-zero if fpu is available. */
873
874 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
875
876 /* Starting index of opcodes for sljit_emit_fop1. */
877 #define SLJIT_FOP1_BASE 128
878
879 /* Flags: SP - (never set any flags) */
880 #define SLJIT_DMOV (SLJIT_FOP1_BASE + 0)
881 #define SLJIT_SMOV (SLJIT_DMOV | SLJIT_SINGLE_OP)
882 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
883 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
884 Rounding mode when the destination is W or I: round towards zero. */
885 /* Flags: SP - (never set any flags) */
886 #define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
887 #define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
888 /* Flags: SP - (never set any flags) */
889 #define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
890 #define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
891 /* Flags: SP - (never set any flags) */
892 #define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
893 #define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
894 /* Flags: SP - (never set any flags) */
895 #define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
896 #define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
897 /* Flags: SP - (never set any flags) */
898 #define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
899 #define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
900 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
901 Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
902 is set, the comparison result is unpredictable.
903 Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
904 #define SLJIT_DCMP (SLJIT_FOP1_BASE + 6)
905 #define SLJIT_SCMP (SLJIT_DCMP | SLJIT_SINGLE_OP)
906 /* Flags: SP - (never set any flags) */
907 #define SLJIT_DNEG (SLJIT_FOP1_BASE + 7)
908 #define SLJIT_SNEG (SLJIT_DNEG | SLJIT_SINGLE_OP)
909 /* Flags: SP - (never set any flags) */
910 #define SLJIT_DABS (SLJIT_FOP1_BASE + 8)
911 #define SLJIT_SABS (SLJIT_DABS | SLJIT_SINGLE_OP)
912
913 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
914 sljit_si dst, sljit_sw dstw,
915 sljit_si src, sljit_sw srcw);
916
917 /* Starting index of opcodes for sljit_emit_fop2. */
918 #define SLJIT_FOP2_BASE 160
919
920 /* Flags: SP - (never set any flags) */
921 #define SLJIT_DADD (SLJIT_FOP2_BASE + 0)
922 #define SLJIT_SADD (SLJIT_DADD | SLJIT_SINGLE_OP)
923 /* Flags: SP - (never set any flags) */
924 #define SLJIT_DSUB (SLJIT_FOP2_BASE + 1)
925 #define SLJIT_SSUB (SLJIT_DSUB | SLJIT_SINGLE_OP)
926 /* Flags: SP - (never set any flags) */
927 #define SLJIT_DMUL (SLJIT_FOP2_BASE + 2)
928 #define SLJIT_SMUL (SLJIT_DMUL | SLJIT_SINGLE_OP)
929 /* Flags: SP - (never set any flags) */
930 #define SLJIT_DDIV (SLJIT_FOP2_BASE + 3)
931 #define SLJIT_SDIV (SLJIT_DDIV | SLJIT_SINGLE_OP)
932
933 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
934 sljit_si dst, sljit_sw dstw,
935 sljit_si src1, sljit_sw src1w,
936 sljit_si src2, sljit_sw src2w);
937
938 /* Label and jump instructions. */
939
940 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
941
942 /* Invert (negate) conditional type: xor (^) with 0x1 */
943
944 /* Integer comparison types. */
945 #define SLJIT_EQUAL 0
946 #define SLJIT_I_EQUAL (SLJIT_EQUAL | SLJIT_INT_OP)
947 #define SLJIT_ZERO 0
948 #define SLJIT_I_ZERO (SLJIT_ZERO | SLJIT_INT_OP)
949 #define SLJIT_NOT_EQUAL 1
950 #define SLJIT_I_NOT_EQUAL (SLJIT_NOT_EQUAL | SLJIT_INT_OP)
951 #define SLJIT_NOT_ZERO 1
952 #define SLJIT_I_NOT_ZERO (SLJIT_NOT_ZERO | SLJIT_INT_OP)
953
954 #define SLJIT_LESS 2
955 #define SLJIT_I_LESS (SLJIT_LESS | SLJIT_INT_OP)
956 #define SLJIT_GREATER_EQUAL 3
957 #define SLJIT_I_GREATER_EQUAL (SLJIT_GREATER_EQUAL | SLJIT_INT_OP)
958 #define SLJIT_GREATER 4
959 #define SLJIT_I_GREATER (SLJIT_GREATER | SLJIT_INT_OP)
960 #define SLJIT_LESS_EQUAL 5
961 #define SLJIT_I_LESS_EQUAL (SLJIT_LESS_EQUAL | SLJIT_INT_OP)
962 #define SLJIT_SIG_LESS 6
963 #define SLJIT_I_SIG_LESS (SLJIT_SIG_LESS | SLJIT_INT_OP)
964 #define SLJIT_SIG_GREATER_EQUAL 7
965 #define SLJIT_I_SIG_GREATER_EQUAL (SLJIT_SIG_GREATER_EQUAL | SLJIT_INT_OP)
966 #define SLJIT_SIG_GREATER 8
967 #define SLJIT_I_SIG_GREATER (SLJIT_SIG_GREATER | SLJIT_INT_OP)
968 #define SLJIT_SIG_LESS_EQUAL 9
969 #define SLJIT_I_SIG_LESS_EQUAL (SLJIT_SIG_LESS_EQUAL | SLJIT_INT_OP)
970
971 #define SLJIT_OVERFLOW 10
972 #define SLJIT_I_OVERFLOW (SLJIT_OVERFLOW | SLJIT_INT_OP)
973 #define SLJIT_NOT_OVERFLOW 11
974 #define SLJIT_I_NOT_OVERFLOW (SLJIT_NOT_OVERFLOW | SLJIT_INT_OP)
975
976 #define SLJIT_MUL_OVERFLOW 12
977 #define SLJIT_I_MUL_OVERFLOW (SLJIT_MUL_OVERFLOW | SLJIT_INT_OP)
978 #define SLJIT_MUL_NOT_OVERFLOW 13
979 #define SLJIT_I_MUL_NOT_OVERFLOW (SLJIT_MUL_NOT_OVERFLOW | SLJIT_INT_OP)
980
981 /* Floating point comparison types. */
982 #define SLJIT_D_EQUAL 14
983 #define SLJIT_S_EQUAL (SLJIT_D_EQUAL | SLJIT_SINGLE_OP)
984 #define SLJIT_D_NOT_EQUAL 15
985 #define SLJIT_S_NOT_EQUAL (SLJIT_D_NOT_EQUAL | SLJIT_SINGLE_OP)
986 #define SLJIT_D_LESS 16
987 #define SLJIT_S_LESS (SLJIT_D_LESS | SLJIT_SINGLE_OP)
988 #define SLJIT_D_GREATER_EQUAL 17
989 #define SLJIT_S_GREATER_EQUAL (SLJIT_D_GREATER_EQUAL | SLJIT_SINGLE_OP)
990 #define SLJIT_D_GREATER 18
991 #define SLJIT_S_GREATER (SLJIT_D_GREATER | SLJIT_SINGLE_OP)
992 #define SLJIT_D_LESS_EQUAL 19
993 #define SLJIT_S_LESS_EQUAL (SLJIT_D_LESS_EQUAL | SLJIT_SINGLE_OP)
994 #define SLJIT_D_UNORDERED 20
995 #define SLJIT_S_UNORDERED (SLJIT_D_UNORDERED | SLJIT_SINGLE_OP)
996 #define SLJIT_D_ORDERED 21
997 #define SLJIT_S_ORDERED (SLJIT_D_ORDERED | SLJIT_SINGLE_OP)
998
999 /* Unconditional jump types. */
1000 #define SLJIT_JUMP 22
1001 #define SLJIT_FAST_CALL 23
1002 #define SLJIT_CALL0 24
1003 #define SLJIT_CALL1 25
1004 #define SLJIT_CALL2 26
1005 #define SLJIT_CALL3 27
1006
1007 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1008
1009 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1010 #define SLJIT_REWRITABLE_JUMP 0x1000
1011
1012 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1013 type must be between SLJIT_EQUAL and SLJIT_CALL3
1014 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1015 Flags: - (never set any flags) for both conditional and unconditional jumps.
1016 Flags: destroy all flags for calls. */
1017 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
1018
1019 /* Basic arithmetic comparison. In most architectures it is implemented as
1020 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1021 appropriate flags) followed by a sljit_emit_jump. However some
1022 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1023 It is suggested to use this comparison form when appropriate.
1024 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1025 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1026 Flags: destroy flags. */
1027 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
1028 sljit_si src1, sljit_sw src1w,
1029 sljit_si src2, sljit_sw src2w);
1030
1031 /* Basic floating point comparison. In most architectures it is implemented as
1032 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1033 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1034 special optimizations here. It is suggested to use this comparison form
1035 when appropriate.
1036 type must be between SLJIT_D_EQUAL and SLJIT_S_ORDERED
1037 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1038 Flags: destroy flags.
1039 Note: if either operand is NaN, the behaviour is undefined for
1040 types up to SLJIT_S_LESS_EQUAL. */
1041 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
1042 sljit_si src1, sljit_sw src1w,
1043 sljit_si src2, sljit_sw src2w);
1044
1045 /* Set the destination of the jump to this label. */
1046 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1047 /* Set the destination address of the jump to this label. */
1048 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1049
1050 /* Call function or jump anywhere. Both direct and indirect form
1051 type must be between SLJIT_JUMP and SLJIT_CALL3
1052 Direct form: set src to SLJIT_IMM() and srcw to the address
1053 Indirect form: any other valid addressing mode
1054 Flags: - (never set any flags) for unconditional jumps.
1055 Flags: destroy all flags for calls. */
1056 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
1057
1058 /* Perform the operation using the conditional flags as the second argument.
1059 Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
1060 represented by the type is 1, if the condition represented by the type
1061 is fulfilled, and 0 otherwise.
1062
1063 If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
1064 Set dst to the value represented by the type (0 or 1).
1065 Src must be SLJIT_UNUSED, and srcw must be 0
1066 Flags: - (never set any flags)
1067 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1068 Performs the binary operation using src as the first, and the value
1069 represented by type as the second argument.
1070 Important note: only dst=src and dstw=srcw is supported at the moment!
1071 Flags: I | E | K
1072 Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
1073 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
1074 sljit_si dst, sljit_sw dstw,
1075 sljit_si src, sljit_sw srcw,
1076 sljit_si type);
1077
1078 /* Copies the base address of SLJIT_SP + offset to dst.
1079 Flags: - (never set any flags) */
1080 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
1081
1082 /* The constant can be changed runtime (see: sljit_set_const)
1083 Flags: - (never set any flags) */
1084 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
1085
1086 /* After the code generation the address for label, jump and const instructions
1087 are computed. Since these structures are freed by sljit_free_compiler, the
1088 addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1089 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1090 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1091 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1092
1093 /* Only the address is required to rewrite the code. */
1094 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1095 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1096
1097 /* --------------------------------------------------------------------- */
1098 /* Miscellaneous utility functions */
1099 /* --------------------------------------------------------------------- */
1100
1101 #define SLJIT_MAJOR_VERSION 0
1102 #define SLJIT_MINOR_VERSION 93
1103
1104 /* Get the human readable name of the platform. Can be useful on platforms
1105 like ARM, where ARM and Thumb2 functions can be mixed, and
1106 it is useful to know the type of the code generator. */
1107 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
1108
1109 /* Portable helper function to get an offset of a member. */
1110 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1111
1112 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1113 /* This global lock is useful to compile common functions. */
1114 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1115 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1116 #endif
1117
1118 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1119
1120 /* The sljit_stack is a utiliy feature of sljit, which allocates a
1121 writable memory region between base (inclusive) and limit (exclusive).
1122 Both base and limit is a pointer, and base is always <= than limit.
1123 This feature uses the "address space reserve" feature
1124 of modern operating systems. Basically we don't need to allocate a
1125 huge memory block in one step for the worst case, we can start with
1126 a smaller chunk and extend it later. Since the address space is
1127 reserved, the data never copied to other regions, thus it is safe
1128 to store pointers here. */
1129
1130 /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
1131 Note: stack growing should not happen in small steps: 4k, 16k or even
1132 bigger growth is better.
1133 Note: this structure may not be supported by all operating systems.
1134 Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1135 is not defined. */
1136
1137 struct sljit_stack {
1138 /* User data, anything can be stored here.
1139 Starting with the same value as base. */
1140 sljit_uw top;
1141 /* These members are read only. */
1142 sljit_uw base;
1143 sljit_uw limit;
1144 sljit_uw max_limit;
1145 };
1146
1147 /* Returns NULL if unsuccessful.
1148 Note: limit and max_limit contains the size for stack allocation.
1149 Note: the top field is initialized to base.
1150 Note: see sljit_create_compiler for the explanation of allocator_data. */
1151 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
1152 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1153
1154 /* Can be used to increase (allocate) or decrease (free) the memory area.
1155 Returns with a non-zero value if unsuccessful. If new_limit is greater than
1156 max_limit, it will fail. It is very easy to implement a stack data structure,
1157 since the growth ratio can be added to the current limit, and sljit_stack_resize
1158 will do all the necessary checks. The fields of the stack are not changed if
1159 sljit_stack_resize fails. */
1160 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
1161
1162 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1163
1164 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1165
1166 /* Get the entry address of a given function. */
1167 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1168
1169 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1170
1171 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1172
1173 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1174
1175 /* For powerpc64, the function pointers point to a context descriptor. */
1176 struct sljit_function_context {
1177 sljit_sw addr;
1178 sljit_sw r2;
1179 sljit_sw r11;
1180 };
1181
1182 /* Fill the context arguments using the addr and the function.
1183 If func_ptr is NULL, it will not be set to the address of context
1184 If addr is NULL, the function address also comes from the func pointer. */
1185 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1186
1187 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1188
1189 /* --------------------------------------------------------------------- */
1190 /* CPU specific functions */
1191 /* --------------------------------------------------------------------- */
1192
1193 /* The following function is a helper function for sljit_emit_op_custom.
1194 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1195 SLJIT_S and SLJIT_SP registers.
1196
1197 Note: it returns with -1 for virtual registers (only on x86-32). */
1198
1199 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
1200
1201 /* The following function is a helper function for sljit_emit_op_custom.
1202 It returns with the real machine register index of any SLJIT_FLOAT register.
1203
1204 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1205
1206 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
1207
1208 /* Any instruction can be inserted into the instruction stream by
1209 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1210 The size parameter must match to the instruction size of the target
1211 architecture:
1212
1213 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1214 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1215 if size == 4, the instruction argument must be 4 byte aligned.
1216 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1217
1218 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
1219 void *instruction, sljit_si size);
1220
1221 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
1222
1223 /* Returns with non-zero if sse2 is available. */
1224
1225 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_x86_is_sse2_available(void);
1226
1227 /* Returns with non-zero if cmov instruction is available. */
1228
1229 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_x86_is_cmov_available(void);
1230
1231 /* Emit a conditional mov instruction on x86 CPUs. This instruction
1232 moves src to destination, if the condition is satisfied. Unlike
1233 other arithmetic instructions, destination must be a register.
1234 Before such instructions are emitted, cmov support should be
1235 checked by sljit_x86_is_cmov_available function.
1236 type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
1237 dst_reg must be a valid register and it can be combined
1238 with SLJIT_INT_OP to perform 32 bit arithmetic
1239 Flags: I - (never set any flags)
1240 */
1241
1242 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_x86_emit_cmov(struct sljit_compiler *compiler,
1243 sljit_si type,
1244 sljit_si dst_reg,
1245 sljit_si src, sljit_sw srcw);
1246
1247 #endif
1248
1249 #endif /* _SLJIT_LIR_H_ */
1250