xref: /php-src/ext/pcre/pcre2lib/sljit/sljitLir.h (revision d1f14a46)
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef SLJIT_LIR_H_
28 #define SLJIT_LIR_H_
29 
30 /*
31    ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33    ------------------------------------------------------------------------
34 
35    Short description
36     Advantages:
37       - The execution can be continued from any LIR instruction. In other
38         words, it is possible to jump to any label from anywhere, even from
39         a code fragment, which is compiled later, as long as the compiling
40         context is the same. See sljit_emit_enter for more details.
41       - Supports self modifying code: target of any jump and call
42         instructions and some constant values can be dynamically modified
43         during runtime. See SLJIT_REWRITABLE_JUMP.
44         - although it is not suggested to do it frequently
45         - can be used for inline caching: save an important value once
46           in the instruction stream
47       - A fixed stack space can be allocated for local variables
48       - The compiler is thread-safe
49       - The compiler is highly configurable through preprocessor macros.
50         You can disable unneeded features (multithreading in single
51         threaded applications), and you can use your own system functions
52         (including memory allocators). See sljitConfig.h.
53     Disadvantages:
54       - The compiler is more like a platform independent assembler, so
55         there is no built-in variable management. Registers and stack must
56         be managed manually (the name of the compiler refers to this).
57     In practice:
58       - This approach is very effective for interpreters
59         - One of the saved registers typically points to a stack interface
60         - It can jump to any exception handler anytime (even if it belongs
61           to another function)
62         - Hot paths can be modified during runtime reflecting the changes
63           of the fastest execution path of the dynamic language
64         - SLJIT supports complex memory addressing modes
65         - mainly position and context independent code (except some cases)
66 
67     For valgrind users:
68       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
69 */
70 
71 #if (defined SLJIT_HAVE_CONFIG_PRE && SLJIT_HAVE_CONFIG_PRE)
72 #include "sljitConfigPre.h"
73 #endif /* SLJIT_HAVE_CONFIG_PRE */
74 
75 #include "sljitConfigCPU.h"
76 #include "sljitConfig.h"
77 
78 /* The following header file defines useful macros for fine tuning
79 SLJIT based code generators. They are listed in the beginning
80 of sljitConfigInternal.h */
81 
82 #include "sljitConfigInternal.h"
83 
84 #if (defined SLJIT_HAVE_CONFIG_POST && SLJIT_HAVE_CONFIG_POST)
85 #include "sljitConfigPost.h"
86 #endif /* SLJIT_HAVE_CONFIG_POST */
87 
88 #ifdef __cplusplus
89 extern "C" {
90 #endif
91 
92 /* Version numbers. */
93 #define SLJIT_MAJOR_VERSION	0
94 #define SLJIT_MINOR_VERSION	95
95 
96 /* --------------------------------------------------------------------- */
97 /*  Error codes                                                          */
98 /* --------------------------------------------------------------------- */
99 
100 /* Indicates no error. */
101 #define SLJIT_SUCCESS			0
102 /* After the call of sljit_generate_code(), the error code of the compiler
103    is set to this value to avoid further code generation.
104    The complier should be freed after sljit_generate_code(). */
105 #define SLJIT_ERR_COMPILED		1
106 /* Cannot allocate non-executable memory. */
107 #define SLJIT_ERR_ALLOC_FAILED		2
108 /* Cannot allocate executable memory.
109    Only sljit_generate_code() returns with this error code. */
110 #define SLJIT_ERR_EX_ALLOC_FAILED	3
111 /* Unsupported instruction form. */
112 #define SLJIT_ERR_UNSUPPORTED		4
113 /* An invalid argument is passed to any SLJIT function. */
114 #define SLJIT_ERR_BAD_ARGUMENT		5
115 
116 /* --------------------------------------------------------------------- */
117 /*  Registers                                                            */
118 /* --------------------------------------------------------------------- */
119 
120 /*
121   Scratch (R) registers: registers which may not preserve their values
122   across function calls.
123 
124   Saved (S) registers: registers which preserve their values across
125   function calls.
126 
127   The scratch and saved register sets overlap. The last scratch register
128   is the first saved register, the one before the last is the second saved
129   register, and so on.
130 
131   For example, in an architecture with only five registers (A-E), if two
132   are scratch and three saved registers, they will be defined as follows:
133 
134     A |   R0   |      |  R0 always represent scratch register A
135     B |   R1   |      |  R1 always represent scratch register B
136     C |  [R2]  |  S2  |  R2 and S2 represent the same physical register C
137     D |  [R3]  |  S1  |  R3 and S1 represent the same physical register D
138     E |  [R4]  |  S0  |  R4 and S0 represent the same physical register E
139 
140   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS will be 2 and
141         SLJIT_NUMBER_OF_SAVED_REGISTERS will be 3.
142 
143   Note: For all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
144         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
145         are virtual on x86-32. See below.
146 
147   The purpose of this definition is convenience: saved registers can
148   be used as extra scratch registers. For example, building in the
149   previous example, four registers can be specified as scratch registers
150   and the fifth one as saved register, allowing any user code which requires
151   four scratch registers to run unmodified. The SLJIT compiler automatically
152   saves the content of the two extra scratch register on the stack. Scratch
153   registers can also be preserved by saving their value on the stack but
154   that needs to be done manually.
155 
156   Note: To emphasize that registers assigned to R2-R4 are saved
157         registers, they are enclosed by square brackets.
158 
159   Note: sljit_emit_enter and sljit_set_context define whether a register
160         is S or R register. E.g: if in the previous example 3 scratches and
161         1 saved are mapped by sljit_emit_enter, the allowed register set
162         will be: R0-R2 and S0. Although S2 is mapped to the same register
163         than R2, it is not available in that configuration. Furthermore
164         the S1 register cannot be used at all.
165 */
166 
167 /* Scratch registers. */
168 #define SLJIT_R0	1
169 #define SLJIT_R1	2
170 #define SLJIT_R2	3
171 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
172    are allocated on the stack). These registers are called virtual
173    and cannot be used for memory addressing (cannot be part of
174    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
175    limitation on other CPUs. See sljit_get_register_index(). */
176 #define SLJIT_R3	4
177 #define SLJIT_R4	5
178 #define SLJIT_R5	6
179 #define SLJIT_R6	7
180 #define SLJIT_R7	8
181 #define SLJIT_R8	9
182 #define SLJIT_R9	10
183 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
184    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
185 #define SLJIT_R(i)	(1 + (i))
186 
187 /* Saved registers. */
188 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
189 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
190 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
191 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
192    are allocated on the stack). These registers are called virtual
193    and cannot be used for memory addressing (cannot be part of
194    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
195    limitation on other CPUs. See sljit_get_register_index(). */
196 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
197 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
198 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
199 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
200 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
201 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
202 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
203 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
204    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
205 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
206 
207 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
208 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
209 
210 /* The SLJIT_SP provides direct access to the linear stack space allocated by
211    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
212    The immediate offset is extended by the relative stack offset automatically.
213    sljit_get_local_base can be used to obtain the real address of a value. */
214 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
215 
216 /* Return with machine word. */
217 
218 #define SLJIT_RETURN_REG	SLJIT_R0
219 
220 /* --------------------------------------------------------------------- */
221 /*  Floating point registers                                             */
222 /* --------------------------------------------------------------------- */
223 
224 /* Each floating point register can store a 32 or a 64 bit precision
225    value. The FR and FS register sets overlap in the same way as R
226    and S register sets. See above. */
227 
228 /* Floating point scratch registers. */
229 #define SLJIT_FR0	1
230 #define SLJIT_FR1	2
231 #define SLJIT_FR2	3
232 #define SLJIT_FR3	4
233 #define SLJIT_FR4	5
234 #define SLJIT_FR5	6
235 #define SLJIT_FR6	7
236 #define SLJIT_FR7	8
237 #define SLJIT_FR8	9
238 #define SLJIT_FR9	10
239 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
240    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
241 #define SLJIT_FR(i)	(1 + (i))
242 
243 /* Floating point saved registers. */
244 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
245 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
246 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
247 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
248 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
249 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
250 #define SLJIT_FS6	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 6)
251 #define SLJIT_FS7	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 7)
252 #define SLJIT_FS8	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 8)
253 #define SLJIT_FS9	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 9)
254 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257 
258 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260 
261 /* Return with floating point arg. */
262 
263 #define SLJIT_RETURN_FREG	SLJIT_FR0
264 
265 /* --------------------------------------------------------------------- */
266 /*  Argument type definitions                                            */
267 /* --------------------------------------------------------------------- */
268 
269 /* The following argument type definitions are used by sljit_emit_enter,
270    sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
271 
272    For sljit_emit_call and sljit_emit_icall, the first integer argument
273    must be placed into SLJIT_R0, the second one into SLJIT_R1, and so on.
274    Similarly the first floating point argument must be placed into SLJIT_FR0,
275    the second one into SLJIT_FR1, and so on.
276 
277    For sljit_emit_enter, the integer arguments can be stored in scratch
278    or saved registers. Scratch registers are identified by a _R suffix.
279 
280    If only saved registers are used, then the allocation mirrors what is
281    done for the "call" functions but using saved registers, meaning that
282    the first integer argument goes to SLJIT_S0, the second one goes into
283    SLJIT_S1, and so on.
284 
285    If scratch registers are used, then the way the integer registers are
286    allocated changes so that SLJIT_S0, SLJIT_S1, etc; will be assigned
287    only for the arguments not using scratch registers, while SLJIT_R<n>
288    will be used for the ones using scratch registers.
289 
290    Furthermore, the index (shown as "n" above) that will be used for the
291    scratch register depends on how many previous integer registers
292    (scratch or saved) were used already, starting with SLJIT_R0.
293    Eventhough some indexes will be likely skipped, they still need to be
294    accounted for in the scratches parameter of sljit_emit_enter. See below
295    for some examples.
296 
297    The floating point arguments always use scratch registers (but not the
298    _R suffix like the integer arguments) and must use SLJIT_FR0, SLJIT_FR1,
299    just like in the "call" functions.
300 
301    Note: the mapping for scratch registers is part of the compiler context
302          and therefore a new context after sljit_emit_call/sljit_emit_icall
303          could remove access to some scratch registers that were used as
304          arguments.
305 
306    Example function definition:
307      sljit_f32 SLJIT_FUNC example_c_callback(void *arg_a,
308          sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
309 
310    Argument type definition:
311      SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_F32)
312         | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_P, 1) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F64, 2)
313         | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_32, 3) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 4)
314 
315    Short form of argument type definition:
316      SLJIT_ARGS4(F32, P, F64, 32, F32)
317 
318    Argument passing:
319      arg_a must be placed in SLJIT_R0
320      arg_b must be placed in SLJIT_FR0
321      arg_c must be placed in SLJIT_R1
322      arg_d must be placed in SLJIT_FR1
323 
324    Examples for argument processing by sljit_emit_enter:
325      SLJIT_ARGS4V(P, 32_R, F32, W)
326      Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_FR0, SLJIT_S1
327      The type of the result is void.
328 
329      SLJIT_ARGS4(F32, W, W_R, W, W_R)
330      Arguments are placed into: SLJIT_S0, SLJIT_R1, SLJIT_S1, SLJIT_R3
331      The type of the result is sljit_f32.
332 
333      SLJIT_ARGS4(P, W, F32, P_R)
334      Arguments are placed into: SLJIT_FR0, SLJIT_S0, SLJIT_FR1, SLJIT_R1
335      The type of the result is pointer.
336 
337      Note: it is recommended to pass the scratch arguments first
338      followed by the saved arguments:
339 
340        SLJIT_ARGS4(W, W_R, W_R, W, W)
341        Arguments are placed into: SLJIT_R0, SLJIT_R1, SLJIT_S0, SLJIT_S1
342        The type of the result is sljit_sw / sljit_uw.
343 */
344 
345 /* The following flag is only allowed for the integer arguments of
346    sljit_emit_enter. When the flag is set, the integer argument is
347    stored in a scratch register instead of a saved register. */
348 #define SLJIT_ARG_TYPE_SCRATCH_REG 0x8
349 
350 /* No return value, only supported by SLJIT_ARG_RETURN. */
351 #define SLJIT_ARG_TYPE_RET_VOID		0
352 /* Machine word sized integer argument or result. */
353 #define SLJIT_ARG_TYPE_W		1
354 #define SLJIT_ARG_TYPE_W_R	(SLJIT_ARG_TYPE_W | SLJIT_ARG_TYPE_SCRATCH_REG)
355 /* 32 bit integer argument or result. */
356 #define SLJIT_ARG_TYPE_32		2
357 #define SLJIT_ARG_TYPE_32_R	(SLJIT_ARG_TYPE_32 | SLJIT_ARG_TYPE_SCRATCH_REG)
358 /* Pointer sized integer argument or result. */
359 #define SLJIT_ARG_TYPE_P		3
360 #define SLJIT_ARG_TYPE_P_R	(SLJIT_ARG_TYPE_P | SLJIT_ARG_TYPE_SCRATCH_REG)
361 /* 64 bit floating point argument or result. */
362 #define SLJIT_ARG_TYPE_F64		4
363 /* 32 bit floating point argument or result. */
364 #define SLJIT_ARG_TYPE_F32		5
365 
366 #define SLJIT_ARG_SHIFT 4
367 #define SLJIT_ARG_RETURN(type) (type)
368 #define SLJIT_ARG_VALUE(type, idx) ((type) << ((idx) * SLJIT_ARG_SHIFT))
369 
370 /* Simplified argument list definitions.
371 
372    The following definition:
373        SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_W) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_F32, 1)
374 
375    can be shortened to:
376        SLJIT_ARGS1(W, F32)
377 
378    Another example where no value is returned:
379        SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_RET_VOID) | SLJIT_ARG_VALUE(SLJIT_ARG_TYPE_W_R, 1)
380 
381    can be shortened to:
382        SLJIT_ARGS1V(W_R)
383 */
384 
385 #define SLJIT_ARG_TO_TYPE(type) SLJIT_ARG_TYPE_ ## type
386 
387 #define SLJIT_ARGS0(ret) \
388 	SLJIT_ARG_RETURN(SLJIT_ARG_TO_TYPE(ret))
389 #define SLJIT_ARGS0V() \
390 	SLJIT_ARG_RETURN(SLJIT_ARG_TYPE_RET_VOID)
391 
392 #define SLJIT_ARGS1(ret, arg1) \
393 	(SLJIT_ARGS0(ret) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
394 #define SLJIT_ARGS1V(arg1) \
395 	(SLJIT_ARGS0V() | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg1), 1))
396 
397 #define SLJIT_ARGS2(ret, arg1, arg2) \
398 	(SLJIT_ARGS1(ret, arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
399 #define SLJIT_ARGS2V(arg1, arg2) \
400 	(SLJIT_ARGS1V(arg1) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg2), 2))
401 
402 #define SLJIT_ARGS3(ret, arg1, arg2, arg3) \
403 	(SLJIT_ARGS2(ret, arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
404 #define SLJIT_ARGS3V(arg1, arg2, arg3) \
405 	(SLJIT_ARGS2V(arg1, arg2) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg3), 3))
406 
407 #define SLJIT_ARGS4(ret, arg1, arg2, arg3, arg4) \
408 	(SLJIT_ARGS3(ret, arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
409 #define SLJIT_ARGS4V(arg1, arg2, arg3, arg4) \
410 	(SLJIT_ARGS3V(arg1, arg2, arg3) | SLJIT_ARG_VALUE(SLJIT_ARG_TO_TYPE(arg4), 4))
411 
412 /* --------------------------------------------------------------------- */
413 /*  Main structures and functions                                        */
414 /* --------------------------------------------------------------------- */
415 
416 /*
417 	The following structures are private, and can be changed in the
418 	future. Keeping them here allows code inlining.
419 */
420 
421 struct sljit_memory_fragment {
422 	struct sljit_memory_fragment *next;
423 	sljit_uw used_size;
424 	/* Must be aligned to sljit_sw. */
425 	sljit_u8 memory[1];
426 };
427 
428 struct sljit_label {
429 	struct sljit_label *next;
430 	union {
431 		sljit_uw index;
432 		sljit_uw addr;
433 	} u;
434 	/* The maximum size difference. */
435 	sljit_uw size;
436 };
437 
438 struct sljit_jump {
439 	struct sljit_jump *next;
440 	sljit_uw addr;
441 	/* Architecture dependent flags. */
442 	sljit_uw flags;
443 	union {
444 		sljit_uw target;
445 		struct sljit_label *label;
446 	} u;
447 };
448 
449 struct sljit_const {
450 	struct sljit_const *next;
451 	sljit_uw addr;
452 };
453 
454 struct sljit_generate_code_buffer {
455 	void *buffer;
456 	sljit_uw size;
457 	sljit_sw executable_offset;
458 };
459 
460 struct sljit_compiler {
461 	sljit_s32 error;
462 	sljit_s32 options;
463 
464 	struct sljit_label *labels;
465 	struct sljit_jump *jumps;
466 	struct sljit_const *consts;
467 	struct sljit_label *last_label;
468 	struct sljit_jump *last_jump;
469 	struct sljit_const *last_const;
470 
471 	void *allocator_data;
472 	void *user_data;
473 	struct sljit_memory_fragment *buf;
474 	struct sljit_memory_fragment *abuf;
475 
476 	/* Number of labels created by the compiler. */
477 	sljit_uw label_count;
478 	/* Available scratch registers. */
479 	sljit_s32 scratches;
480 	/* Available saved registers. */
481 	sljit_s32 saveds;
482 	/* Available float scratch registers. */
483 	sljit_s32 fscratches;
484 	/* Available float saved registers. */
485 	sljit_s32 fsaveds;
486 	/* Local stack size. */
487 	sljit_s32 local_size;
488 	/* Maximum code size. */
489 	sljit_uw size;
490 	/* Relative offset of the executable mapping from the writable mapping. */
491 	sljit_sw executable_offset;
492 	/* Executable size for statistical purposes. */
493 	sljit_uw executable_size;
494 
495 #if (defined SLJIT_HAS_STATUS_FLAGS_STATE && SLJIT_HAS_STATUS_FLAGS_STATE)
496 	sljit_s32 status_flags_state;
497 #endif /* SLJIT_HAS_STATUS_FLAGS_STATE */
498 
499 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
500 	sljit_s32 args_size;
501 #endif /* SLJIT_CONFIG_X86_32 */
502 
503 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
504 	/* Temporary fields. */
505 	sljit_s32 mode32;
506 #endif /* SLJIT_CONFIG_X86_64 */
507 
508 #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6)
509 	/* Constant pool handling. */
510 	sljit_uw *cpool;
511 	sljit_u8 *cpool_unique;
512 	sljit_uw cpool_diff;
513 	sljit_uw cpool_fill;
514 	/* Other members. */
515 	/* Contains pointer, "ldr pc, [...]" pairs. */
516 	sljit_uw patches;
517 #endif /* SLJIT_CONFIG_ARM_V6 */
518 
519 #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
520 	/* Temporary fields. */
521 	sljit_uw shift_imm;
522 #endif /* SLJIT_CONFIG_ARM_V6 || SLJIT_CONFIG_ARM_V6 */
523 
524 #if (defined SLJIT_CONFIG_ARM_32 && SLJIT_CONFIG_ARM_32) && (defined __SOFTFP__)
525 	sljit_uw args_size;
526 #endif /* SLJIT_CONFIG_ARM_32 && __SOFTFP__ */
527 
528 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
529 	/* Temporary fields. */
530 	sljit_u32 imm;
531 #endif /* SLJIT_CONFIG_PPC */
532 
533 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
534 	sljit_s32 delay_slot;
535 	/* Temporary fields. */
536 	sljit_s32 cache_arg;
537 	sljit_sw cache_argw;
538 #endif /* SLJIT_CONFIG_MIPS */
539 
540 #if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
541 	sljit_uw args_size;
542 #endif /* SLJIT_CONFIG_MIPS_32 */
543 
544 #if (defined SLJIT_CONFIG_RISCV && SLJIT_CONFIG_RISCV)
545 	/* Temporary fields. */
546 	sljit_s32 cache_arg;
547 	sljit_sw cache_argw;
548 #endif /* SLJIT_CONFIG_RISCV */
549 
550 #if (defined SLJIT_CONFIG_S390X && SLJIT_CONFIG_S390X)
551 	/* Need to allocate register save area to make calls. */
552 	/* Temporary fields. */
553 	sljit_s32 mode;
554 #endif /* SLJIT_CONFIG_S390X */
555 
556 #if (defined SLJIT_CONFIG_LOONGARCH && SLJIT_CONFIG_LOONGARCH)
557 	/* Temporary fields. */
558 	sljit_s32 cache_arg;
559 	sljit_sw cache_argw;
560 #endif /* SLJIT_CONFIG_LOONGARCH */
561 
562 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
563 	FILE* verbose;
564 #endif /* SLJIT_VERBOSE */
565 
566 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
567 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
568 	/* Flags specified by the last arithmetic instruction.
569 	   It contains the type of the variable flag. */
570 	sljit_s32 last_flags;
571 	/* Return value type set by entry functions. */
572 	sljit_s32 last_return;
573 	/* Local size passed to entry functions. */
574 	sljit_s32 logical_local_size;
575 #endif /* SLJIT_ARGUMENT_CHECKS || SLJIT_DEBUG */
576 
577 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
578 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
579 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
580 	/* Trust arguments when an API function is called.
581 	   Used internally for calling API functions. */
582 	sljit_s32 skip_checks;
583 #endif /* SLJIT_ARGUMENT_CHECKS || SLJIT_DEBUG || SLJIT_VERBOSE */
584 };
585 
586 /* --------------------------------------------------------------------- */
587 /*  Main functions                                                       */
588 /* --------------------------------------------------------------------- */
589 
590 /* Creates an SLJIT compiler. The allocator_data is required by some
591    custom memory managers. This pointer is passed to SLJIT_MALLOC
592    and SLJIT_FREE macros. Most allocators (including the default
593    one) ignores this value, and it is recommended to pass NULL
594    as a dummy value for allocator_data.
595 
596    Returns NULL if failed. */
597 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
598 
599 /* Frees everything except the compiled machine code. */
600 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
601 
602 /* Returns the current error code. If an error occurres, future calls
603    which uses the same compiler argument returns early with the same
604    error code. Thus there is no need for checking the error after every
605    call, it is enough to do it after the code is compiled. Removing
606    these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)607 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
608 
609 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
610    if an error was detected before. After the error code is set
611    the compiler behaves as if the allocation failure happened
612    during an SLJIT function call. This can greatly simplify error
613    checking, since it is enough to check the compiler status
614    after the code is compiled. */
615 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
616 
617 /* Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
618    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
619    compiler, and freed by sljit_free_compiler. The returned pointer is
620    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
621    compiling, and no need to worry about freeing them. The size is enough
622    to contain at most 16 pointers. If the size is outside of the range,
623    the function will return with NULL. However, this return value does not
624    indicate that there is no more memory (does not set the current error code
625    of the compiler to out-of-memory status). */
626 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
627 
628 /* Returns the allocator data passed to sljit_create_compiler. */
sljit_compiler_get_allocator_data(struct sljit_compiler * compiler)629 static SLJIT_INLINE void* sljit_compiler_get_allocator_data(struct sljit_compiler *compiler) { return compiler->allocator_data; }
630 /* Sets/get the user data for a compiler. */
sljit_compiler_set_user_data(struct sljit_compiler * compiler,void * user_data)631 static SLJIT_INLINE void sljit_compiler_set_user_data(struct sljit_compiler *compiler, void *user_data) { compiler->user_data = user_data; }
sljit_compiler_get_user_data(struct sljit_compiler * compiler)632 static SLJIT_INLINE void* sljit_compiler_get_user_data(struct sljit_compiler *compiler) { return compiler->user_data; }
633 
634 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
635 /* Passing NULL disables verbose. */
636 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
637 #endif
638 
639 /* Option bits for sljit_generate_code. */
640 
641 /* The exec_allocator_data points to a pre-allocated
642    buffer which type is sljit_generate_code_buffer. */
643 #define SLJIT_GENERATE_CODE_BUFFER		0x1
644 
645 /* Create executable code from the instruction stream. This is the final step
646    of the code generation, and no more instructions can be emitted after this call.
647 
648    options is the combination of SLJIT_GENERATE_CODE_* bits
649    exec_allocator_data is passed to SLJIT_MALLOC_EXEC and
650                        SLJIT_MALLOC_FREE functions */
651 
652 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler, sljit_s32 options, void *exec_allocator_data);
653 
654 /* Free executable code. */
655 
656 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code, void *exec_allocator_data);
657 
658 /* When the protected executable allocator is used the JIT code is mapped
659    twice. The first mapping has read/write and the second mapping has read/exec
660    permissions. This function returns with the relative offset of the executable
661    mapping using the writable mapping as the base after the machine code is
662    successfully generated. The returned value is always 0 for the normal executable
663    allocator, since it uses only one mapping with read/write/exec permissions.
664    Dynamic code modifications requires this value.
665 
666    Before a successful code generation, this function returns with 0. */
sljit_get_executable_offset(struct sljit_compiler * compiler)667 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
668 
669 /* The executable memory consumption of the generated code can be retrieved by
670    this function. The returned value can be used for statistical purposes.
671 
672    Before a successful code generation, this function returns with 0. */
sljit_get_generated_code_size(struct sljit_compiler * compiler)673 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
674 
675 /* Returns with non-zero if the feature or limitation type passed as its
676    argument is present on the current CPU. The return value is one, if a
677    feature is fully supported, and it is two, if partially supported.
678 
679    Some features (e.g. floating point operations) require hardware (CPU)
680    support while others (e.g. move with update) are emulated if not available.
681    However, even when a feature is emulated, specialized code paths may be
682    faster than the emulation. Some limitations are emulated as well so their
683    general case is supported but it has extra performance costs. */
684 
685 /* [Not emulated] Floating-point support is available. */
686 #define SLJIT_HAS_FPU			0
687 /* [Limitation] Some registers are virtual registers. */
688 #define SLJIT_HAS_VIRTUAL_REGISTERS	1
689 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
690 #define SLJIT_HAS_ZERO_REGISTER		2
691 /* [Emulated] Count leading zero is supported. */
692 #define SLJIT_HAS_CLZ			3
693 /* [Emulated] Count trailing zero is supported. */
694 #define SLJIT_HAS_CTZ			4
695 /* [Emulated] Reverse the order of bytes is supported. */
696 #define SLJIT_HAS_REV			5
697 /* [Emulated] Rotate left/right is supported. */
698 #define SLJIT_HAS_ROT			6
699 /* [Emulated] Conditional move is supported. */
700 #define SLJIT_HAS_CMOV			7
701 /* [Emulated] Prefetch instruction is available (emulated as a nop). */
702 #define SLJIT_HAS_PREFETCH		8
703 /* [Emulated] Copy from/to f32 operation is available (see sljit_emit_fcopy). */
704 #define SLJIT_HAS_COPY_F32		9
705 /* [Emulated] Copy from/to f64 operation is available (see sljit_emit_fcopy). */
706 #define SLJIT_HAS_COPY_F64		10
707 /* [Not emulated] The 64 bit floating point registers can be used as
708    two separate 32 bit floating point registers (e.g. ARM32). The
709    second 32 bit part can be accessed by SLJIT_F64_SECOND. */
710 #define SLJIT_HAS_F64_AS_F32_PAIR	11
711 /* [Not emulated] Some SIMD operations are supported by the compiler. */
712 #define SLJIT_HAS_SIMD			12
713 /* [Not emulated] SIMD registers are mapped to a pair of double precision
714    floating point registers. E.g. passing either SLJIT_FR0 or SLJIT_FR1 to
715    a simd operation represents the same 128 bit register, and both SLJIT_FR0
716    and SLJIT_FR1 are overwritten. */
717 #define SLJIT_SIMD_REGS_ARE_PAIRS	13
718 /* [Not emulated] Atomic support is available (fine-grained). */
719 #define SLJIT_HAS_ATOMIC      14
720 
721 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
722 /* [Not emulated] AVX support is available on x86. */
723 #define SLJIT_HAS_AVX			100
724 /* [Not emulated] AVX2 support is available on x86. */
725 #define SLJIT_HAS_AVX2			101
726 #endif
727 
728 #if (defined SLJIT_CONFIG_LOONGARCH)
729 /* [Not emulated] LASX support is available on LoongArch */
730 #define SLJIT_HAS_LASX        201
731 #endif
732 
733 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
734 
735 /* If type is between SLJIT_ORDERED_EQUAL and SLJIT_ORDERED_LESS_EQUAL,
736    sljit_cmp_info returns with:
737      zero - if the cpu supports the floating point comparison type
738      one - if the comparison requires two machine instructions
739      two - if the comparison requires more than two machine instructions
740 
741    When the result is non-zero, it is recommended to avoid
742    using the specified comparison type if it is easy to do so.
743 
744    Otherwise it returns zero. */
745 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type);
746 
747 /* The following functions generate machine code. If there is no
748    error, they return with SLJIT_SUCCESS, otherwise they return
749    with an error code. */
750 
751 /*
752    The executable code is a function from the viewpoint of the C
753    language. The function calls must conform to the ABI (Application
754    Binary Interface) of the platform, which specify the purpose of
755    machine registers and stack handling among other things. The
756    sljit_emit_enter function emits the necessary instructions for
757    setting up a new context for the executable code. This is often
758    called as function prologue. Furthermore the options argument
759    can be used to pass configuration options to the compiler. The
760    available options are listed before sljit_emit_enter.
761 
762    The function argument list is specified by the SLJIT_ARGSx
763    (SLJIT_ARGS0 .. SLJIT_ARGS4) macros. Currently maximum four
764    arguments are supported. See the description of SLJIT_ARGSx
765    macros about argument passing. Furthermore the register set
766    used by the function must be declared as well. The number of
767    scratch and saved registers available to the function must
768    be passed to sljit_emit_enter. Only R registers between R0
769    and "scratches" argument can be used later. E.g. if "scratches"
770    is set to two, the scratch register set will be limited to
771    SLJIT_R0 and SLJIT_R1. The S registers and the floating point
772    registers ("fscratches" and "fsaveds") are specified in a
773    similar manner. The sljit_emit_enter is also capable of
774    allocating a stack space for local data. The "local_size"
775    argument contains the size in bytes of this local area, and
776    it can be accessed using SLJIT_MEM1(SLJIT_SP). The memory
777    area between SLJIT_SP (inclusive) and SLJIT_SP + local_size
778    (exclusive) can be modified freely until the function returns.
779    The stack space is not initialized to zero.
780 
781    Note: the following conditions must met:
782          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
783          0 <= saveds <= SLJIT_NUMBER_OF_SAVED_REGISTERS
784          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
785          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
786          0 <= fsaveds <= SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS
787          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
788 
789    Note: the compiler can use saved registers as scratch registers,
790          but the opposite is not supported
791 
792    Note: every call of sljit_emit_enter and sljit_set_context
793          overwrites the previous context.
794 */
795 
796 /* Saved registers between SLJIT_S0 and SLJIT_S(n - 1) (inclusive)
797    are not saved / restored on function enter / return. Instead,
798    these registers can be used to pass / return data (such as
799    global / local context pointers) across function calls. The
800    value of n must be between 1 and 3. This option is only
801    supported by SLJIT_ENTER_REG_ARG calling convention. */
802 #define SLJIT_ENTER_KEEP(n)		(n)
803 
804 /* The compiled function uses an SLJIT specific register argument
805    calling convention. This is a lightweight function call type where
806    both the caller and the called functions must be compiled by
807    SLJIT. The type argument of the call must be SLJIT_CALL_REG_ARG
808    and all arguments must be stored in scratch registers. */
809 #define SLJIT_ENTER_REG_ARG		0x00000004
810 
811 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
812 #define SLJIT_MAX_LOCAL_SIZE		1048576
813 
814 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
815 /* Use VEX prefix for all SIMD operations on x86. */
816 #define SLJIT_ENTER_USE_VEX		0x00010000
817 #endif /* !SLJIT_CONFIG_X86 */
818 
819 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
820 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
821 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
822 
823 /* The SLJIT compiler has a current context (which contains the local
824    stack space size, number of used registers, etc.) which is initialized
825    by sljit_emit_enter. Several functions (such as sljit_emit_return)
826    requires this context to be able to generate the appropriate code.
827    However, some code fragments (compiled separately) may have no
828    normal entry point so their context is unknown to the compiler.
829 
830    sljit_set_context and sljit_emit_enter have the same arguments,
831    but sljit_set_context does not generate any machine code.
832 
833    Note: every call of sljit_emit_enter and sljit_set_context overwrites
834          the previous context. */
835 
836 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
837 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
838 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
839 
840 /* Return to the caller function. The sljit_emit_return_void function
841    does not return with any value. The sljit_emit_return function returns
842    with a single value loaded from its source operand. The load operation
843    can be between SLJIT_MOV and SLJIT_MOV_P (see sljit_emit_op1) and
844    SLJIT_MOV_F32/SLJIT_MOV_F64 (see sljit_emit_fop1) depending on the
845    return value specified by sljit_emit_enter/sljit_set_context. */
846 
847 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler);
848 
849 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
850 	sljit_s32 src, sljit_sw srcw);
851 
852 /* Restores the saved registers and free the stack area, then the execution
853    continues from the address specified by the source operand. This
854    operation is similar to sljit_emit_return, but it ignores the return
855    address. The code where the exection continues should use the same context
856    as the caller function (see sljit_set_context). A word (pointer) value
857    can be passed in the SLJIT_RETURN_REG register. This function can be used
858    to jump to exception handlers. */
859 
860 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler,
861 	sljit_s32 src, sljit_sw srcw);
862 
863 /*
864    Source and destination operands for arithmetical instructions
865     imm              - a simple immediate value (cannot be used as a destination)
866     reg              - any of the available registers (immediate argument must be 0)
867     [imm]            - absolute memory address
868     [reg+imm]        - indirect memory address
869     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
870                        useful for accessing arrays (fully supported by both x86 and
871                        ARM architectures, and cheap operation on others)
872 */
873 
874 /*
875    IMPORTANT NOTE: memory accesses MUST be naturally aligned unless
876                    SLJIT_UNALIGNED macro is defined and its value is 1.
877 
878      length | alignment
879    ---------+-----------
880      byte   | 1 byte (any physical_address is accepted)
881      half   | 2 byte (physical_address & 0x1 == 0)
882      int    | 4 byte (physical_address & 0x3 == 0)
883      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
884             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
885     pointer | size of sljit_up type (4 byte on 32 bit machines, 4 or 8 byte
886             | on 64 bit machines)
887 
888    Note:   Different architectures have different addressing limitations.
889            A single instruction is enough for the following addressing
890            modes. Other addressing modes are emulated by instruction
891            sequences. This information could help to improve those code
892            generators which focuses only a few architectures.
893 
894    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
895            [reg+(reg<<imm)] is supported
896            [imm], -2^32+1 <= imm <= 2^32-1 is supported
897            Write-back is not supported
898    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
899                 bytes, any halfs or floating point values)
900            [reg+(reg<<imm)] is supported
901            Write-back is supported
902    arm-t2: [reg+imm], -255 <= imm <= 4095
903            [reg+(reg<<imm)] is supported
904            Write back is supported only for [reg+imm], where -255 <= imm <= 255
905    arm64:  [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
906            [reg+(reg<<imm)] is supported
907            Write back is supported only for [reg+imm], where -256 <= imm <= 255
908    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
909                 signed load on 64 bit requires immediates divisible by 4.
910                 [reg+imm] is not supported for signed 8 bit values.
911            [reg+reg] is supported
912            Write-back is supported except for one instruction: 32 bit signed
913                 load with [reg+imm] addressing mode on 64 bit.
914    mips:   [reg+imm], -65536 <= imm <= 65535
915            Write-back is not supported
916    riscv:  [reg+imm], -2048 <= imm <= 2047
917            Write-back is not supported
918    s390x:  [reg+imm], -2^19 <= imm < 2^19
919            [reg+reg] is supported
920            Write-back is not supported
921    loongarch:  [reg+imm], -2048 <= imm <= 2047
922            [reg+reg] is supported
923            Write-back is not supported
924 */
925 
926 /* Macros for specifying operand types. */
927 #define SLJIT_MEM		0x80
928 #define SLJIT_MEM0()		(SLJIT_MEM)
929 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
930 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
931 #define SLJIT_IMM		0x7f
932 #define SLJIT_REG_PAIR(r1, r2)	((r1) | ((r2) << 8))
933 
934 /* Macros for checking operand types (only for valid arguments). */
935 #define SLJIT_IS_REG(arg)	((arg) > 0 && (arg) < SLJIT_IMM)
936 #define SLJIT_IS_MEM(arg)	((arg) & SLJIT_MEM)
937 #define SLJIT_IS_MEM0(arg)	((arg) == SLJIT_MEM)
938 #define SLJIT_IS_MEM1(arg)	((arg) > SLJIT_MEM && (arg) < (SLJIT_MEM << 1))
939 #define SLJIT_IS_MEM2(arg)	(((arg) & SLJIT_MEM) && (arg) >= (SLJIT_MEM << 1))
940 #define SLJIT_IS_IMM(arg)	((arg) == SLJIT_IMM)
941 #define SLJIT_IS_REG_PAIR(arg)	(!((arg) & SLJIT_MEM) && (arg) >= (SLJIT_MEM << 1))
942 
943 /* Macros for extracting registers from operands. */
944 /* Support operands which contains a single register or
945    constructed using SLJIT_MEM1, SLJIT_MEM2, or SLJIT_REG_PAIR. */
946 #define SLJIT_EXTRACT_REG(arg)		((arg) & 0x7f)
947 /* Support operands which constructed using SLJIT_MEM2, or SLJIT_REG_PAIR. */
948 #define SLJIT_EXTRACT_SECOND_REG(arg)	((arg) >> 8)
949 
950 /* Sets 32 bit operation mode on 64 bit CPUs. This option is ignored on
951    32 bit CPUs. When this option is set for an arithmetic operation, only
952    the lower 32 bits of the input registers are used, and the CPU status
953    flags are set according to the 32 bit result. Although the higher 32 bit
954    of the input and the result registers are not defined by SLJIT, it might
955    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
956    requirements all source registers must be the result of those operations
957    where this option was also set. Memory loads read 32 bit values rather
958    than 64 bit ones. In other words 32 bit and 64 bit operations cannot be
959    mixed. The only exception is SLJIT_MOV32 which source register can hold
960    any 32 or 64 bit value, and it is converted to a 32 bit compatible format
961    first. When the source and destination registers are the same, this
962    conversion is free (no instructions are emitted) on most CPUs. A 32 bit
963    value can also be converted to a 64 bit value by SLJIT_MOV_S32
964    (sign extension) or SLJIT_MOV_U32 (zero extension).
965 
966    As for floating-point operations, this option sets 32 bit single
967    precision mode. Similar to the integer operations, all register arguments
968    must be the result of those operations where this option was also set.
969 
970    Note: memory addressing always uses 64 bit values on 64 bit systems so
971          the result of a 32 bit operation must not be used with SLJIT_MEMx
972          macros.
973 
974    This option is part of the instruction name, so there is no need to
975    manually set it. E.g:
976 
977      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_32) */
978 #define SLJIT_32		0x100
979 
980 /* Many CPUs (x86, ARM, PPC) have status flag bits which can be set according
981    to the result of an operation. Other CPUs (MIPS) do not have status
982    flag bits, and results must be stored in registers. To cover both
983    architecture types efficiently only two flags are defined by SLJIT:
984 
985     * Zero (equal) flag: it is set if the result is zero
986     * Variable flag: its value is defined by the arithmetic operation
987 
988    SLJIT instructions can set any or both of these flags. The value of
989    these flags is undefined if the instruction does not specify their
990    value. The description of each instruction contains the list of
991    allowed flag types.
992 
993    Note: the logical or operation can be used to set flags.
994 
995    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
996 
997      sljit_op2(..., SLJIT_ADD, ...)
998        Both the zero and variable flags are undefined so they can
999        have any value after the operation is completed.
1000 
1001      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
1002        Sets the zero flag if the result is zero, clears it otherwise.
1003        The variable flag is undefined.
1004 
1005      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
1006        Sets the variable flag if an integer overflow occurs, clears
1007        it otherwise. The zero flag is undefined.
1008 
1009      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
1010        Sets the zero flag if the result is zero, clears it otherwise.
1011        Sets the variable flag if unsigned overflow (carry) occurs,
1012        clears it otherwise.
1013 
1014    Certain instructions (e.g. SLJIT_MOV) does not modify flags, so
1015    status flags are unchanged.
1016 
1017    Example:
1018 
1019      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
1020      sljit_op1(..., SLJIT_MOV, ...)
1021        Zero flag is set according to the result of SLJIT_ADD.
1022 
1023      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
1024      sljit_op2(..., SLJIT_ADD, ...)
1025        Zero flag has unknown value.
1026 
1027    These flags can be used for code optimization. E.g. a fast loop can be
1028    implemented by decreasing a counter register and set the zero flag
1029    using a single instruction. The zero register can be used by a
1030    conditional jump to restart the loop. A single comparison can set a
1031    zero and less flags to check if a value is less, equal, or greater
1032    than another value.
1033 
1034    Motivation: although some CPUs can set a large number of flag bits,
1035    usually their values are ignored or only a few of them are used. Emulating
1036    a large number of flags on systems without a flag register is complicated
1037    so SLJIT instructions must specify the flag they want to use and only
1038    that flag is computed. The last arithmetic instruction can be repeated if
1039    multiple flags need to be checked.
1040 */
1041 
1042 /* Set Zero status flag. */
1043 #define SLJIT_SET_Z			0x0200
1044 /* Set the variable status flag if condition is true.
1045    See comparison types (e.g. SLJIT_SET_LESS, SLJIT_SET_F_EQUAL). */
1046 #define SLJIT_SET(condition)			((condition) << 10)
1047 
1048 /* Starting index of opcodes for sljit_emit_op0. */
1049 #define SLJIT_OP0_BASE			0
1050 
1051 /* Flags: - (does not modify flags)
1052    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
1053          It falls back to SLJIT_NOP in those cases. */
1054 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
1055 /* Flags: - (does not modify flags)
1056    Note: may or may not cause an extra cycle wait
1057          it can even decrease the runtime in a few cases. */
1058 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
1059 /* Flags: - (may destroy flags)
1060    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
1061    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
1062 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
1063 /* Flags: - (may destroy flags)
1064    Signed multiplication of SLJIT_R0 and SLJIT_R1.
1065    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
1066 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
1067 /* Flags: - (may destroy flags)
1068    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1069    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
1070    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
1071 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
1072 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_32)
1073 /* Flags: - (may destroy flags)
1074    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1075    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
1076    Note: if SLJIT_R1 is 0, the behaviour is undefined.
1077    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
1078          the behaviour is undefined. */
1079 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
1080 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_32)
1081 /* Flags: - (may destroy flags)
1082    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1083    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
1084    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
1085 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
1086 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_32)
1087 /* Flags: - (may destroy flags)
1088    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
1089    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
1090    Note: if SLJIT_R1 is 0, the behaviour is undefined.
1091    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
1092          the behaviour is undefined. */
1093 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
1094 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_32)
1095 /* Flags: - (does not modify flags)
1096    ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
1097    when Intel Control-flow Enforcement Technology (CET) is enabled.
1098    No instructions are emitted for other architectures. */
1099 #define SLJIT_ENDBR			(SLJIT_OP0_BASE + 8)
1100 /* Flags: - (may destroy flags)
1101    Skip stack frames before return when Intel Control-flow
1102    Enforcement Technology (CET) is enabled. No instructions
1103    are emitted for other architectures. */
1104 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN	(SLJIT_OP0_BASE + 9)
1105 
1106 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
1107 
1108 /* Starting index of opcodes for sljit_emit_op1. */
1109 #define SLJIT_OP1_BASE			32
1110 
1111 /* The MOV instruction transfers data from source to destination.
1112 
1113    MOV instruction suffixes:
1114 
1115    U8  - unsigned 8 bit data transfer
1116    S8  - signed 8 bit data transfer
1117    U16 - unsigned 16 bit data transfer
1118    S16 - signed 16 bit data transfer
1119    U32 - unsigned int (32 bit) data transfer
1120    S32 - signed int (32 bit) data transfer
1121    P   - pointer (sljit_up) data transfer
1122 */
1123 
1124 /* Flags: - (does not modify flags) */
1125 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
1126 /* Flags: - (does not modify flags) */
1127 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
1128 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_32)
1129 /* Flags: - (does not modify flags) */
1130 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
1131 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_32)
1132 /* Flags: - (does not modify flags) */
1133 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
1134 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_32)
1135 /* Flags: - (does not modify flags) */
1136 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
1137 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_32)
1138 /* Flags: - (does not modify flags)
1139    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
1140 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
1141 /* Flags: - (does not modify flags)
1142    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
1143 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
1144 /* Flags: - (does not modify flags) */
1145 #define SLJIT_MOV32			(SLJIT_OP1_BASE + 7)
1146 /* Flags: - (does not modify flags)
1147    Note: loads a pointer sized data, useful on x32 mode (a 64 bit mode
1148          on x86-64 which uses 32 bit pointers) or similar compiling modes */
1149 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 8)
1150 /* Count leading zeroes
1151    Flags: - (may destroy flags)
1152    Note: immediate source argument is not supported */
1153 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 9)
1154 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_32)
1155 /* Count trailing zeroes
1156    Flags: - (may destroy flags)
1157    Note: immediate source argument is not supported */
1158 #define SLJIT_CTZ			(SLJIT_OP1_BASE + 10)
1159 #define SLJIT_CTZ32			(SLJIT_CTZ | SLJIT_32)
1160 /* Reverse the order of bytes
1161    Flags: - (may destroy flags)
1162    Note: converts between little and big endian formats
1163    Note: immediate source argument is not supported */
1164 #define SLJIT_REV			(SLJIT_OP1_BASE + 11)
1165 #define SLJIT_REV32			(SLJIT_REV | SLJIT_32)
1166 /* Reverse the order of bytes in the lower 16 bit and extend as unsigned
1167    Flags: - (may destroy flags)
1168    Note: converts between little and big endian formats
1169    Note: immediate source argument is not supported */
1170 #define SLJIT_REV_U16			(SLJIT_OP1_BASE + 12)
1171 #define SLJIT_REV32_U16			(SLJIT_REV_U16 | SLJIT_32)
1172 /* Reverse the order of bytes in the lower 16 bit and extend as signed
1173    Flags: - (may destroy flags)
1174    Note: converts between little and big endian formats
1175    Note: immediate source argument is not supported */
1176 #define SLJIT_REV_S16			(SLJIT_OP1_BASE + 13)
1177 #define SLJIT_REV32_S16			(SLJIT_REV_S16 | SLJIT_32)
1178 /* Reverse the order of bytes in the lower 32 bit and extend as unsigned
1179    Flags: - (may destroy flags)
1180    Note: converts between little and big endian formats
1181    Note: immediate source argument is not supported */
1182 #define SLJIT_REV_U32			(SLJIT_OP1_BASE + 14)
1183 /* Reverse the order of bytes in the lower 32 bit and extend as signed
1184    Flags: - (may destroy flags)
1185    Note: converts between little and big endian formats
1186    Note: immediate source argument is not supported */
1187 #define SLJIT_REV_S32			(SLJIT_OP1_BASE + 15)
1188 
1189 /* The following unary operations are supported by using sljit_emit_op2:
1190      - binary not: SLJIT_XOR with immedate -1 as src1 or src2
1191      - negate: SLJIT_SUB with immedate 0 as src1
1192    Note: these operations are optimized by the compiler if the
1193      target CPU has specialized instruction forms for them. */
1194 
1195 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
1196 	sljit_s32 dst, sljit_sw dstw,
1197 	sljit_s32 src, sljit_sw srcw);
1198 
1199 /* Starting index of opcodes for sljit_emit_op2. */
1200 #define SLJIT_OP2_BASE			64
1201 
1202 /* Flags: Z | OVERFLOW | CARRY */
1203 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
1204 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_32)
1205 /* Flags: CARRY */
1206 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
1207 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_32)
1208 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
1209           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
1210           SIG_LESS_EQUAL | OVERFLOW | CARRY */
1211 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
1212 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_32)
1213 /* Flags: CARRY */
1214 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
1215 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_32)
1216 /* Note: integer mul
1217    Flags: OVERFLOW */
1218 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
1219 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_32)
1220 /* Flags: Z */
1221 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
1222 #define SLJIT_AND32			(SLJIT_AND | SLJIT_32)
1223 /* Flags: Z */
1224 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
1225 #define SLJIT_OR32			(SLJIT_OR | SLJIT_32)
1226 /* Flags: Z */
1227 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
1228 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_32)
1229 /* Flags: Z
1230    Let bit_length be the length of the shift operation: 32 or 64.
1231    If src2 is immediate, src2w is masked by (bit_length - 1).
1232    Otherwise, if the content of src2 is outside the range from 0
1233    to bit_length - 1, the result is undefined. */
1234 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
1235 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_32)
1236 /* Flags: Z
1237    Same as SLJIT_SHL, except the the second operand is
1238    always masked by the length of the shift operation. */
1239 #define SLJIT_MSHL			(SLJIT_OP2_BASE + 9)
1240 #define SLJIT_MSHL32			(SLJIT_MSHL | SLJIT_32)
1241 /* Flags: Z
1242    Let bit_length be the length of the shift operation: 32 or 64.
1243    If src2 is immediate, src2w is masked by (bit_length - 1).
1244    Otherwise, if the content of src2 is outside the range from 0
1245    to bit_length - 1, the result is undefined. */
1246 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 10)
1247 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_32)
1248 /* Flags: Z
1249    Same as SLJIT_LSHR, except the the second operand is
1250    always masked by the length of the shift operation. */
1251 #define SLJIT_MLSHR			(SLJIT_OP2_BASE + 11)
1252 #define SLJIT_MLSHR32			(SLJIT_MLSHR | SLJIT_32)
1253 /* Flags: Z
1254    Let bit_length be the length of the shift operation: 32 or 64.
1255    If src2 is immediate, src2w is masked by (bit_length - 1).
1256    Otherwise, if the content of src2 is outside the range from 0
1257    to bit_length - 1, the result is undefined. */
1258 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 12)
1259 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_32)
1260 /* Flags: Z
1261    Same as SLJIT_ASHR, except the the second operand is
1262    always masked by the length of the shift operation. */
1263 #define SLJIT_MASHR			(SLJIT_OP2_BASE + 13)
1264 #define SLJIT_MASHR32			(SLJIT_MASHR | SLJIT_32)
1265 /* Flags: - (may destroy flags)
1266    Let bit_length be the length of the rotate operation: 32 or 64.
1267    The second operand is always masked by (bit_length - 1). */
1268 #define SLJIT_ROTL			(SLJIT_OP2_BASE + 14)
1269 #define SLJIT_ROTL32			(SLJIT_ROTL | SLJIT_32)
1270 /* Flags: - (may destroy flags)
1271    Let bit_length be the length of the rotate operation: 32 or 64.
1272    The second operand is always masked by (bit_length - 1). */
1273 #define SLJIT_ROTR			(SLJIT_OP2_BASE + 15)
1274 #define SLJIT_ROTR32			(SLJIT_ROTR | SLJIT_32)
1275 
1276 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1277 	sljit_s32 dst, sljit_sw dstw,
1278 	sljit_s32 src1, sljit_sw src1w,
1279 	sljit_s32 src2, sljit_sw src2w);
1280 
1281 /* The sljit_emit_op2u function is the same as sljit_emit_op2
1282    except the result is discarded. */
1283 
1284 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
1285 	sljit_s32 src1, sljit_sw src1w,
1286 	sljit_s32 src2, sljit_sw src2w);
1287 
1288 /* Starting index of opcodes for sljit_emit_op2r. */
1289 #define SLJIT_OP2R_BASE			96
1290 
1291 /* Flags: - (may destroy flags) */
1292 #define SLJIT_MULADD			(SLJIT_OP2R_BASE + 0)
1293 #define SLJIT_MULADD32			(SLJIT_MULADD | SLJIT_32)
1294 
1295 /* Similar to sljit_emit_fop2, except the destination is always a register. */
1296 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2r(struct sljit_compiler *compiler, sljit_s32 op,
1297 	sljit_s32 dst_reg,
1298 	sljit_s32 src1, sljit_sw src1w,
1299 	sljit_s32 src2, sljit_sw src2w);
1300 
1301 /* Emit a left or right shift operation, where the bits shifted
1302    in comes from a separate source operand. All operands are
1303    interpreted as unsigned integers.
1304 
1305    In the followings the value_mask variable is 31 for 32 bit
1306      operations and word_size - 1 otherwise.
1307 
1308    op must be one of the following operations:
1309      SLJIT_SHL or SLJIT_SHL32:
1310        dst_reg = src1_reg << src3_reg
1311        dst_reg |= ((src2_reg >> 1) >> (src3 ^ value_mask))
1312      SLJIT_MSHL or SLJIT_MSHL32:
1313        src3 &= value_mask
1314        perform the SLJIT_SHL or SLJIT_SHL32 operation
1315      SLJIT_LSHR or SLJIT_LSHR32:
1316        dst_reg = src1_reg >> src3_reg
1317        dst_reg |= ((src2_reg << 1) << (src3 ^ value_mask))
1318      SLJIT_MLSHR or SLJIT_MLSHR32:
1319        src3 &= value_mask
1320        perform the SLJIT_LSHR or SLJIT_LSHR32 operation
1321 
1322    op can be combined (or'ed) with SLJIT_SHIFT_INTO_NON_ZERO
1323 
1324    dst_reg specifies the destination register, where dst_reg
1325      and src2_reg cannot be the same registers
1326    src1_reg specifies the source register
1327    src2_reg specifies the register which is shifted into src1_reg
1328    src3 / src3w contains the shift amount
1329 
1330    Note: a rotate operation is performed if src1_reg and
1331          src2_reg are the same registers
1332 
1333    Flags: - (may destroy flags) */
1334 
1335 /* The src3 operand contains a non-zero value. Improves
1336    the generated code on certain architectures, which
1337    provides a small performance improvement. */
1338 #define SLJIT_SHIFT_INTO_NON_ZERO	0x200
1339 
1340 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
1341 	sljit_s32 dst_reg,
1342 	sljit_s32 src1_reg,
1343 	sljit_s32 src2_reg,
1344 	sljit_s32 src3, sljit_sw src3w);
1345 
1346 /* Starting index of opcodes for sljit_emit_op_src
1347    and sljit_emit_op_dst. */
1348 #define SLJIT_OP_SRC_DST_BASE		112
1349 
1350 /* Fast return, see SLJIT_FAST_CALL for more details.
1351    Note: src cannot be an immedate value
1352    Flags: - (does not modify flags) */
1353 #define SLJIT_FAST_RETURN		(SLJIT_OP_SRC_DST_BASE + 0)
1354 /* Skip stack frames before fast return.
1355    Note: src cannot be an immedate value
1356    Flags: may destroy flags. */
1357 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN	(SLJIT_OP_SRC_DST_BASE + 1)
1358 /* Prefetch value into the level 1 data cache
1359    Note: if the target CPU does not support data prefetch,
1360          no instructions are emitted.
1361    Note: this instruction never fails, even if the memory address is invalid.
1362    Flags: - (does not modify flags) */
1363 #define SLJIT_PREFETCH_L1		(SLJIT_OP_SRC_DST_BASE + 2)
1364 /* Prefetch value into the level 2 data cache
1365    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1366          does not support this instruction form.
1367    Note: this instruction never fails, even if the memory address is invalid.
1368    Flags: - (does not modify flags) */
1369 #define SLJIT_PREFETCH_L2		(SLJIT_OP_SRC_DST_BASE + 3)
1370 /* Prefetch value into the level 3 data cache
1371    Note: same as SLJIT_PREFETCH_L2 if the target CPU
1372          does not support this instruction form.
1373    Note: this instruction never fails, even if the memory address is invalid.
1374    Flags: - (does not modify flags) */
1375 #define SLJIT_PREFETCH_L3		(SLJIT_OP_SRC_DST_BASE + 4)
1376 /* Prefetch a value which is only used once (and can be discarded afterwards)
1377    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1378          does not support this instruction form.
1379    Note: this instruction never fails, even if the memory address is invalid.
1380    Flags: - (does not modify flags) */
1381 #define SLJIT_PREFETCH_ONCE		(SLJIT_OP_SRC_DST_BASE + 5)
1382 
1383 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1384 	sljit_s32 src, sljit_sw srcw);
1385 
1386 /* Fast enter, see SLJIT_FAST_CALL for more details.
1387    Flags: - (does not modify flags) */
1388 #define SLJIT_FAST_ENTER		(SLJIT_OP_SRC_DST_BASE + 6)
1389 
1390 /* Copies the return address into dst. The return address is the
1391    address where the execution continues after the called function
1392    returns (see: sljit_emit_return / sljit_emit_return_void).
1393    Flags: - (does not modify flags) */
1394 #define SLJIT_GET_RETURN_ADDRESS	(SLJIT_OP_SRC_DST_BASE + 7)
1395 
1396 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_dst(struct sljit_compiler *compiler, sljit_s32 op,
1397 	sljit_s32 dst, sljit_sw dstw);
1398 
1399 /* Starting index of opcodes for sljit_emit_fop1. */
1400 #define SLJIT_FOP1_BASE			144
1401 
1402 /* Flags: - (does not modify flags) */
1403 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
1404 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_32)
1405 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1406    SRC/DST TYPE can be: F64, F32, S32, SW
1407    Rounding mode when the destination is SW or S32: round towards zero. */
1408 /* Flags: - (may destroy flags) */
1409 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
1410 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_32)
1411 /* Flags: - (may destroy flags) */
1412 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
1413 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_32)
1414 /* Flags: - (may destroy flags) */
1415 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
1416 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_32)
1417 /* Flags: - (may destroy flags) */
1418 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
1419 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_32)
1420 /* Flags: - (may destroy flags) */
1421 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
1422 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_32)
1423 /* Flags: - (may destroy flags) */
1424 #define SLJIT_CONV_F64_FROM_UW		(SLJIT_FOP1_BASE + 6)
1425 #define SLJIT_CONV_F32_FROM_UW		(SLJIT_CONV_F64_FROM_UW | SLJIT_32)
1426 /* Flags: - (may destroy flags) */
1427 #define SLJIT_CONV_F64_FROM_U32		(SLJIT_FOP1_BASE + 7)
1428 #define SLJIT_CONV_F32_FROM_U32		(SLJIT_CONV_F64_FROM_U32 | SLJIT_32)
1429 /* Note: dst is the left and src is the right operand for SLJIT_CMP_F32/64.
1430    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1431 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 8)
1432 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_32)
1433 /* Flags: - (may destroy flags) */
1434 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 9)
1435 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_32)
1436 /* Flags: - (may destroy flags) */
1437 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 10)
1438 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_32)
1439 
1440 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1441 	sljit_s32 dst, sljit_sw dstw,
1442 	sljit_s32 src, sljit_sw srcw);
1443 
1444 /* Starting index of opcodes for sljit_emit_fop2. */
1445 #define SLJIT_FOP2_BASE			176
1446 
1447 /* Flags: - (may destroy flags) */
1448 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
1449 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_32)
1450 /* Flags: - (may destroy flags) */
1451 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
1452 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_32)
1453 /* Flags: - (may destroy flags) */
1454 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
1455 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_32)
1456 /* Flags: - (may destroy flags) */
1457 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
1458 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_32)
1459 
1460 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1461 	sljit_s32 dst, sljit_sw dstw,
1462 	sljit_s32 src1, sljit_sw src1w,
1463 	sljit_s32 src2, sljit_sw src2w);
1464 
1465 /* Starting index of opcodes for sljit_emit_fop2r. */
1466 #define SLJIT_FOP2R_BASE		192
1467 
1468 /* Flags: - (may destroy flags) */
1469 #define SLJIT_COPYSIGN_F64		(SLJIT_FOP2R_BASE + 0)
1470 #define SLJIT_COPYSIGN_F32		(SLJIT_COPYSIGN_F64 | SLJIT_32)
1471 
1472 /* Similar to sljit_emit_fop2, except the destination is always a register. */
1473 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2r(struct sljit_compiler *compiler, sljit_s32 op,
1474 	sljit_s32 dst_freg,
1475 	sljit_s32 src1, sljit_sw src1w,
1476 	sljit_s32 src2, sljit_sw src2w);
1477 
1478 /* Sets a floating point register to an immediate value. */
1479 
1480 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset32(struct sljit_compiler *compiler,
1481 	sljit_s32 freg, sljit_f32 value);
1482 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler,
1483 	sljit_s32 freg, sljit_f64 value);
1484 
1485 /* The following opcodes are used by sljit_emit_fcopy(). */
1486 
1487 /* 64 bit: copy a 64 bit value from an integer register into a
1488            64 bit floating point register without any modifications.
1489    32 bit: copy a 32 bit register or register pair into a 64 bit
1490            floating point register without any modifications. The
1491            register, or the first register of the register pair
1492            replaces the high order 32 bit of the floating point
1493            register. If a register pair is passed, the low
1494            order 32 bit is replaced by the second register.
1495            Otherwise, the low order 32 bit is unchanged. */
1496 #define SLJIT_COPY_TO_F64		1
1497 /* Copy a 32 bit value from an integer register into a 32 bit
1498    floating point register without any modifications. */
1499 #define SLJIT_COPY32_TO_F32		(SLJIT_COPY_TO_F64 | SLJIT_32)
1500 /* 64 bit: copy the value of a 64 bit floating point register into
1501            an integer register without any modifications.
1502    32 bit: copy a 64 bit floating point register into a 32 bit register
1503            or a 32 bit register pair without any modifications. The
1504            high order 32 bit of the floating point register is copied
1505            into the register, or the first register of the register
1506            pair. If a register pair is passed, the low order 32 bit
1507            is copied into the second register. */
1508 #define SLJIT_COPY_FROM_F64		2
1509 /* Copy the value of a 32 bit floating point register into an integer
1510    register without any modifications. The register should be processed
1511    with 32 bit operations later. */
1512 #define SLJIT_COPY32_FROM_F32		(SLJIT_COPY_FROM_F64 | SLJIT_32)
1513 
1514 /* Special data copy which involves floating point registers.
1515 
1516   op must be between SLJIT_COPY_TO_F64 and SLJIT_COPY32_FROM_F32
1517   freg must be a floating point register
1518   reg must be a register or register pair */
1519 
1520 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op,
1521 	sljit_s32 freg, sljit_s32 reg);
1522 
1523 /* Label and jump instructions. */
1524 
1525 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1526 
1527 /* The SLJIT_FAST_CALL is a calling method for creating lightweight function
1528    calls. This type of calls preserve the values of all registers and stack
1529    frame. Unlike normal function calls, the enter and return operations must
1530    be performed by the SLJIT_FAST_ENTER and SLJIT_FAST_RETURN operations
1531    respectively. The return address is stored in the dst argument of the
1532    SLJIT_FAST_ENTER operation, and this return address should be passed as
1533    the src argument for the SLJIT_FAST_RETURN operation to return from the
1534    called function.
1535 
1536    Fast calls are cheap operations (usually only a single call instruction is
1537    emitted) but they do not preserve any registers. However the callee function
1538    can freely use / update any registers and the locals area which can be
1539    efficiently exploited by various optimizations. Registers can be saved
1540    and restored manually if needed.
1541 
1542    Although returning to different address by SLJIT_FAST_RETURN is possible,
1543    this address usually cannot be predicted by the return address predictor of
1544    modern CPUs which may reduce performance. Furthermore certain security
1545    enhancement technologies such as Intel Control-flow Enforcement Technology
1546    (CET) may disallow returning to a different address (indirect jumps
1547    can be used instead, see SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN). */
1548 
1549 /* Invert (negate) conditional type: xor (^) with 0x1 */
1550 
1551 /* Integer comparison types. */
1552 #define SLJIT_EQUAL			0
1553 #define SLJIT_ZERO			SLJIT_EQUAL
1554 #define SLJIT_NOT_EQUAL			1
1555 #define SLJIT_NOT_ZERO			SLJIT_NOT_EQUAL
1556 
1557 #define SLJIT_LESS			2
1558 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
1559 #define SLJIT_GREATER_EQUAL		3
1560 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_LESS)
1561 #define SLJIT_GREATER			4
1562 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
1563 #define SLJIT_LESS_EQUAL		5
1564 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_GREATER)
1565 #define SLJIT_SIG_LESS			6
1566 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
1567 #define SLJIT_SIG_GREATER_EQUAL		7
1568 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_LESS)
1569 #define SLJIT_SIG_GREATER		8
1570 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
1571 #define SLJIT_SIG_LESS_EQUAL		9
1572 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER)
1573 
1574 #define SLJIT_OVERFLOW			10
1575 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
1576 #define SLJIT_NOT_OVERFLOW		11
1577 
1578 /* Unlike other flags, sljit_emit_jump may destroy the carry flag. */
1579 #define SLJIT_CARRY			12
1580 #define SLJIT_SET_CARRY			SLJIT_SET(SLJIT_CARRY)
1581 #define SLJIT_NOT_CARRY			13
1582 
1583 #define SLJIT_ATOMIC_STORED		14
1584 #define SLJIT_SET_ATOMIC_STORED		SLJIT_SET(SLJIT_ATOMIC_STORED)
1585 #define SLJIT_ATOMIC_NOT_STORED		15
1586 
1587 /* Basic floating point comparison types.
1588 
1589    Note: when the comparison result is unordered, their behaviour is unspecified. */
1590 
1591 #define SLJIT_F_EQUAL				16
1592 #define SLJIT_SET_F_EQUAL			SLJIT_SET(SLJIT_F_EQUAL)
1593 #define SLJIT_F_NOT_EQUAL			17
1594 #define SLJIT_SET_F_NOT_EQUAL			SLJIT_SET(SLJIT_F_EQUAL)
1595 #define SLJIT_F_LESS				18
1596 #define SLJIT_SET_F_LESS			SLJIT_SET(SLJIT_F_LESS)
1597 #define SLJIT_F_GREATER_EQUAL			19
1598 #define SLJIT_SET_F_GREATER_EQUAL		SLJIT_SET(SLJIT_F_LESS)
1599 #define SLJIT_F_GREATER				20
1600 #define SLJIT_SET_F_GREATER			SLJIT_SET(SLJIT_F_GREATER)
1601 #define SLJIT_F_LESS_EQUAL			21
1602 #define SLJIT_SET_F_LESS_EQUAL			SLJIT_SET(SLJIT_F_GREATER)
1603 
1604 /* Jumps when either argument contains a NaN value. */
1605 #define SLJIT_UNORDERED				22
1606 #define SLJIT_SET_UNORDERED			SLJIT_SET(SLJIT_UNORDERED)
1607 /* Jumps when neither argument contains a NaN value. */
1608 #define SLJIT_ORDERED				23
1609 #define SLJIT_SET_ORDERED			SLJIT_SET(SLJIT_UNORDERED)
1610 
1611 /* Ordered / unordered floating point comparison types.
1612 
1613    Note: each comparison type has an ordered and unordered form. Some
1614          architectures supports only either of them (see: sljit_cmp_info). */
1615 
1616 #define SLJIT_ORDERED_EQUAL			24
1617 #define SLJIT_SET_ORDERED_EQUAL			SLJIT_SET(SLJIT_ORDERED_EQUAL)
1618 #define SLJIT_UNORDERED_OR_NOT_EQUAL		25
1619 #define SLJIT_SET_UNORDERED_OR_NOT_EQUAL	SLJIT_SET(SLJIT_ORDERED_EQUAL)
1620 #define SLJIT_ORDERED_LESS			26
1621 #define SLJIT_SET_ORDERED_LESS			SLJIT_SET(SLJIT_ORDERED_LESS)
1622 #define SLJIT_UNORDERED_OR_GREATER_EQUAL	27
1623 #define SLJIT_SET_UNORDERED_OR_GREATER_EQUAL	SLJIT_SET(SLJIT_ORDERED_LESS)
1624 #define SLJIT_ORDERED_GREATER			28
1625 #define SLJIT_SET_ORDERED_GREATER		SLJIT_SET(SLJIT_ORDERED_GREATER)
1626 #define SLJIT_UNORDERED_OR_LESS_EQUAL		29
1627 #define SLJIT_SET_UNORDERED_OR_LESS_EQUAL	SLJIT_SET(SLJIT_ORDERED_GREATER)
1628 
1629 #define SLJIT_UNORDERED_OR_EQUAL		30
1630 #define SLJIT_SET_UNORDERED_OR_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
1631 #define SLJIT_ORDERED_NOT_EQUAL			31
1632 #define SLJIT_SET_ORDERED_NOT_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_EQUAL)
1633 #define SLJIT_UNORDERED_OR_LESS			32
1634 #define SLJIT_SET_UNORDERED_OR_LESS		SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
1635 #define SLJIT_ORDERED_GREATER_EQUAL		33
1636 #define SLJIT_SET_ORDERED_GREATER_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_LESS)
1637 #define SLJIT_UNORDERED_OR_GREATER		34
1638 #define SLJIT_SET_UNORDERED_OR_GREATER		SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
1639 #define SLJIT_ORDERED_LESS_EQUAL		35
1640 #define SLJIT_SET_ORDERED_LESS_EQUAL		SLJIT_SET(SLJIT_UNORDERED_OR_GREATER)
1641 
1642 /* Unconditional jump types. */
1643 #define SLJIT_JUMP			36
1644 /* Fast calling method. See the description above. */
1645 #define SLJIT_FAST_CALL			37
1646 /* Default C calling convention. */
1647 #define SLJIT_CALL			38
1648 /* Called function must be compiled by SLJIT.
1649    See SLJIT_ENTER_REG_ARG option. */
1650 #define SLJIT_CALL_REG_ARG		39
1651 
1652 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1653 #define SLJIT_REWRITABLE_JUMP		0x1000
1654 /* When this flag is passed, the execution of the current function ends and
1655    the called function returns to the caller of the current function. The
1656    stack usage is reduced before the call, but it is not necessarily reduced
1657    to zero. In the latter case the compiler needs to allocate space for some
1658    arguments and the return address must be stored on the stack as well. */
1659 #define SLJIT_CALL_RETURN		0x2000
1660 
1661 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1662     type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1663     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1664 
1665    Flags: does not modify flags. */
1666 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1667 
1668 /* Emit a C compiler (ABI) compatible function call.
1669     type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
1670     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP and/or SLJIT_CALL_RETURN
1671     arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros
1672 
1673    Flags: destroy all flags. */
1674 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1675 
1676 /* Basic arithmetic comparison. In most architectures it is implemented as
1677    a compare operation followed by a sljit_emit_jump. However some
1678    architectures (i.e: ARM64 or MIPS) may employ special optimizations
1679    here. It is suggested to use this comparison form when appropriate.
1680     type must be between SLJIT_EQUAL and SLJIT_SIG_LESS_EQUAL
1681     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1682 
1683    Flags: may destroy flags. */
1684 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1685 	sljit_s32 src1, sljit_sw src1w,
1686 	sljit_s32 src2, sljit_sw src2w);
1687 
1688 /* Basic floating point comparison. In most architectures it is implemented as
1689    a SLJIT_CMP_F32/64 operation (setting appropriate flags) followed by a
1690    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1691    special optimizations here. It is suggested to use this comparison form
1692    when appropriate.
1693     type must be between SLJIT_F_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1694     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1695    Flags: destroy flags.
1696    Note: when an operand is NaN the behaviour depends on the comparison type. */
1697 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1698 	sljit_s32 src1, sljit_sw src1w,
1699 	sljit_s32 src2, sljit_sw src2w);
1700 
1701 /* Set the destination of the jump to this label. */
1702 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1703 /* Set the destination address of the jump to this label. */
1704 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1705 
1706 /* Emit an indirect jump or fast call.
1707    Direct form: set src to SLJIT_IMM() and srcw to the address
1708    Indirect form: any other valid addressing mode
1709     type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1710 
1711    Flags: does not modify flags. */
1712 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1713 
1714 /* Emit a C compiler (ABI) compatible function call.
1715    Direct form: set src to SLJIT_IMM() and srcw to the address
1716    Indirect form: any other valid addressing mode
1717     type must be SLJIT_CALL or SLJIT_CALL_REG_ARG
1718     type can be combined (or'ed) with SLJIT_CALL_RETURN
1719     arg_types can be specified by SLJIT_ARGSx (SLJIT_ARG_RETURN / SLJIT_ARG_VALUE) macros
1720 
1721    Flags: destroy all flags. */
1722 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1723 
1724 /* Perform an operation using the conditional flags as the second argument.
1725    Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL.
1726    The value represented by the type is 1, if the condition represented
1727    by the type is fulfilled, and 0 otherwise.
1728 
1729    When op is SLJIT_MOV or SLJIT_MOV32:
1730      Set dst to the value represented by the type (0 or 1).
1731      Flags: - (does not modify flags)
1732    When op is SLJIT_AND, SLJIT_AND32, SLJIT_OR, SLJIT_OR32, SLJIT_XOR, or SLJIT_XOR32
1733      Performs the binary operation using dst as the first, and the value
1734      represented by type as the second argument. Result is written into dst.
1735      Flags: Z (may destroy flags) */
1736 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1737 	sljit_s32 dst, sljit_sw dstw,
1738 	sljit_s32 type);
1739 
1740 /* Emit a conditional select instruction which moves src1 to dst_reg,
1741    if the condition is satisfied, or src2_reg to dst_reg otherwise.
1742 
1743    type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1744    type can be combined (or'ed) with SLJIT_32 to move 32 bit
1745        register values instead of word sized ones
1746    dst_reg and src2_reg must be valid registers
1747    src1 must be valid operand
1748 
1749    Note: if src1 is a memory operand, its value
1750          might be loaded even if the condition is false.
1751 
1752    Flags: - (does not modify flags) */
1753 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_select(struct sljit_compiler *compiler, sljit_s32 type,
1754 	sljit_s32 dst_reg,
1755 	sljit_s32 src1, sljit_sw src1w,
1756 	sljit_s32 src2_reg);
1757 
1758 /* Emit a conditional floating point select instruction which moves
1759    src1 to dst_reg, if the condition is satisfied, or src2_reg to
1760    dst_reg otherwise.
1761 
1762    type must be between SLJIT_EQUAL and SLJIT_ORDERED_LESS_EQUAL
1763    type can be combined (or'ed) with SLJIT_32 to move 32 bit
1764        floating point values instead of 64 bit ones
1765    dst_freg and src2_freg must be valid floating point registers
1766    src1 must be valid operand
1767 
1768    Note: if src1 is a memory operand, its value
1769          might be loaded even if the condition is false.
1770 
1771    Flags: - (does not modify flags) */
1772 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fselect(struct sljit_compiler *compiler, sljit_s32 type,
1773 	sljit_s32 dst_freg,
1774 	sljit_s32 src1, sljit_sw src1w,
1775 	sljit_s32 src2_freg);
1776 
1777 /* The following flags are used by sljit_emit_mem(), sljit_emit_mem_update(),
1778    sljit_emit_fmem(), and sljit_emit_fmem_update(). */
1779 
1780 /* Memory load operation. This is the default. */
1781 #define SLJIT_MEM_LOAD		0x000000
1782 /* Memory store operation. */
1783 #define SLJIT_MEM_STORE		0x000200
1784 
1785 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1786 
1787 /* Load or stora data from an unaligned (byte aligned) address. */
1788 #define SLJIT_MEM_UNALIGNED	0x000400
1789 /* Load or stora data from a 16 bit aligned address. */
1790 #define SLJIT_MEM_ALIGNED_16	0x000800
1791 /* Load or stora data from a 32 bit aligned address. */
1792 #define SLJIT_MEM_ALIGNED_32	0x001000
1793 
1794 /* The following flags are used by sljit_emit_mem_update(),
1795    and sljit_emit_fmem_update(). */
1796 
1797 /* Base register is updated before the memory access (default). */
1798 #define SLJIT_MEM_PRE		0x000000
1799 /* Base register is updated after the memory access. */
1800 #define SLJIT_MEM_POST		0x000400
1801 
1802 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1803    Instead the function returns with SLJIT_SUCCESS if the instruction
1804    form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1805    allows runtime checking of available instruction forms. */
1806 #define SLJIT_MEM_SUPP		0x000800
1807 
1808 /* The sljit_emit_mem emits instructions for various memory operations:
1809 
1810    When SLJIT_MEM_UNALIGNED / SLJIT_MEM_ALIGNED_16 /
1811         SLJIT_MEM_ALIGNED_32 is set in type argument:
1812      Emit instructions for unaligned memory loads or stores. When
1813      SLJIT_UNALIGNED is not defined, the only way to access unaligned
1814      memory data is using sljit_emit_mem. Otherwise all operations (e.g.
1815      sljit_emit_op1/2, or sljit_emit_fop1/2) supports unaligned access.
1816      In general, the performance of unaligned memory accesses are often
1817      lower than aligned and should be avoided.
1818 
1819    When a pair of registers is passed in reg argument:
1820      Emit instructions for moving data between a register pair and
1821      memory. The register pair can be specified by the SLJIT_REG_PAIR
1822      macro. The first register is loaded from or stored into the
1823      location specified by the mem/memw arguments, and the end address
1824      of this operation is the starting address of the data transfer
1825      between the second register and memory. The type argument must
1826      be SLJIT_MOV. The SLJIT_MEM_UNALIGNED / SLJIT_MEM_ALIGNED_*
1827      options are allowed for this operation.
1828 
1829    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1830      combined (or'ed) with SLJIT_MEM_* flags
1831    reg is a register or register pair, which is the source or
1832      destination of the operation
1833    mem must be a memory operand
1834 
1835    Flags: - (does not modify flags) */
1836 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1837 	sljit_s32 reg,
1838 	sljit_s32 mem, sljit_sw memw);
1839 
1840 /* Emit a single memory load or store with update instruction.
1841    When the requested instruction form is not supported by the CPU,
1842    it returns with SLJIT_ERR_UNSUPPORTED instead of emulating the
1843    instruction. This allows specializing tight loops based on
1844    the supported instruction forms (see SLJIT_MEM_SUPP flag).
1845    Absolute address (SLJIT_MEM0) forms are never supported
1846    and the base (first) register specified by the mem argument
1847    must not be SLJIT_SP and must also be different from the
1848    register specified by the reg argument.
1849 
1850    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1851      combined (or'ed) with SLJIT_MEM_* flags
1852    reg is the source or destination register of the operation
1853    mem must be a memory operand
1854 
1855    Flags: - (does not modify flags) */
1856 
1857 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type,
1858 	sljit_s32 reg,
1859 	sljit_s32 mem, sljit_sw memw);
1860 
1861 /* Same as sljit_emit_mem except the followings:
1862 
1863    Loading or storing a pair of registers is not supported.
1864 
1865    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1866      combined (or'ed) with SLJIT_MEM_* flags.
1867    freg is the source or destination floating point register
1868      of the operation
1869    mem must be a memory operand
1870 
1871    Flags: - (does not modify flags) */
1872 
1873 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1874 	sljit_s32 freg,
1875 	sljit_s32 mem, sljit_sw memw);
1876 
1877 /* Same as sljit_emit_mem_update except the followings:
1878 
1879    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1880      combined (or'ed) with SLJIT_MEM_* flags
1881    freg is the source or destination floating point register
1882      of the operation
1883    mem must be a memory operand
1884 
1885    Flags: - (does not modify flags) */
1886 
1887 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem_update(struct sljit_compiler *compiler, sljit_s32 type,
1888 	sljit_s32 freg,
1889 	sljit_s32 mem, sljit_sw memw);
1890 
1891 /* The following options are used by several simd operations. */
1892 
1893 /* Load data into a simd register, this is the default */
1894 #define SLJIT_SIMD_LOAD			0x000000
1895 /* Store data from a simd register */
1896 #define SLJIT_SIMD_STORE		0x000001
1897 /* The simd register contains floating point values */
1898 #define SLJIT_SIMD_FLOAT		0x000400
1899 /* Tests whether the operation is available */
1900 #define SLJIT_SIMD_TEST			0x000800
1901 /* Move data to/from a 64 bit (8 byte) long SIMD register */
1902 #define SLJIT_SIMD_REG_64		(3 << 12)
1903 /* Move data to/from a 128 bit (16 byte) long SIMD register */
1904 #define SLJIT_SIMD_REG_128		(4 << 12)
1905 /* Move data to/from a 256 bit (32 byte) long SIMD register */
1906 #define SLJIT_SIMD_REG_256		(5 << 12)
1907 /* Move data to/from a 512 bit (64 byte) long SIMD register */
1908 #define SLJIT_SIMD_REG_512		(6 << 12)
1909 /* Element size is 8 bit long (this is the default), usually cannot be combined with SLJIT_SIMD_FLOAT */
1910 #define SLJIT_SIMD_ELEM_8		(0 << 18)
1911 /* Element size is 16 bit long, usually cannot be combined with SLJIT_SIMD_FLOAT */
1912 #define SLJIT_SIMD_ELEM_16		(1 << 18)
1913 /* Element size is 32 bit long */
1914 #define SLJIT_SIMD_ELEM_32		(2 << 18)
1915 /* Element size is 64 bit long */
1916 #define SLJIT_SIMD_ELEM_64		(3 << 18)
1917 /* Element size is 128 bit long */
1918 #define SLJIT_SIMD_ELEM_128		(4 << 18)
1919 /* Element size is 256 bit long */
1920 #define SLJIT_SIMD_ELEM_256		(5 << 18)
1921 
1922 /* The following options are used by sljit_emit_simd_mov(). */
1923 
1924 /* Memory address is unaligned (this is the default) */
1925 #define SLJIT_SIMD_MEM_UNALIGNED	(0 << 24)
1926 /* Memory address is 16 bit aligned */
1927 #define SLJIT_SIMD_MEM_ALIGNED_16	(1 << 24)
1928 /* Memory address is 32 bit aligned */
1929 #define SLJIT_SIMD_MEM_ALIGNED_32	(2 << 24)
1930 /* Memory address is 64 bit aligned */
1931 #define SLJIT_SIMD_MEM_ALIGNED_64	(3 << 24)
1932 /* Memory address is 128 bit aligned */
1933 #define SLJIT_SIMD_MEM_ALIGNED_128	(4 << 24)
1934 /* Memory address is 256 bit aligned */
1935 #define SLJIT_SIMD_MEM_ALIGNED_256	(5 << 24)
1936 /* Memory address is 512 bit aligned */
1937 #define SLJIT_SIMD_MEM_ALIGNED_512	(6 << 24)
1938 
1939 /* Moves data between a simd register and memory.
1940 
1941    If the operation is not supported, it returns with
1942    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1943    it does not emit any instructions.
1944 
1945    type must be a combination of SLJIT_SIMD_* and
1946      SLJIT_SIMD_MEM_* options
1947    freg is the source or destination simd register
1948      of the operation
1949    srcdst must be a memory operand or a simd register
1950 
1951    Note:
1952        The alignment and element size must be
1953        less or equal than simd register size.
1954 
1955    Flags: - (does not modify flags) */
1956 
1957 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type,
1958 	sljit_s32 freg,
1959 	sljit_s32 srcdst, sljit_sw srcdstw);
1960 
1961 /* Replicates a scalar value to all lanes of a simd
1962    register.
1963 
1964    If the operation is not supported, it returns with
1965    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1966    it does not emit any instructions.
1967 
1968    type must be a combination of SLJIT_SIMD_* options
1969      except SLJIT_SIMD_STORE.
1970    freg is the destination simd register of the operation
1971    src is the value which is replicated
1972 
1973    Note:
1974        The src == SLJIT_IMM and srcw == 0 can be used to
1975        clear a register even when SLJIT_SIMD_FLOAT is set.
1976 
1977    Flags: - (does not modify flags) */
1978 
1979 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_replicate(struct sljit_compiler *compiler, sljit_s32 type,
1980 	sljit_s32 freg,
1981 	sljit_s32 src, sljit_sw srcw);
1982 
1983 /* The following options are used by sljit_emit_simd_lane_mov(). */
1984 
1985 /* Clear all bits of the simd register before loading the lane. */
1986 #define SLJIT_SIMD_LANE_ZERO		0x000002
1987 /* Sign extend the integer value stored from the lane. */
1988 #define SLJIT_SIMD_LANE_SIGNED		0x000004
1989 
1990 /* Moves data between a simd register lane and a register or
1991    memory. If the srcdst argument is a register, it must be
1992    a floating point register when SLJIT_SIMD_FLOAT is specified,
1993    or a general purpose register otherwise.
1994 
1995    If the operation is not supported, it returns with
1996    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
1997    it does not emit any instructions.
1998 
1999    type must be a combination of SLJIT_SIMD_* options
2000      Further options:
2001        SLJIT_32 - when SLJIT_SIMD_FLOAT is not set
2002        SLJIT_SIMD_LANE_SIGNED - when SLJIT_SIMD_STORE
2003            is set and SLJIT_SIMD_FLOAT is not set
2004        SLJIT_SIMD_LANE_ZERO - when SLJIT_SIMD_LOAD
2005            is specified
2006    freg is the source or destination simd register
2007      of the operation
2008    lane_index is the index of the lane
2009    srcdst is the destination operand for loads, and
2010      source operand for stores
2011 
2012    Note:
2013        The elem size must be lower than register size.
2014 
2015    Flags: - (does not modify flags) */
2016 
2017 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_mov(struct sljit_compiler *compiler, sljit_s32 type,
2018 	sljit_s32 freg, sljit_s32 lane_index,
2019 	sljit_s32 srcdst, sljit_sw srcdstw);
2020 
2021 /* Replicates a scalar value from a lane to all lanes
2022    of a simd register.
2023 
2024    If the operation is not supported, it returns with
2025    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2026    it does not emit any instructions.
2027 
2028    type must be a combination of SLJIT_SIMD_* options
2029      except SLJIT_SIMD_STORE.
2030    freg is the destination simd register of the operation
2031    src is the simd register which lane is replicated
2032    src_lane_index is the lane index of the src register
2033 
2034    Flags: - (does not modify flags) */
2035 
2036 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_replicate(struct sljit_compiler *compiler, sljit_s32 type,
2037 	sljit_s32 freg,
2038 	sljit_s32 src, sljit_s32 src_lane_index);
2039 
2040 /* The following options are used by sljit_emit_simd_load_extend(). */
2041 
2042 /* Sign extend the integer elements */
2043 #define SLJIT_SIMD_EXTEND_SIGNED	0x000002
2044 /* Extend data to 16 bit */
2045 #define SLJIT_SIMD_EXTEND_16		(1 << 24)
2046 /* Extend data to 32 bit */
2047 #define SLJIT_SIMD_EXTEND_32		(2 << 24)
2048 /* Extend data to 64 bit */
2049 #define SLJIT_SIMD_EXTEND_64		(3 << 24)
2050 
2051 /* Extend elements and stores them in a simd register.
2052    The extension operation increases the size of the
2053    elements (e.g. from 16 bit to 64 bit). For integer
2054    values, the extension can be signed or unsigned.
2055 
2056    If the operation is not supported, it returns with
2057    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2058    it does not emit any instructions.
2059 
2060    type must be a combination of SLJIT_SIMD_*, and
2061      SLJIT_SIMD_EXTEND_* options except SLJIT_SIMD_STORE
2062    freg is the destination simd register of the operation
2063    src must be a memory operand or a simd register.
2064      In the latter case, the source elements are stored
2065      in the lower half of the register.
2066 
2067    Flags: - (does not modify flags) */
2068 
2069 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_extend(struct sljit_compiler *compiler, sljit_s32 type,
2070 	sljit_s32 freg,
2071 	sljit_s32 src, sljit_sw srcw);
2072 
2073 /* Extract the highest bit (usually the sign bit) from
2074    each elements of a vector.
2075 
2076    If the operation is not supported, it returns with
2077    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2078    it does not emit any instructions.
2079 
2080    type must be a combination of SLJIT_SIMD_* and SLJIT_32
2081      options except SLJIT_SIMD_LOAD
2082    freg is the source simd register of the operation
2083    dst is the destination operand
2084 
2085    Flags: - (does not modify flags) */
2086 
2087 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_sign(struct sljit_compiler *compiler, sljit_s32 type,
2088 	sljit_s32 freg,
2089 	sljit_s32 dst, sljit_sw dstw);
2090 
2091 /* The following options are used by sljit_emit_simd_op2(). */
2092 
2093 /* Binary 'and' operation */
2094 #define SLJIT_SIMD_OP2_AND		0x000001
2095 /* Binary 'or' operation */
2096 #define SLJIT_SIMD_OP2_OR		0x000002
2097 /* Binary 'xor' operation */
2098 #define SLJIT_SIMD_OP2_XOR		0x000003
2099 
2100 /* Perform simd operations using simd registers.
2101 
2102    If the operation is not supported, it returns with
2103    SLJIT_ERR_UNSUPPORTED. If SLJIT_SIMD_TEST is passed,
2104    it does not emit any instructions.
2105 
2106    type must be a combination of SLJIT_SIMD_* and SLJIT_SIMD_OP2_
2107      options except SLJIT_SIMD_LOAD and SLJIT_SIMD_STORE
2108    dst_freg is the destination register of the operation
2109    src1_freg is the first source register of the operation
2110    src1_freg is the second source register of the operation
2111 
2112    Flags: - (does not modify flags) */
2113 
2114 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_op2(struct sljit_compiler *compiler, sljit_s32 type,
2115 	sljit_s32 dst_freg, sljit_s32 src1_freg, sljit_s32 src2_freg);
2116 
2117 /* The sljit_emit_atomic_load and sljit_emit_atomic_store operation pair
2118    can perform an atomic read-modify-write operation. First, an unsigned
2119    value must be loaded from memory using sljit_emit_atomic_load. Then,
2120    the updated value must be written back to the same memory location by
2121    sljit_emit_atomic_store. A thread can only perform a single atomic
2122    operation at a time.
2123 
2124    Note: atomic operations are experimental, and not implemented
2125          for all cpus.
2126 
2127    The following conditions must be satisfied, or the operation
2128    is undefined:
2129      - the address provided in mem_reg must be divisible by the size of
2130        the value (only naturally aligned updates are supported)
2131      - no memory writes are allowed between the load and store operations
2132        regardless of its target address (currently read operations are
2133        allowed, but this might change in the future)
2134      - the memory operation (op) and the base address (stored in mem_reg)
2135        passed to the load/store operations must be the same (the mem_reg
2136        can be a different register, only its value must be the same)
2137      - an store must always follow a load for the same transaction.
2138 
2139    op must be between SLJIT_MOV and SLJIT_MOV_P, excluding all
2140      signed loads such as SLJIT_MOV32_S16
2141    dst_reg is the register where the data will be loaded into
2142    mem_reg is the base address of the memory load (it cannot be
2143      SLJIT_SP or a virtual register on x86-32)
2144 
2145    Flags: - (does not modify flags) */
2146 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_load(struct sljit_compiler *compiler, sljit_s32 op,
2147 	sljit_s32 dst_reg,
2148 	sljit_s32 mem_reg);
2149 
2150 /* The sljit_emit_atomic_load and sljit_emit_atomic_store operations
2151    allows performing an atomic read-modify-write operation. See the
2152    description of sljit_emit_atomic_load.
2153 
2154    op must be between SLJIT_MOV and SLJIT_MOV_P, excluding all signed
2155      loads such as SLJIT_MOV32_S16
2156    src_reg is the register which value is stored into the memory
2157    mem_reg is the base address of the memory store (it cannot be
2158      SLJIT_SP or a virtual register on x86-32)
2159    temp_reg is a not preserved scratch register, which must be
2160      initialized with the value loaded into the dst_reg during the
2161      corresponding sljit_emit_atomic_load operation, or the operation
2162      is undefined
2163 
2164    Flags: ATOMIC_STORED is set if the operation is successful,
2165      otherwise the memory remains unchanged. */
2166 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_store(struct sljit_compiler *compiler, sljit_s32 op,
2167 	sljit_s32 src_reg,
2168 	sljit_s32 mem_reg,
2169 	sljit_s32 temp_reg);
2170 
2171 /* Copies the base address of SLJIT_SP + offset to dst. The offset can
2172    represent the starting address of a value in the local data (stack).
2173    The offset is not limited by the local data limits, it can be any value.
2174    For example if an array of bytes are stored on the stack from
2175    offset 0x40, and R0 contains the offset of an array item plus 0x120,
2176    this item can be changed by two SLJIT instructions:
2177 
2178    sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
2179    sljit_emit_op1(compiler, SLJIT_MOV_U8, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
2180 
2181    Flags: - (may destroy flags) */
2182 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
2183 
2184 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
2185    Flags: - (does not modify flags) */
2186 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
2187 
2188 /* Store the value of a label (see: sljit_set_label / sljit_set_target)
2189    Flags: - (does not modify flags) */
2190 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_mov_addr(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
2191 
2192 /* Provides the address of label, jump and const instructions after sljit_generate_code
2193    is called. The returned value is unspecified before the sljit_generate_code call.
2194    Since these structures are freed by sljit_free_compiler, the addresses must be
2195    preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)2196 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->u.addr; }
sljit_get_jump_addr(struct sljit_jump * jump)2197 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)2198 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
2199 
2200 /* Only the address and executable offset are required to perform dynamic
2201    code modifications. See sljit_get_executable_offset function. */
2202 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
2203 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
2204 
2205 /* --------------------------------------------------------------------- */
2206 /*  CPU specific functions                                               */
2207 /* --------------------------------------------------------------------- */
2208 
2209 /* Types for sljit_get_register_index */
2210 
2211 /* General purpose (integer) registers. */
2212 #define SLJIT_GP_REGISTER 0
2213 /* Floating point registers. */
2214 #define SLJIT_FLOAT_REGISTER 1
2215 
2216 /* The following function is a helper function for sljit_emit_op_custom.
2217    It returns with the real machine register index ( >=0 ) of any registers.
2218 
2219    When type is SLJIT_GP_REGISTER:
2220       reg must be an SLJIT_R(i), SLJIT_S(i), or SLJIT_SP register
2221 
2222    When type is SLJIT_FLOAT_REGISTER:
2223       reg must be an SLJIT_FR(i) or SLJIT_FS(i) register
2224 
2225    When type is SLJIT_SIMD_REG_64 / 128 / 256 / 512 :
2226       reg must be an SLJIT_FR(i) or SLJIT_FS(i) register
2227 
2228    Note: it returns with -1 for unknown registers, such as virtual
2229          registers on x86-32 or unsupported simd registers. */
2230 
2231 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 type, sljit_s32 reg);
2232 
2233 /* Any instruction can be inserted into the instruction stream by
2234    sljit_emit_op_custom. It has a similar purpose as inline assembly.
2235    The size parameter must match to the instruction size of the target
2236    architecture:
2237 
2238          x86: 0 < size <= 15, the instruction argument can be byte aligned.
2239       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
2240               if size == 4, the instruction argument must be 4 byte aligned.
2241        s390x: size can be 2, 4, or 6, the instruction argument can be byte aligned.
2242    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
2243 
2244 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
2245 	void *instruction, sljit_u32 size);
2246 
2247 /* Flags were set by a 32 bit operation. */
2248 #define SLJIT_CURRENT_FLAGS_32			SLJIT_32
2249 
2250 /* Flags were set by an ADD or ADDC operations. */
2251 #define SLJIT_CURRENT_FLAGS_ADD			0x01
2252 /* Flags were set by a SUB, SUBC, or NEG operation. */
2253 #define SLJIT_CURRENT_FLAGS_SUB			0x02
2254 
2255 /* Flags were set by sljit_emit_op2u with SLJIT_SUB opcode.
2256    Must be combined with SLJIT_CURRENT_FLAGS_SUB. */
2257 #define SLJIT_CURRENT_FLAGS_COMPARE		0x04
2258 
2259 /* Define the currently available CPU status flags. It is usually used after
2260    an sljit_emit_label or sljit_emit_op_custom operations to define which CPU
2261    status flags are available.
2262 
2263    The current_flags must be a valid combination of SLJIT_SET_* and
2264    SLJIT_CURRENT_FLAGS_* constants. */
2265 
2266 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
2267 	sljit_s32 current_flags);
2268 
2269 /* --------------------------------------------------------------------- */
2270 /*  Serialization functions                                              */
2271 /* --------------------------------------------------------------------- */
2272 
2273 /* Label/jump/const enumeration functions. The items in each group
2274    are enumerated in creation order. Serialization / deserialization
2275    preserves this order for each group. For example the fifth label
2276    after deserialization refers to the same machine code location as
2277    the fifth label before the serialization. */
sljit_get_first_label(struct sljit_compiler * compiler)2278 static SLJIT_INLINE struct sljit_label *sljit_get_first_label(struct sljit_compiler *compiler) { return compiler->labels; }
sljit_get_first_jump(struct sljit_compiler * compiler)2279 static SLJIT_INLINE struct sljit_jump *sljit_get_first_jump(struct sljit_compiler *compiler) { return compiler->jumps; }
sljit_get_first_const(struct sljit_compiler * compiler)2280 static SLJIT_INLINE struct sljit_const *sljit_get_first_const(struct sljit_compiler *compiler) { return compiler->consts; }
2281 
sljit_get_next_label(struct sljit_label * label)2282 static SLJIT_INLINE struct sljit_label *sljit_get_next_label(struct sljit_label *label) { return label->next; }
sljit_get_next_jump(struct sljit_jump * jump)2283 static SLJIT_INLINE struct sljit_jump *sljit_get_next_jump(struct sljit_jump *jump) { return jump->next; }
sljit_get_next_const(struct sljit_const * const_)2284 static SLJIT_INLINE struct sljit_const *sljit_get_next_const(struct sljit_const *const_) { return const_->next; }
2285 
2286 /* A number starting from 0 is assigned to each label, which
2287 represents its creation index. The first label created by the
2288 compiler has index 0, the second has index 1, the third has
2289 index 2, and so on. The returned value is unspecified after
2290 sljit_generate_code() is called. */
sljit_get_label_index(struct sljit_label * label)2291 static SLJIT_INLINE sljit_uw sljit_get_label_index(struct sljit_label *label) { return label->u.index; }
2292 
2293 /* The sljit_jump_has_label() and sljit_jump_has_target() functions
2294 returns non-zero value if a label or target is set for the jump
2295 respectively. Both may return with a zero value. The other two
2296 functions return the value assigned to the jump. */
2297 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_jump_has_label(struct sljit_jump *jump);
sljit_jump_get_label(struct sljit_jump * jump)2298 static SLJIT_INLINE struct sljit_label *sljit_jump_get_label(struct sljit_jump *jump) { return jump->u.label; }
2299 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_jump_has_target(struct sljit_jump *jump);
sljit_jump_get_target(struct sljit_jump * jump)2300 static SLJIT_INLINE sljit_uw sljit_jump_get_target(struct sljit_jump *jump) { return jump->u.target; }
2301 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_jump_is_mov_addr(struct sljit_jump *jump);
2302 
2303 /* Option bits for sljit_serialize_compiler. */
2304 
2305 /* When debugging is enabled, the serialized buffer contains
2306 debugging information unless this option is specified. */
2307 #define SLJIT_SERIALIZE_IGNORE_DEBUG		0x1
2308 
2309 /* Serialize the internal structure of the compiler into a buffer.
2310 If the serialization is successful, the returned value is a newly
2311 allocated buffer which is allocated by the memory allocator assigned
2312 to the compiler. Otherwise the returned value is NULL. Unlike
2313 sljit_generate_code(), serialization does not modify the internal
2314 state of the compiler, so the code generation can be continued.
2315 
2316   options must be the combination of SLJIT_SERIALIZE_* option bits
2317   size is an output argument, which is set to the byte size of
2318     the result buffer if the operation is successful
2319 
2320 Notes:
2321   - This function is useful for ahead-of-time compilation (AOT).
2322   - The returned buffer must be freed later by the caller.
2323     The SLJIT_FREE() macro is suitable for this purpose:
2324     SLJIT_FREE(returned_buffer, sljit_get_allocator_data(compiler))
2325   - Memory allocated by sljit_alloc_memory() is not serialized.
2326   - The type of the returned buffer is sljit_uw* to emphasize that
2327     the buffer is word aligned. However, the 'size' output argument
2328     contains the byte size, so this value is always divisible by
2329     sizeof(sljit_uw).
2330 */
2331 SLJIT_API_FUNC_ATTRIBUTE sljit_uw* sljit_serialize_compiler(struct sljit_compiler *compiler,
2332 	sljit_s32 options, sljit_uw *size);
2333 
2334 /* Construct a new compiler instance from a buffer produced by
2335 sljit_serialize_compiler(). If the operation is successful, the new
2336 compiler instance is returned. Otherwise the returned value is NULL.
2337 
2338   buffer points to a word aligned memory data which was
2339     created by sljit_serialize_compiler()
2340   size is the byte size of the buffer
2341   options must be 0
2342   allocator_data specify an allocator specific data, see
2343                  sljit_create_compiler() for further details
2344 
2345 Notes:
2346   - Labels assigned to jumps are restored with their
2347     corresponding label in the label set created by
2348     the deserializer. Target addresses assigned to
2349     jumps are also restored. Uninitialized jumps
2350     remain uninitialized.
2351   - After the deserialization, sljit_generate_code() does
2352     not need to be the next operation on the returned
2353     compiler, the code generation can be continued.
2354     Even sljit_serialize_compiler() can be called again.
2355   - When debugging is enabled, a buffers without debug
2356     information cannot be deserialized.
2357 */
2358 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler *sljit_deserialize_compiler(sljit_uw* buffer, sljit_uw size,
2359 	sljit_s32 options, void *allocator_data);
2360 
2361 /* --------------------------------------------------------------------- */
2362 /*  Miscellaneous utility functions                                      */
2363 /* --------------------------------------------------------------------- */
2364 
2365 /* Get the human readable name of the platform. Can be useful on platforms
2366    like ARM, where ARM and Thumb2 functions can be mixed, and it is useful
2367    to know the type of the code generator. */
2368 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
2369 
2370 /* Portable helper function to get an offset of a member.
2371    Same as offsetof() macro defined in stddef.h */
2372 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
2373 
2374 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
2375 
2376 /* The sljit_stack structure and its manipulation functions provides
2377    an implementation for a top-down stack. The stack top is stored
2378    in the end field of the sljit_stack structure and the stack goes
2379    down to the min_start field, so the memory region reserved for
2380    this stack is between min_start (inclusive) and end (exclusive)
2381    fields. However the application can only use the region between
2382    start (inclusive) and end (exclusive) fields. The sljit_stack_resize
2383    function can be used to extend this region up to min_start.
2384 
2385    This feature uses the "address space reserve" feature of modern
2386    operating systems. Instead of allocating a large memory block
2387    applications can allocate a small memory region and extend it
2388    later without moving the content of the memory area. Therefore
2389    after a successful resize by sljit_stack_resize all pointers into
2390    this region are still valid.
2391 
2392    Note:
2393      this structure may not be supported by all operating systems.
2394      end and max_limit fields are aligned to PAGE_SIZE bytes (usually
2395          4 Kbyte or more).
2396      stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
2397 
2398 struct sljit_stack {
2399 	/* User data, anything can be stored here.
2400 	   Initialized to the same value as the end field. */
2401 	sljit_u8 *top;
2402 /* These members are read only. */
2403 	/* End address of the stack */
2404 	sljit_u8 *end;
2405 	/* Current start address of the stack. */
2406 	sljit_u8 *start;
2407 	/* Lowest start address of the stack. */
2408 	sljit_u8 *min_start;
2409 };
2410 
2411 /* Allocates a new stack. Returns NULL if unsuccessful.
2412    Note: see sljit_create_compiler for the explanation of allocator_data. */
2413 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
2414 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
2415 
2416 /* Can be used to increase (extend) or decrease (shrink) the stack
2417    memory area. Returns with new_start if successful and NULL otherwise.
2418    It always fails if new_start is less than min_start or greater or equal
2419    than end fields. The fields of the stack are not changed if the returned
2420    value is NULL (the current memory content is never lost). */
2421 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
2422 
2423 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
2424 
2425 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
2426 
2427 /* Get the entry address of a given function (signed, unsigned result). */
2428 #define SLJIT_FUNC_ADDR(func_name)	((sljit_sw)func_name)
2429 #define SLJIT_FUNC_UADDR(func_name)	((sljit_uw)func_name)
2430 
2431 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
2432 
2433 /* All JIT related code should be placed in the same context (library, binary, etc.). */
2434 
2435 /* Get the entry address of a given function (signed, unsigned result). */
2436 #define SLJIT_FUNC_ADDR(func_name)	(*(sljit_sw*)(void*)func_name)
2437 #define SLJIT_FUNC_UADDR(func_name)	(*(sljit_uw*)(void*)func_name)
2438 
2439 /* For powerpc64, the function pointers point to a context descriptor. */
2440 struct sljit_function_context {
2441 	sljit_uw addr;
2442 	sljit_uw r2;
2443 	sljit_uw r11;
2444 };
2445 
2446 /* Fill the context arguments using the addr and the function.
2447    If func_ptr is NULL, it will not be set to the address of context
2448    If addr is NULL, the function address also comes from the func pointer. */
2449 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_uw addr, void* func);
2450 
2451 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
2452 
2453 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
2454 /* Free unused executable memory. The allocator keeps some free memory
2455    around to reduce the number of OS executable memory allocations.
2456    This improves performance since these calls are costly. However
2457    it is sometimes desired to free all unused memory regions, e.g.
2458    before the application terminates. */
2459 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
2460 #endif
2461 
2462 #ifdef __cplusplus
2463 } /* extern "C" */
2464 #endif
2465 
2466 #endif /* SLJIT_LIR_H_ */
2467