xref: /php-src/Zend/zend_strtod.c (revision 875a9dc4)
1 /****************************************************************
2  *
3  * The author of this software is David M. Gay.
4  *
5  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose without fee is hereby granted, provided that this entire notice
9  * is included in all copies of any software which is or includes a copy
10  * or modification of this software and in all copies of the supporting
11  * documentation for such software.
12  *
13  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17  *
18  ***************************************************************/
19 
20 /* Please send bug reports to David M. Gay (dmg at acm dot org,
21  * with " at " changed at "@" and " dot " changed to ".").	*/
22 
23 /* On a machine with IEEE extended-precision registers, it is
24  * necessary to specify double-precision (53-bit) rounding precision
25  * before invoking strtod or dtoa.  If the machine uses (the equivalent
26  * of) Intel 80x87 arithmetic, the call
27  *	_control87(PC_53, MCW_PC);
28  * does this with many compilers.  Whether this or another call is
29  * appropriate depends on the compiler; for this to work, it may be
30  * necessary to #include "float.h" or another system-dependent header
31  * file.
32  */
33 
34 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
35  * (Note that IEEE arithmetic is disabled by gcc's -ffast-math flag.)
36  *
37  * This strtod returns a nearest machine number to the input decimal
38  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
39  * broken by the IEEE round-even rule.  Otherwise ties are broken by
40  * biased rounding (add half and chop).
41  *
42  * Inspired loosely by William D. Clinger's paper "How to Read Floating
43  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
44  *
45  * Modifications:
46  *
47  *	1. We only require IEEE, IBM, or VAX double-precision
48  *		arithmetic (not IEEE double-extended).
49  *	2. We get by with floating-point arithmetic in a case that
50  *		Clinger missed -- when we're computing d * 10^n
51  *		for a small integer d and the integer n is not too
52  *		much larger than 22 (the maximum integer k for which
53  *		we can represent 10^k exactly), we may be able to
54  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
55  *	3. Rather than a bit-at-a-time adjustment of the binary
56  *		result in the hard case, we use floating-point
57  *		arithmetic to determine the adjustment to within
58  *		one bit; only in really hard cases do we need to
59  *		compute a second residual.
60  *	4. Because of 3., we don't need a large table of powers of 10
61  *		for ten-to-e (just some small tables, e.g. of 10^k
62  *		for 0 <= k <= 22).
63  */
64 
65 /*
66  * #define IEEE_8087 for IEEE-arithmetic machines where the least
67  *	significant byte has the lowest address.
68  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
69  *	significant byte has the lowest address.
70  * #define Long int on machines with 32-bit ints and 64-bit longs.
71  * #define IBM for IBM mainframe-style floating-point arithmetic.
72  * #define VAX for VAX-style floating-point arithmetic (D_floating).
73  * #define No_leftright to omit left-right logic in fast floating-point
74  *	computation of dtoa.  This will cause dtoa modes 4 and 5 to be
75  *	treated the same as modes 2 and 3 for some inputs.
76  * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
77  *	and strtod and dtoa should round accordingly.  Unless Trust_FLT_ROUNDS
78  *	is also #defined, fegetround() will be queried for the rounding mode.
79  *	Note that both FLT_ROUNDS and fegetround() are specified by the C99
80  *	standard (and are specified to be consistent, with fesetround()
81  *	affecting the value of FLT_ROUNDS), but that some (Linux) systems
82  *	do not work correctly in this regard, so using fegetround() is more
83  *	portable than using FLT_ROUNDS directly.
84  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
85  *	and Honor_FLT_ROUNDS is not #defined.
86  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
87  *	that use extended-precision instructions to compute rounded
88  *	products and quotients) with IBM.
89  * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
90  *	that rounds toward +Infinity.
91  * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
92  *	rounding when the underlying floating-point arithmetic uses
93  *	unbiased rounding.  This prevent using ordinary floating-point
94  *	arithmetic when the result could be computed with one rounding error.
95  * #define Inaccurate_Divide for IEEE-format with correctly rounded
96  *	products but inaccurate quotients, e.g., for Intel i860.
97  * #define NO_LONG_LONG on machines that do not have a "long long"
98  *	integer type (of >= 64 bits).  On such machines, you can
99  *	#define Just_16 to store 16 bits per 32-bit Long when doing
100  *	high-precision integer arithmetic.  Whether this speeds things
101  *	up or slows things down depends on the machine and the number
102  *	being converted.  If long long is available and the name is
103  *	something other than "long long", #define Llong to be the name,
104  *	and if "unsigned Llong" does not work as an unsigned version of
105  *	Llong, #define #ULLong to be the corresponding unsigned type.
106  * #define KR_headers for old-style C function headers.
107  * #define Bad_float_h if your system lacks a float.h or if it does not
108  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
109  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
110  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
111  *	if memory is available and otherwise does something you deem
112  *	appropriate.  If MALLOC is undefined, malloc will be invoked
113  *	directly -- and assumed always to succeed.  Similarly, if you
114  *	want something other than the system's free() to be called to
115  *	recycle memory acquired from MALLOC, #define FREE to be the
116  *	name of the alternate routine.  (FREE or free is only called in
117  *	pathological cases, e.g., in a dtoa call after a dtoa return in
118  *	mode 3 with thousands of digits requested.)
119  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
120  *	memory allocations from a private pool of memory when possible.
121  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
122  *	unless #defined to be a different length.  This default length
123  *	suffices to get rid of MALLOC calls except for unusual cases,
124  *	such as decimal-to-binary conversion of a very long string of
125  *	digits.  The longest string dtoa can return is about 751 bytes
126  *	long.  For conversions by strtod of strings of 800 digits and
127  *	all dtoa conversions in single-threaded executions with 8-byte
128  *	pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
129  *	pointers, PRIVATE_MEM >= 7112 appears adequate.
130  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
131  *	#defined automatically on IEEE systems.  On such systems,
132  *	when INFNAN_CHECK is #defined, strtod checks
133  *	for Infinity and NaN (case insensitively).  On some systems
134  *	(e.g., some HP systems), it may be necessary to #define NAN_WORD0
135  *	appropriately -- to the most significant word of a quiet NaN.
136  *	(On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
137  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
138  *	strtod also accepts (case insensitively) strings of the form
139  *	NaN(x), where x is a string of hexadecimal digits and spaces;
140  *	if there is only one string of hexadecimal digits, it is taken
141  *	for the 52 fraction bits of the resulting NaN; if there are two
142  *	or more strings of hex digits, the first is for the high 20 bits,
143  *	the second and subsequent for the low 32 bits, with intervening
144  *	white space ignored; but if this results in none of the 52
145  *	fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
146  *	and NAN_WORD1 are used instead.
147  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
148  *	multiple threads.  In this case, you must provide (or suitably
149  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
150  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
151  *	in pow5mult, ensures lazy evaluation of only one copy of high
152  *	powers of 5; omitting this lock would introduce a small
153  *	probability of wasting memory, but would otherwise be harmless.)
154  *	You must also invoke freedtoa(s) to free the value s returned by
155  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
156  * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
157  *	avoids underflows on inputs whose result does not underflow.
158  *	If you #define NO_IEEE_Scale on a machine that uses IEEE-format
159  *	floating-point numbers and flushes underflows to zero rather
160  *	than implementing gradual underflow, then you must also #define
161  *	Sudden_Underflow.
162  * #define USE_LOCALE to use the current locale's decimal_point value.
163  * #define SET_INEXACT if IEEE arithmetic is being used and extra
164  *	computation should be done to set the inexact flag when the
165  *	result is inexact and avoid setting inexact when the result
166  *	is exact.  In this case, dtoa.c must be compiled in
167  *	an environment, perhaps provided by #include "dtoa.c" in a
168  *	suitable wrapper, that defines two functions,
169  *		int get_inexact(void);
170  *		void clear_inexact(void);
171  *	such that get_inexact() returns a nonzero value if the
172  *	inexact bit is already set, and clear_inexact() sets the
173  *	inexact bit to 0.  When SET_INEXACT is #defined, strtod
174  *	also does extra computations to set the underflow and overflow
175  *	flags when appropriate (i.e., when the result is tiny and
176  *	inexact or when it is a numeric value rounded to +-infinity).
177  * #define NO_ERRNO if strtod should not assign errno = ERANGE when
178  *	the result overflows to +-Infinity or underflows to 0.
179  * #define NO_HEX_FP to omit recognition of hexadecimal floating-point
180  *	values by strtod.
181  * #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
182  *	to disable logic for "fast" testing of very long input strings
183  *	to strtod.  This testing proceeds by initially truncating the
184  *	input string, then if necessary comparing the whole string with
185  *	a decimal expansion to decide close cases. This logic is only
186  *	used for input more than STRTOD_DIGLIM digits long (default 40).
187  */
188 
189 #include <zend_operators.h>
190 #include <zend_strtod.h>
191 #include "zend_strtod_int.h"
192 #include "zend_globals.h"
193 
194 #ifndef Long
195 #define Long int32_t
196 #endif
197 #ifndef ULong
198 #define ULong uint32_t
199 #endif
200 
201 #undef Bigint
202 #undef freelist
203 #undef p5s
204 #undef dtoa_result
205 
206 #define Bigint      _zend_strtod_bigint
207 #define freelist    (EG(strtod_state).freelist)
208 #define p5s         (EG(strtod_state).p5s)
209 #define dtoa_result (EG(strtod_state).result)
210 
211 #ifdef DEBUG
Bug(const char * message)212 static void Bug(const char *message) {
213 	fprintf(stderr, "%s\n", message);
214 }
215 #endif
216 
217 #include "stdlib.h"
218 #include "string.h"
219 
220 #ifdef USE_LOCALE
221 #include "locale.h"
222 #endif
223 
224 #ifdef Honor_FLT_ROUNDS
225 #ifndef Trust_FLT_ROUNDS
226 #include <fenv.h>
227 #endif
228 #endif
229 
230 #ifdef MALLOC
231 #ifdef KR_headers
232 extern char *MALLOC();
233 #else
234 extern void *MALLOC(size_t);
235 #endif
236 #else
237 #define MALLOC malloc
238 #define FREE   free
239 #endif
240 
241 #ifndef Omit_Private_Memory
242 #ifndef PRIVATE_MEM
243 #define PRIVATE_MEM 2304
244 #endif
245 #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
246 static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
247 #endif
248 
249 #undef IEEE_Arith
250 #undef Avoid_Underflow
251 #ifdef IEEE_MC68k
252 #define IEEE_Arith
253 #endif
254 #ifdef IEEE_8087
255 #define IEEE_Arith
256 #endif
257 
258 #ifdef IEEE_Arith
259 #ifndef NO_INFNAN_CHECK
260 #undef INFNAN_CHECK
261 #define INFNAN_CHECK
262 #endif
263 #else
264 #undef INFNAN_CHECK
265 #define NO_STRTOD_BIGCOMP
266 #endif
267 
268 #include "errno.h"
269 
270 #ifdef Bad_float_h
271 
272 #ifdef IEEE_Arith
273 #define DBL_DIG 15
274 #define DBL_MAX_10_EXP 308
275 #define DBL_MAX_EXP 1024
276 #define FLT_RADIX 2
277 #endif /*IEEE_Arith*/
278 
279 #ifdef IBM
280 #define DBL_DIG 16
281 #define DBL_MAX_10_EXP 75
282 #define DBL_MAX_EXP 63
283 #define FLT_RADIX 16
284 #define DBL_MAX 7.2370055773322621e+75
285 #endif
286 
287 #ifdef VAX
288 #define DBL_DIG 16
289 #define DBL_MAX_10_EXP 38
290 #define DBL_MAX_EXP 127
291 #define FLT_RADIX 2
292 #define DBL_MAX 1.7014118346046923e+38
293 #endif
294 
295 #else /* ifndef Bad_float_h */
296 #include "float.h"
297 #endif /* Bad_float_h */
298 
299 #ifndef __MATH_H__
300 #include "math.h"
301 #endif
302 
303 #ifndef CONST
304 #ifdef KR_headers
305 #define CONST /* blank */
306 #else
307 #define CONST const
308 #endif
309 #endif
310 
311 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
312 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
313 #endif
314 
315 typedef union { double d; ULong L[2]; } U;
316 
317 #ifdef IEEE_8087
318 #define word0(x) (x)->L[1]
319 #define word1(x) (x)->L[0]
320 #else
321 #define word0(x) (x)->L[0]
322 #define word1(x) (x)->L[1]
323 #endif
324 #define dval(x) (x)->d
325 
326 #ifndef STRTOD_DIGLIM
327 #define STRTOD_DIGLIM 40
328 #endif
329 
330 #ifdef DIGLIM_DEBUG
331 extern int strtod_diglim;
332 #else
333 #define strtod_diglim STRTOD_DIGLIM
334 #endif
335 
336 /* The following definition of Storeinc is appropriate for MIPS processors.
337  * An alternative that might be better on some machines is
338  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
339  */
340 #if defined(IEEE_8087) + defined(VAX) + defined(__arm__)
341 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
342 ((unsigned short *)a)[0] = (unsigned short)c, a++)
343 #else
344 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
345 ((unsigned short *)a)[1] = (unsigned short)c, a++)
346 #endif
347 
348 /* #define P DBL_MANT_DIG */
349 /* Ten_pmax = floor(P*log(2)/log(5)) */
350 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
351 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
352 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
353 
354 #ifdef IEEE_Arith
355 #define Exp_shift  20
356 #define Exp_shift1 20
357 #define Exp_msk1    0x100000
358 #define Exp_msk11   0x100000
359 #define Exp_mask  0x7ff00000
360 #define P 53
361 #define Nbits 53
362 #define Bias 1023
363 #define Emax 1023
364 #define Emin (-1022)
365 #define Exp_1  0x3ff00000
366 #define Exp_11 0x3ff00000
367 #define Ebits 11
368 #define Frac_mask  0xfffff
369 #define Frac_mask1 0xfffff
370 #define Ten_pmax 22
371 #define Bletch 0x10
372 #define Bndry_mask  0xfffff
373 #define Bndry_mask1 0xfffff
374 #define LSB 1
375 #define Sign_bit 0x80000000
376 #define Log2P 1
377 #define Tiny0 0
378 #define Tiny1 1
379 #define Quick_max 14
380 #define Int_max 14
381 #ifndef NO_IEEE_Scale
382 #define Avoid_Underflow
383 #ifdef Flush_Denorm	/* debugging option */
384 #undef Sudden_Underflow
385 #endif
386 #endif
387 
388 #ifndef Flt_Rounds
389 #ifdef FLT_ROUNDS
390 #define Flt_Rounds FLT_ROUNDS
391 #else
392 #define Flt_Rounds 1
393 #endif
394 #endif /*Flt_Rounds*/
395 
396 #ifdef Honor_FLT_ROUNDS
397 #undef Check_FLT_ROUNDS
398 #define Check_FLT_ROUNDS
399 #else
400 #define Rounding Flt_Rounds
401 #endif
402 
403 #else /* ifndef IEEE_Arith */
404 #undef Check_FLT_ROUNDS
405 #undef Honor_FLT_ROUNDS
406 #undef SET_INEXACT
407 #undef  Sudden_Underflow
408 #define Sudden_Underflow
409 #ifdef IBM
410 #undef Flt_Rounds
411 #define Flt_Rounds 0
412 #define Exp_shift  24
413 #define Exp_shift1 24
414 #define Exp_msk1   0x1000000
415 #define Exp_msk11  0x1000000
416 #define Exp_mask  0x7f000000
417 #define P 14
418 #define Nbits 56
419 #define Bias 65
420 #define Emax 248
421 #define Emin (-260)
422 #define Exp_1  0x41000000
423 #define Exp_11 0x41000000
424 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
425 #define Frac_mask  0xffffff
426 #define Frac_mask1 0xffffff
427 #define Bletch 4
428 #define Ten_pmax 22
429 #define Bndry_mask  0xefffff
430 #define Bndry_mask1 0xffffff
431 #define LSB 1
432 #define Sign_bit 0x80000000
433 #define Log2P 4
434 #define Tiny0 0x100000
435 #define Tiny1 0
436 #define Quick_max 14
437 #define Int_max 15
438 #else /* VAX */
439 #undef Flt_Rounds
440 #define Flt_Rounds 1
441 #define Exp_shift  23
442 #define Exp_shift1 7
443 #define Exp_msk1    0x80
444 #define Exp_msk11   0x800000
445 #define Exp_mask  0x7f80
446 #define P 56
447 #define Nbits 56
448 #define Bias 129
449 #define Emax 126
450 #define Emin (-129)
451 #define Exp_1  0x40800000
452 #define Exp_11 0x4080
453 #define Ebits 8
454 #define Frac_mask  0x7fffff
455 #define Frac_mask1 0xffff007f
456 #define Ten_pmax 24
457 #define Bletch 2
458 #define Bndry_mask  0xffff007f
459 #define Bndry_mask1 0xffff007f
460 #define LSB 0x10000
461 #define Sign_bit 0x8000
462 #define Log2P 1
463 #define Tiny0 0x80
464 #define Tiny1 0
465 #define Quick_max 15
466 #define Int_max 15
467 #endif /* IBM, VAX */
468 #endif /* IEEE_Arith */
469 
470 #ifndef IEEE_Arith
471 #define ROUND_BIASED
472 #else
473 #ifdef ROUND_BIASED_without_Round_Up
474 #undef  ROUND_BIASED
475 #define ROUND_BIASED
476 #endif
477 #endif
478 
479 #ifdef RND_PRODQUOT
480 #define rounded_product(a,b) a = rnd_prod(a, b)
481 #define rounded_quotient(a,b) a = rnd_quot(a, b)
482 #ifdef KR_headers
483 extern double rnd_prod(), rnd_quot();
484 #else
485 extern double rnd_prod(double, double), rnd_quot(double, double);
486 #endif
487 #else
488 #define rounded_product(a,b) a *= b
489 #define rounded_quotient(a,b) a /= b
490 #endif
491 
492 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
493 #define Big1 0xffffffff
494 
495 #ifndef Pack_32
496 #define Pack_32
497 #endif
498 
499 typedef struct BCinfo BCinfo;
500  struct
501 BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
502 
503 #ifdef KR_headers
504 #define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
505 #else
506 #define FFFFFFFF 0xffffffffUL
507 #endif
508 
509 #ifdef NO_LONG_LONG
510 #undef ULLong
511 #ifdef Just_16
512 #undef Pack_32
513 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
514  * This makes some inner loops simpler and sometimes saves work
515  * during multiplications, but it often seems to make things slightly
516  * slower.  Hence the default is now to store 32 bits per Long.
517  */
518 #endif
519 #else	/* long long available */
520 #ifndef Llong
521 #define Llong long long
522 #endif
523 #ifndef ULLong
524 #define ULLong unsigned Llong
525 #endif
526 #endif /* NO_LONG_LONG */
527 
528 #ifndef MULTIPLE_THREADS
529 #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
530 #define FREE_DTOA_LOCK(n)	/*nothing*/
531 #endif
532 
533 #define Kmax ZEND_STRTOD_K_MAX
534 
535  struct
536 Bigint {
537 	struct Bigint *next;
538 	int k, maxwds, sign, wds;
539 	ULong x[1];
540 	};
541 
542  typedef struct Bigint Bigint;
543 
544 #ifndef Bigint
545  static Bigint *freelist[Kmax+1];
546 #endif
547 
548 static void destroy_freelist(void);
549 static void free_p5s(void);
550 
551 #ifdef MULTIPLE_THREADS
552 static MUTEX_T dtoa_mutex;
553 static MUTEX_T pow5mult_mutex;
554 #endif /* ZTS */
555 
zend_shutdown_strtod(void)556 ZEND_API int zend_shutdown_strtod(void) /* {{{ */
557 {
558 	destroy_freelist();
559 	free_p5s();
560 
561 	return 1;
562 }
563 /* }}} */
564 
565  static Bigint *
Balloc(k)566 Balloc
567 #ifdef KR_headers
568 	(k) int k;
569 #else
570 	(int k)
571 #endif
572 {
573 	int x;
574 	Bigint *rv;
575 #ifndef Omit_Private_Memory
576 	unsigned int len;
577 #endif
578 
579 	ACQUIRE_DTOA_LOCK(0);
580 	/* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
581 	/* but this case seems very unlikely. */
582 	if (k <= Kmax && (rv = freelist[k]))
583 		freelist[k] = rv->next;
584 	else {
585 		x = 1 << k;
586 #ifdef Omit_Private_Memory
587 		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
588 		if (!rv) {
589 			FREE_DTOA_LOCK(0);
590 			zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
591 		}
592 #else
593 		len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
594 			/sizeof(double);
595 		if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
596 			rv = (Bigint*)pmem_next;
597 			pmem_next += len;
598 			}
599 		else
600 			rv = (Bigint*)MALLOC(len*sizeof(double));
601 			if (!rv) {
602 				FREE_DTOA_LOCK(0);
603 				zend_error_noreturn(E_ERROR, "Balloc() failed to allocate memory");
604 			}
605 #endif
606 		rv->k = k;
607 		rv->maxwds = x;
608 		}
609 	FREE_DTOA_LOCK(0);
610 	rv->sign = rv->wds = 0;
611 	return rv;
612 	}
613 
614  static void
Bfree(v)615 Bfree
616 #ifdef KR_headers
617 	(v) Bigint *v;
618 #else
619 	(Bigint *v)
620 #endif
621 {
622 	if (v) {
623 		if (v->k > Kmax)
624 			FREE((void*)v);
625 		else {
626 			ACQUIRE_DTOA_LOCK(0);
627 			v->next = freelist[v->k];
628 			freelist[v->k] = v;
629 			FREE_DTOA_LOCK(0);
630 			}
631 		}
632 	}
633 
634 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
635 y->wds*sizeof(Long) + 2*sizeof(int))
636 
637  static Bigint *
multadd(b,m,a)638 multadd
639 #ifdef KR_headers
640 	(b, m, a) Bigint *b; int m, a;
641 #else
642 	(Bigint *b, int m, int a)	/* multiply by m and add a */
643 #endif
644 {
645 	int i, wds;
646 #ifdef ULLong
647 	ULong *x;
648 	ULLong carry, y;
649 #else
650 	ULong carry, *x, y;
651 #ifdef Pack_32
652 	ULong xi, z;
653 #endif
654 #endif
655 	Bigint *b1;
656 
657 	wds = b->wds;
658 	x = b->x;
659 	i = 0;
660 	carry = a;
661 	do {
662 #ifdef ULLong
663 		y = *x * (ULLong)m + carry;
664 		carry = y >> 32;
665 		*x++ = y & FFFFFFFF;
666 #else
667 #ifdef Pack_32
668 		xi = *x;
669 		y = (xi & 0xffff) * m + carry;
670 		z = (xi >> 16) * m + (y >> 16);
671 		carry = z >> 16;
672 		*x++ = (z << 16) + (y & 0xffff);
673 #else
674 		y = *x * m + carry;
675 		carry = y >> 16;
676 		*x++ = y & 0xffff;
677 #endif
678 #endif
679 		}
680 		while(++i < wds);
681 	if (carry) {
682 		if (wds >= b->maxwds) {
683 			b1 = Balloc(b->k+1);
684 			Bcopy(b1, b);
685 			Bfree(b);
686 			b = b1;
687 			}
688 		b->x[wds++] = carry;
689 		b->wds = wds;
690 		}
691 	return b;
692 	}
693 
694  static Bigint *
s2b(s,nd0,nd,y9,dplen)695 s2b
696 #ifdef KR_headers
697 	(s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
698 #else
699 	(const char *s, int nd0, int nd, ULong y9, int dplen)
700 #endif
701 {
702 	Bigint *b;
703 	int i, k;
704 	Long x, y;
705 
706 	x = (nd + 8) / 9;
707 	for(k = 0, y = 1; x > y; y <<= 1, k++) ;
708 #ifdef Pack_32
709 	b = Balloc(k);
710 	b->x[0] = y9;
711 	b->wds = 1;
712 #else
713 	b = Balloc(k+1);
714 	b->x[0] = y9 & 0xffff;
715 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
716 #endif
717 
718 	i = 9;
719 	if (9 < nd0) {
720 		s += 9;
721 		do b = multadd(b, 10, *s++ - '0');
722 			while(++i < nd0);
723 		s += dplen;
724 		}
725 	else
726 		s += dplen + 9;
727 	for(; i < nd; i++)
728 		b = multadd(b, 10, *s++ - '0');
729 	return b;
730 	}
731 
732  static int
hi0bits(x)733 hi0bits
734 #ifdef KR_headers
735 	(x) ULong x;
736 #else
737 	(ULong x)
738 #endif
739 {
740 	int k = 0;
741 
742 	if (!(x & 0xffff0000)) {
743 		k = 16;
744 		x <<= 16;
745 		}
746 	if (!(x & 0xff000000)) {
747 		k += 8;
748 		x <<= 8;
749 		}
750 	if (!(x & 0xf0000000)) {
751 		k += 4;
752 		x <<= 4;
753 		}
754 	if (!(x & 0xc0000000)) {
755 		k += 2;
756 		x <<= 2;
757 		}
758 	if (!(x & 0x80000000)) {
759 		k++;
760 		if (!(x & 0x40000000))
761 			return 32;
762 		}
763 	return k;
764 	}
765 
766  static int
lo0bits(y)767 lo0bits
768 #ifdef KR_headers
769 	(y) ULong *y;
770 #else
771 	(ULong *y)
772 #endif
773 {
774 	int k;
775 	ULong x = *y;
776 
777 	if (x & 7) {
778 		if (x & 1)
779 			return 0;
780 		if (x & 2) {
781 			*y = x >> 1;
782 			return 1;
783 			}
784 		*y = x >> 2;
785 		return 2;
786 		}
787 	k = 0;
788 	if (!(x & 0xffff)) {
789 		k = 16;
790 		x >>= 16;
791 		}
792 	if (!(x & 0xff)) {
793 		k += 8;
794 		x >>= 8;
795 		}
796 	if (!(x & 0xf)) {
797 		k += 4;
798 		x >>= 4;
799 		}
800 	if (!(x & 0x3)) {
801 		k += 2;
802 		x >>= 2;
803 		}
804 	if (!(x & 1)) {
805 		k++;
806 		x >>= 1;
807 		if (!x)
808 			return 32;
809 		}
810 	*y = x;
811 	return k;
812 	}
813 
814  static Bigint *
i2b(i)815 i2b
816 #ifdef KR_headers
817 	(i) int i;
818 #else
819 	(int i)
820 #endif
821 {
822 	Bigint *b;
823 
824 	b = Balloc(1);
825 	b->x[0] = i;
826 	b->wds = 1;
827 	return b;
828 	}
829 
830  static Bigint *
mult(a,b)831 mult
832 #ifdef KR_headers
833 	(a, b) Bigint *a, *b;
834 #else
835 	(Bigint *a, Bigint *b)
836 #endif
837 {
838 	Bigint *c;
839 	int k, wa, wb, wc;
840 	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
841 	ULong y;
842 #ifdef ULLong
843 	ULLong carry, z;
844 #else
845 	ULong carry, z;
846 #ifdef Pack_32
847 	ULong z2;
848 #endif
849 #endif
850 
851 	if (a->wds < b->wds) {
852 		c = a;
853 		a = b;
854 		b = c;
855 		}
856 	k = a->k;
857 	wa = a->wds;
858 	wb = b->wds;
859 	wc = wa + wb;
860 	if (wc > a->maxwds)
861 		k++;
862 	c = Balloc(k);
863 	for(x = c->x, xa = x + wc; x < xa; x++)
864 		*x = 0;
865 	xa = a->x;
866 	xae = xa + wa;
867 	xb = b->x;
868 	xbe = xb + wb;
869 	xc0 = c->x;
870 #ifdef ULLong
871 	for(; xb < xbe; xc0++) {
872 		if ((y = *xb++)) {
873 			x = xa;
874 			xc = xc0;
875 			carry = 0;
876 			do {
877 				z = *x++ * (ULLong)y + *xc + carry;
878 				carry = z >> 32;
879 				*xc++ = z & FFFFFFFF;
880 				}
881 				while(x < xae);
882 			*xc = carry;
883 			}
884 		}
885 #else
886 #ifdef Pack_32
887 	for(; xb < xbe; xb++, xc0++) {
888 		if (y = *xb & 0xffff) {
889 			x = xa;
890 			xc = xc0;
891 			carry = 0;
892 			do {
893 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
894 				carry = z >> 16;
895 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
896 				carry = z2 >> 16;
897 				Storeinc(xc, z2, z);
898 				}
899 				while(x < xae);
900 			*xc = carry;
901 			}
902 		if (y = *xb >> 16) {
903 			x = xa;
904 			xc = xc0;
905 			carry = 0;
906 			z2 = *xc;
907 			do {
908 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
909 				carry = z >> 16;
910 				Storeinc(xc, z, z2);
911 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
912 				carry = z2 >> 16;
913 				}
914 				while(x < xae);
915 			*xc = z2;
916 			}
917 		}
918 #else
919 	for(; xb < xbe; xc0++) {
920 		if (y = *xb++) {
921 			x = xa;
922 			xc = xc0;
923 			carry = 0;
924 			do {
925 				z = *x++ * y + *xc + carry;
926 				carry = z >> 16;
927 				*xc++ = z & 0xffff;
928 				}
929 				while(x < xae);
930 			*xc = carry;
931 			}
932 		}
933 #endif
934 #endif
935 	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
936 	c->wds = wc;
937 	return c;
938 	}
939 
940 #ifndef p5s
941  static Bigint *p5s;
942 #endif
943 
944  static Bigint *
pow5mult(b,k)945 pow5mult
946 #ifdef KR_headers
947 	(b, k) Bigint *b; int k;
948 #else
949 	(Bigint *b, int k)
950 #endif
951 {
952 	Bigint *b1, *p5, *p51;
953 	int i;
954 	static const int p05[3] = { 5, 25, 125 };
955 
956 	if ((i = k & 3))
957 		b = multadd(b, p05[i-1], 0);
958 
959 	if (!(k >>= 2))
960 		return b;
961 	if (!(p5 = p5s)) {
962 		/* first time */
963 #ifdef MULTIPLE_THREADS
964 		ACQUIRE_DTOA_LOCK(1);
965 		if (!(p5 = p5s)) {
966 			p5 = p5s = i2b(625);
967 			p5->next = 0;
968 			}
969 		FREE_DTOA_LOCK(1);
970 #else
971 		p5 = p5s = i2b(625);
972 		p5->next = 0;
973 #endif
974 		}
975 	for(;;) {
976 		if (k & 1) {
977 			b1 = mult(b, p5);
978 			Bfree(b);
979 			b = b1;
980 			}
981 		if (!(k >>= 1))
982 			break;
983 		if (!(p51 = p5->next)) {
984 #ifdef MULTIPLE_THREADS
985 			ACQUIRE_DTOA_LOCK(1);
986 			if (!(p51 = p5->next)) {
987 				p51 = p5->next = mult(p5,p5);
988 				p51->next = 0;
989 				}
990 			FREE_DTOA_LOCK(1);
991 #else
992 			p51 = p5->next = mult(p5,p5);
993 			p51->next = 0;
994 #endif
995 			}
996 		p5 = p51;
997 		}
998 	return b;
999 	}
1000 
1001  static Bigint *
lshift(b,k)1002 lshift
1003 #ifdef KR_headers
1004 	(b, k) Bigint *b; int k;
1005 #else
1006 	(Bigint *b, int k)
1007 #endif
1008 {
1009 	int i, k1, n, n1;
1010 	Bigint *b1;
1011 	ULong *x, *x1, *xe, z;
1012 
1013 #ifdef Pack_32
1014 	n = k >> 5;
1015 #else
1016 	n = k >> 4;
1017 #endif
1018 	k1 = b->k;
1019 	n1 = n + b->wds + 1;
1020 	for(i = b->maxwds; n1 > i; i <<= 1)
1021 		k1++;
1022 	b1 = Balloc(k1);
1023 	x1 = b1->x;
1024 	for(i = 0; i < n; i++)
1025 		*x1++ = 0;
1026 	x = b->x;
1027 	xe = x + b->wds;
1028 #ifdef Pack_32
1029 	if (k &= 0x1f) {
1030 		k1 = 32 - k;
1031 		z = 0;
1032 		do {
1033 			*x1++ = *x << k | z;
1034 			z = *x++ >> k1;
1035 			}
1036 			while(x < xe);
1037 		if ((*x1 = z))
1038 			++n1;
1039 		}
1040 #else
1041 	if (k &= 0xf) {
1042 		k1 = 16 - k;
1043 		z = 0;
1044 		do {
1045 			*x1++ = *x << k  & 0xffff | z;
1046 			z = *x++ >> k1;
1047 			}
1048 			while(x < xe);
1049 		if (*x1 = z)
1050 			++n1;
1051 		}
1052 #endif
1053 	else do
1054 		*x1++ = *x++;
1055 		while(x < xe);
1056 	b1->wds = n1 - 1;
1057 	Bfree(b);
1058 	return b1;
1059 	}
1060 
1061  static int
cmp(a,b)1062 cmp
1063 #ifdef KR_headers
1064 	(a, b) Bigint *a, *b;
1065 #else
1066 	(Bigint *a, Bigint *b)
1067 #endif
1068 {
1069 	ULong *xa, *xa0, *xb, *xb0;
1070 	int i, j;
1071 
1072 	i = a->wds;
1073 	j = b->wds;
1074 #ifdef DEBUG
1075 	if (i > 1 && !a->x[i-1])
1076 		Bug("cmp called with a->x[a->wds-1] == 0");
1077 	if (j > 1 && !b->x[j-1])
1078 		Bug("cmp called with b->x[b->wds-1] == 0");
1079 #endif
1080 	if (i -= j)
1081 		return i;
1082 	xa0 = a->x;
1083 	xa = xa0 + j;
1084 	xb0 = b->x;
1085 	xb = xb0 + j;
1086 	for(;;) {
1087 		if (*--xa != *--xb)
1088 			return *xa < *xb ? -1 : 1;
1089 		if (xa <= xa0)
1090 			break;
1091 		}
1092 	return 0;
1093 	}
1094 
1095  static Bigint *
diff(a,b)1096 diff
1097 #ifdef KR_headers
1098 	(a, b) Bigint *a, *b;
1099 #else
1100 	(Bigint *a, Bigint *b)
1101 #endif
1102 {
1103 	Bigint *c;
1104 	int i, wa, wb;
1105 	ULong *xa, *xae, *xb, *xbe, *xc;
1106 #ifdef ULLong
1107 	ULLong borrow, y;
1108 #else
1109 	ULong borrow, y;
1110 #ifdef Pack_32
1111 	ULong z;
1112 #endif
1113 #endif
1114 
1115 	i = cmp(a,b);
1116 	if (!i) {
1117 		c = Balloc(0);
1118 		c->wds = 1;
1119 		c->x[0] = 0;
1120 		return c;
1121 		}
1122 	if (i < 0) {
1123 		c = a;
1124 		a = b;
1125 		b = c;
1126 		i = 1;
1127 		}
1128 	else
1129 		i = 0;
1130 	c = Balloc(a->k);
1131 	c->sign = i;
1132 	wa = a->wds;
1133 	xa = a->x;
1134 	xae = xa + wa;
1135 	wb = b->wds;
1136 	xb = b->x;
1137 	xbe = xb + wb;
1138 	xc = c->x;
1139 	borrow = 0;
1140 #ifdef ULLong
1141 	do {
1142 		y = (ULLong)*xa++ - *xb++ - borrow;
1143 		borrow = y >> 32 & (ULong)1;
1144 		*xc++ = y & FFFFFFFF;
1145 		}
1146 		while(xb < xbe);
1147 	while(xa < xae) {
1148 		y = *xa++ - borrow;
1149 		borrow = y >> 32 & (ULong)1;
1150 		*xc++ = y & FFFFFFFF;
1151 		}
1152 #else
1153 #ifdef Pack_32
1154 	do {
1155 		y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
1156 		borrow = (y & 0x10000) >> 16;
1157 		z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
1158 		borrow = (z & 0x10000) >> 16;
1159 		Storeinc(xc, z, y);
1160 		}
1161 		while(xb < xbe);
1162 	while(xa < xae) {
1163 		y = (*xa & 0xffff) - borrow;
1164 		borrow = (y & 0x10000) >> 16;
1165 		z = (*xa++ >> 16) - borrow;
1166 		borrow = (z & 0x10000) >> 16;
1167 		Storeinc(xc, z, y);
1168 		}
1169 #else
1170 	do {
1171 		y = *xa++ - *xb++ - borrow;
1172 		borrow = (y & 0x10000) >> 16;
1173 		*xc++ = y & 0xffff;
1174 		}
1175 		while(xb < xbe);
1176 	while(xa < xae) {
1177 		y = *xa++ - borrow;
1178 		borrow = (y & 0x10000) >> 16;
1179 		*xc++ = y & 0xffff;
1180 		}
1181 #endif
1182 #endif
1183 	while(!*--xc)
1184 		wa--;
1185 	c->wds = wa;
1186 	return c;
1187 	}
1188 
1189  static double
ulp(x)1190 ulp
1191 #ifdef KR_headers
1192 	(x) U *x;
1193 #else
1194 	(U *x)
1195 #endif
1196 {
1197 	Long L;
1198 	U u;
1199 
1200 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
1201 #ifndef Avoid_Underflow
1202 #ifndef Sudden_Underflow
1203 	if (L > 0) {
1204 #endif
1205 #endif
1206 #ifdef IBM
1207 		L |= Exp_msk1 >> 4;
1208 #endif
1209 		word0(&u) = L;
1210 		word1(&u) = 0;
1211 #ifndef Avoid_Underflow
1212 #ifndef Sudden_Underflow
1213 		}
1214 	else {
1215 		L = -L >> Exp_shift;
1216 		if (L < Exp_shift) {
1217 			word0(&u) = 0x80000 >> L;
1218 			word1(&u) = 0;
1219 			}
1220 		else {
1221 			word0(&u) = 0;
1222 			L -= Exp_shift;
1223 			word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
1224 			}
1225 		}
1226 #endif
1227 #endif
1228 	return dval(&u);
1229 	}
1230 
1231  static double
b2d(a,e)1232 b2d
1233 #ifdef KR_headers
1234 	(a, e) Bigint *a; int *e;
1235 #else
1236 	(Bigint *a, int *e)
1237 #endif
1238 {
1239 	ULong *xa, *xa0, w, y, z;
1240 	int k;
1241 	U d;
1242 #ifdef VAX
1243 	ULong d0, d1;
1244 #else
1245 #define d0 word0(&d)
1246 #define d1 word1(&d)
1247 #endif
1248 
1249 	xa0 = a->x;
1250 	xa = xa0 + a->wds;
1251 	y = *--xa;
1252 #ifdef DEBUG
1253 	if (!y) Bug("zero y in b2d");
1254 #endif
1255 	k = hi0bits(y);
1256 	*e = 32 - k;
1257 #ifdef Pack_32
1258 	if (k < Ebits) {
1259 		d0 = Exp_1 | y >> (Ebits - k);
1260 		w = xa > xa0 ? *--xa : 0;
1261 		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
1262 		goto ret_d;
1263 		}
1264 	z = xa > xa0 ? *--xa : 0;
1265 	if (k -= Ebits) {
1266 		d0 = Exp_1 | y << k | z >> (32 - k);
1267 		y = xa > xa0 ? *--xa : 0;
1268 		d1 = z << k | y >> (32 - k);
1269 		}
1270 	else {
1271 		d0 = Exp_1 | y;
1272 		d1 = z;
1273 		}
1274 #else
1275 	if (k < Ebits + 16) {
1276 		z = xa > xa0 ? *--xa : 0;
1277 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
1278 		w = xa > xa0 ? *--xa : 0;
1279 		y = xa > xa0 ? *--xa : 0;
1280 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
1281 		goto ret_d;
1282 		}
1283 	z = xa > xa0 ? *--xa : 0;
1284 	w = xa > xa0 ? *--xa : 0;
1285 	k -= Ebits + 16;
1286 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
1287 	y = xa > xa0 ? *--xa : 0;
1288 	d1 = w << k + 16 | y << k;
1289 #endif
1290  ret_d:
1291 #ifdef VAX
1292 	word0(&d) = d0 >> 16 | d0 << 16;
1293 	word1(&d) = d1 >> 16 | d1 << 16;
1294 #else
1295 #undef d0
1296 #undef d1
1297 #endif
1298 	return dval(&d);
1299 	}
1300 
1301  static Bigint *
d2b(d,e,bits)1302 d2b
1303 #ifdef KR_headers
1304 	(d, e, bits) U *d; int *e, *bits;
1305 #else
1306 	(U *d, int *e, int *bits)
1307 #endif
1308 {
1309 	Bigint *b;
1310 	int de, k;
1311 	ULong *x, y, z;
1312 #ifndef Sudden_Underflow
1313 	int i;
1314 #endif
1315 #ifdef VAX
1316 	ULong d0, d1;
1317 	d0 = word0(d) >> 16 | word0(d) << 16;
1318 	d1 = word1(d) >> 16 | word1(d) << 16;
1319 #else
1320 #define d0 word0(d)
1321 #define d1 word1(d)
1322 #endif
1323 
1324 #ifdef Pack_32
1325 	b = Balloc(1);
1326 #else
1327 	b = Balloc(2);
1328 #endif
1329 	x = b->x;
1330 
1331 	z = d0 & Frac_mask;
1332 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
1333 #ifdef Sudden_Underflow
1334 	de = (int)(d0 >> Exp_shift);
1335 #ifndef IBM
1336 	z |= Exp_msk11;
1337 #endif
1338 #else
1339 	if ((de = (int)(d0 >> Exp_shift)))
1340 		z |= Exp_msk1;
1341 #endif
1342 #ifdef Pack_32
1343 	if ((y = d1)) {
1344 		if ((k = lo0bits(&y))) {
1345 			x[0] = y | z << (32 - k);
1346 			z >>= k;
1347 			}
1348 		else
1349 			x[0] = y;
1350 #ifndef Sudden_Underflow
1351 		i =
1352 #endif
1353 		    b->wds = (x[1] = z) ? 2 : 1;
1354 		}
1355 	else {
1356 		k = lo0bits(&z);
1357 		x[0] = z;
1358 #ifndef Sudden_Underflow
1359 		i =
1360 #endif
1361 		    b->wds = 1;
1362 		k += 32;
1363 		}
1364 #else
1365 	if (y = d1) {
1366 		if (k = lo0bits(&y))
1367 			if (k >= 16) {
1368 				x[0] = y | z << 32 - k & 0xffff;
1369 				x[1] = z >> k - 16 & 0xffff;
1370 				x[2] = z >> k;
1371 				i = 2;
1372 				}
1373 			else {
1374 				x[0] = y & 0xffff;
1375 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1376 				x[2] = z >> k & 0xffff;
1377 				x[3] = z >> k+16;
1378 				i = 3;
1379 				}
1380 		else {
1381 			x[0] = y & 0xffff;
1382 			x[1] = y >> 16;
1383 			x[2] = z & 0xffff;
1384 			x[3] = z >> 16;
1385 			i = 3;
1386 			}
1387 		}
1388 	else {
1389 #ifdef DEBUG
1390 		if (!z)
1391 			Bug("Zero passed to d2b");
1392 #endif
1393 		k = lo0bits(&z);
1394 		if (k >= 16) {
1395 			x[0] = z;
1396 			i = 0;
1397 			}
1398 		else {
1399 			x[0] = z & 0xffff;
1400 			x[1] = z >> 16;
1401 			i = 1;
1402 			}
1403 		k += 32;
1404 		}
1405 	while(!x[i])
1406 		--i;
1407 	b->wds = i + 1;
1408 #endif
1409 #ifndef Sudden_Underflow
1410 	if (de) {
1411 #endif
1412 #ifdef IBM
1413 		*e = (de - Bias - (P-1) << 2) + k;
1414 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1415 #else
1416 		*e = de - Bias - (P-1) + k;
1417 		*bits = P - k;
1418 #endif
1419 #ifndef Sudden_Underflow
1420 		}
1421 	else {
1422 		*e = de - Bias - (P-1) + 1 + k;
1423 #ifdef Pack_32
1424 		*bits = 32*i - hi0bits(x[i-1]);
1425 #else
1426 		*bits = (i+2)*16 - hi0bits(x[i]);
1427 #endif
1428 		}
1429 #endif
1430 	return b;
1431 	}
1432 #undef d0
1433 #undef d1
1434 
1435  static double
ratio(a,b)1436 ratio
1437 #ifdef KR_headers
1438 	(a, b) Bigint *a, *b;
1439 #else
1440 	(Bigint *a, Bigint *b)
1441 #endif
1442 {
1443 	U da, db;
1444 	int k, ka, kb;
1445 
1446 	dval(&da) = b2d(a, &ka);
1447 	dval(&db) = b2d(b, &kb);
1448 #ifdef Pack_32
1449 	k = ka - kb + 32*(a->wds - b->wds);
1450 #else
1451 	k = ka - kb + 16*(a->wds - b->wds);
1452 #endif
1453 #ifdef IBM
1454 	if (k > 0) {
1455 		word0(&da) += (k >> 2)*Exp_msk1;
1456 		if (k &= 3)
1457 			dval(&da) *= 1 << k;
1458 		}
1459 	else {
1460 		k = -k;
1461 		word0(&db) += (k >> 2)*Exp_msk1;
1462 		if (k &= 3)
1463 			dval(&db) *= 1 << k;
1464 		}
1465 #else
1466 	if (k > 0)
1467 		word0(&da) += k*Exp_msk1;
1468 	else {
1469 		k = -k;
1470 		word0(&db) += k*Exp_msk1;
1471 		}
1472 #endif
1473 	return dval(&da) / dval(&db);
1474 	}
1475 
1476  static CONST double
1477 tens[] = {
1478 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1479 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1480 		1e20, 1e21, 1e22
1481 #ifdef VAX
1482 		, 1e23, 1e24
1483 #endif
1484 		};
1485 
1486  static CONST double
1487 #ifdef IEEE_Arith
1488 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1489 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1490 #ifdef Avoid_Underflow
1491 		9007199254740992.*9007199254740992.e-256
1492 		/* = 2^106 * 1e-256 */
1493 #else
1494 		1e-256
1495 #endif
1496 		};
1497 /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1498 /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
1499 #define Scale_Bit 0x10
1500 #define n_bigtens 5
1501 #else
1502 #ifdef IBM
1503 bigtens[] = { 1e16, 1e32, 1e64 };
1504 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1505 #define n_bigtens 3
1506 #else
1507 bigtens[] = { 1e16, 1e32 };
1508 static CONST double tinytens[] = { 1e-16, 1e-32 };
1509 #define n_bigtens 2
1510 #endif
1511 #endif
1512 
1513 #undef Need_Hexdig
1514 #ifdef INFNAN_CHECK
1515 #ifndef No_Hex_NaN
1516 #define Need_Hexdig
1517 #endif
1518 #endif
1519 
1520 #ifndef Need_Hexdig
1521 #ifndef NO_HEX_FP
1522 #define Need_Hexdig
1523 #endif
1524 #endif
1525 
1526 #ifdef Need_Hexdig /*{*/
1527 #if 0
1528 static unsigned char hexdig[256];
1529 
1530  static void
1531 htinit(unsigned char *h, unsigned char *s, int inc)
1532 {
1533 	int i, j;
1534 	for(i = 0; (j = s[i]) !=0; i++)
1535 		h[j] = i + inc;
1536 	}
1537 
1538  static void
1539 hexdig_init(void)	/* Use of hexdig_init omitted 20121220 to avoid a */
1540 			/* race condition when multiple threads are used. */
1541 {
1542 #define USC (unsigned char *)
1543 	htinit(hexdig, USC "0123456789", 0x10);
1544 	htinit(hexdig, USC "abcdef", 0x10 + 10);
1545 	htinit(hexdig, USC "ABCDEF", 0x10 + 10);
1546 	}
1547 #else
1548 static const unsigned char hexdig[256] = {
1549 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1550 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1551 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1552 	16,17,18,19,20,21,22,23,24,25,0,0,0,0,0,0,
1553 	0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1554 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1555 	0,26,27,28,29,30,31,0,0,0,0,0,0,0,0,0,
1556 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1557 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1558 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1559 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1560 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1561 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1562 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1563 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1564 	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1565 	};
1566 #endif
1567 #endif /* } Need_Hexdig */
1568 
1569 #ifdef INFNAN_CHECK
1570 
1571 #ifndef NAN_WORD0
1572 #define NAN_WORD0 0x7ff80000
1573 #endif
1574 
1575 #ifndef NAN_WORD1
1576 #define NAN_WORD1 0
1577 #endif
1578 
1579  static int
match(sp,t)1580 match
1581 #ifdef KR_headers
1582 	(sp, t) char **sp, *t;
1583 #else
1584 	(const char **sp, const char *t)
1585 #endif
1586 {
1587 	int c, d;
1588 	CONST char *s = *sp;
1589 
1590 	while((d = *t++)) {
1591 		if ((c = *++s) >= 'A' && c <= 'Z')
1592 			c += 'a' - 'A';
1593 		if (c != d)
1594 			return 0;
1595 		}
1596 	*sp = s + 1;
1597 	return 1;
1598 	}
1599 
1600 #ifndef No_Hex_NaN
1601  static void
hexnan(rvp,sp)1602 hexnan
1603 #ifdef KR_headers
1604 	(rvp, sp) U *rvp; CONST char **sp;
1605 #else
1606 	(U *rvp, const char **sp)
1607 #endif
1608 {
1609 	ULong c, x[2];
1610 	CONST char *s;
1611 	int c1, havedig, udx0, xshift;
1612 
1613 	/**** if (!hexdig['0']) hexdig_init(); ****/
1614 	x[0] = x[1] = 0;
1615 	havedig = xshift = 0;
1616 	udx0 = 1;
1617 	s = *sp;
1618 	/* allow optional initial 0x or 0X */
1619 	while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
1620 		++s;
1621 	if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
1622 		s += 2;
1623 	while((c = *(CONST unsigned char*)++s)) {
1624 		if ((c1 = hexdig[c]))
1625 			c  = c1 & 0xf;
1626 		else if (c <= ' ') {
1627 			if (udx0 && havedig) {
1628 				udx0 = 0;
1629 				xshift = 1;
1630 				}
1631 			continue;
1632 			}
1633 #ifdef GDTOA_NON_PEDANTIC_NANCHECK
1634 		else if (/*(*/ c == ')' && havedig) {
1635 			*sp = s + 1;
1636 			break;
1637 			}
1638 		else
1639 			return;	/* invalid form: don't change *sp */
1640 #else
1641 		else {
1642 			do {
1643 				if (/*(*/ c == ')') {
1644 					*sp = s + 1;
1645 					break;
1646 					}
1647 				} while((c = *++s));
1648 			break;
1649 			}
1650 #endif
1651 		havedig = 1;
1652 		if (xshift) {
1653 			xshift = 0;
1654 			x[0] = x[1];
1655 			x[1] = 0;
1656 			}
1657 		if (udx0)
1658 			x[0] = (x[0] << 4) | (x[1] >> 28);
1659 		x[1] = (x[1] << 4) | c;
1660 		}
1661 	if ((x[0] &= 0xfffff) || x[1]) {
1662 		word0(rvp) = Exp_mask | x[0];
1663 		word1(rvp) = x[1];
1664 		}
1665 	}
1666 #endif /*No_Hex_NaN*/
1667 #endif /* INFNAN_CHECK */
1668 
1669 #ifdef Pack_32
1670 #define ULbits 32
1671 #define kshift 5
1672 #define kmask 31
1673 #else
1674 #define ULbits 16
1675 #define kshift 4
1676 #define kmask 15
1677 #endif
1678 
1679 #if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
1680  static Bigint *
1681 #ifdef KR_headers
increment(b)1682 increment(b) Bigint *b;
1683 #else
1684 increment(Bigint *b)
1685 #endif
1686 {
1687 	ULong *x, *xe;
1688 	Bigint *b1;
1689 
1690 	x = b->x;
1691 	xe = x + b->wds;
1692 	do {
1693 		if (*x < (ULong)0xffffffffL) {
1694 			++*x;
1695 			return b;
1696 			}
1697 		*x++ = 0;
1698 		} while(x < xe);
1699 	{
1700 		if (b->wds >= b->maxwds) {
1701 			b1 = Balloc(b->k+1);
1702 			Bcopy(b1,b);
1703 			Bfree(b);
1704 			b = b1;
1705 			}
1706 		b->x[b->wds++] = 1;
1707 		}
1708 	return b;
1709 	}
1710 
1711 #endif /*}*/
1712 
1713 #ifndef NO_HEX_FP /*{*/
1714 
1715  static void
1716 #ifdef KR_headers
rshift(b,k)1717 rshift(b, k) Bigint *b; int k;
1718 #else
1719 rshift(Bigint *b, int k)
1720 #endif
1721 {
1722 	ULong *x, *x1, *xe, y;
1723 	int n;
1724 
1725 	x = x1 = b->x;
1726 	n = k >> kshift;
1727 	if (n < b->wds) {
1728 		xe = x + b->wds;
1729 		x += n;
1730 		if (k &= kmask) {
1731 			n = 32 - k;
1732 			y = *x++ >> k;
1733 			while(x < xe) {
1734 				*x1++ = (y | (*x << n)) & 0xffffffff;
1735 				y = *x++ >> k;
1736 				}
1737 			if ((*x1 = y) !=0)
1738 				x1++;
1739 			}
1740 		else
1741 			while(x < xe)
1742 				*x1++ = *x++;
1743 		}
1744 	if ((b->wds = x1 - b->x) == 0)
1745 		b->x[0] = 0;
1746 	}
1747 
1748  static ULong
1749 #ifdef KR_headers
any_on(b,k)1750 any_on(b, k) Bigint *b; int k;
1751 #else
1752 any_on(Bigint *b, int k)
1753 #endif
1754 {
1755 	int n, nwds;
1756 	ULong *x, *x0, x1, x2;
1757 
1758 	x = b->x;
1759 	nwds = b->wds;
1760 	n = k >> kshift;
1761 	if (n > nwds)
1762 		n = nwds;
1763 	else if (n < nwds && (k &= kmask)) {
1764 		x1 = x2 = x[n];
1765 		x1 >>= k;
1766 		x1 <<= k;
1767 		if (x1 != x2)
1768 			return 1;
1769 		}
1770 	x0 = x;
1771 	x += n;
1772 	while(x > x0)
1773 		if (*--x)
1774 			return 1;
1775 	return 0;
1776 	}
1777 
1778 enum {	/* rounding values: same as FLT_ROUNDS */
1779 	Round_zero = 0,
1780 	Round_near = 1,
1781 	Round_up = 2,
1782 	Round_down = 3
1783 	};
1784 
1785  void
1786 #ifdef KR_headers
gethex(sp,rvp,rounding,sign)1787 gethex(sp, rvp, rounding, sign)
1788 	CONST char **sp; U *rvp; int rounding, sign;
1789 #else
1790 gethex( CONST char **sp, U *rvp, int rounding, int sign)
1791 #endif
1792 {
1793 	Bigint *b;
1794 	CONST unsigned char *decpt, *s0, *s, *s1;
1795 	Long e, e1;
1796 	ULong L, lostbits, *x;
1797 	int big, denorm, esign, havedig, k, n, nbits, up, zret;
1798 #ifdef IBM
1799 	int j;
1800 #endif
1801 	enum {
1802 #ifdef IEEE_Arith /*{{*/
1803 		emax = 0x7fe - Bias - P + 1,
1804 		emin = Emin - P + 1
1805 #else /*}{*/
1806 		emin = Emin - P,
1807 #ifdef VAX
1808 		emax = 0x7ff - Bias - P + 1
1809 #endif
1810 #ifdef IBM
1811 		emax = 0x7f - Bias - P
1812 #endif
1813 #endif /*}}*/
1814 		};
1815 #ifdef USE_LOCALE
1816 	int i;
1817 #ifdef NO_LOCALE_CACHE
1818 	const unsigned char *decimalpoint = (unsigned char*)
1819 		localeconv()->decimal_point;
1820 #else
1821 	const unsigned char *decimalpoint;
1822 	static unsigned char *decimalpoint_cache;
1823 	if (!(s0 = decimalpoint_cache)) {
1824 		s0 = (unsigned char*)localeconv()->decimal_point;
1825 		if ((decimalpoint_cache = (unsigned char*)
1826 				MALLOC(strlen((CONST char*)s0) + 1))) {
1827 			strcpy((char*)decimalpoint_cache, (CONST char*)s0);
1828 			s0 = decimalpoint_cache;
1829 			}
1830 		}
1831 	decimalpoint = s0;
1832 #endif
1833 #endif
1834 
1835 	/**** if (!hexdig['0']) hexdig_init(); ****/
1836 	havedig = 0;
1837 	s0 = *(CONST unsigned char **)sp + 2;
1838 	while(s0[havedig] == '0')
1839 		havedig++;
1840 	s0 += havedig;
1841 	s = s0;
1842 	decpt = 0;
1843 	zret = 0;
1844 	e = 0;
1845 	if (hexdig[*s])
1846 		havedig++;
1847 	else {
1848 		zret = 1;
1849 #ifdef USE_LOCALE
1850 		for(i = 0; decimalpoint[i]; ++i) {
1851 			if (s[i] != decimalpoint[i])
1852 				goto pcheck;
1853 			}
1854 		decpt = s += i;
1855 #else
1856 		if (*s != '.')
1857 			goto pcheck;
1858 		decpt = ++s;
1859 #endif
1860 		if (!hexdig[*s])
1861 			goto pcheck;
1862 		while(*s == '0')
1863 			s++;
1864 		if (hexdig[*s])
1865 			zret = 0;
1866 		havedig = 1;
1867 		s0 = s;
1868 		}
1869 	while(hexdig[*s])
1870 		s++;
1871 #ifdef USE_LOCALE
1872 	if (*s == *decimalpoint && !decpt) {
1873 		for(i = 1; decimalpoint[i]; ++i) {
1874 			if (s[i] != decimalpoint[i])
1875 				goto pcheck;
1876 			}
1877 		decpt = s += i;
1878 #else
1879 	if (*s == '.' && !decpt) {
1880 		decpt = ++s;
1881 #endif
1882 		while(hexdig[*s])
1883 			s++;
1884 		}/*}*/
1885 	if (decpt)
1886 		e = -(((Long)(s-decpt)) << 2);
1887  pcheck:
1888 	s1 = s;
1889 	big = esign = 0;
1890 	switch(*s) {
1891 	  case 'p':
1892 	  case 'P':
1893 		switch(*++s) {
1894 		  case '-':
1895 			esign = 1;
1896 			ZEND_FALLTHROUGH;
1897 		  case '+':
1898 			s++;
1899 		  }
1900 		if ((n = hexdig[*s]) == 0 || n > 0x19) {
1901 			s = s1;
1902 			break;
1903 			}
1904 		e1 = n - 0x10;
1905 		while((n = hexdig[*++s]) !=0 && n <= 0x19) {
1906 			if (e1 & 0xf8000000)
1907 				big = 1;
1908 			e1 = 10*e1 + n - 0x10;
1909 			}
1910 		if (esign)
1911 			e1 = -e1;
1912 		e += e1;
1913 	  }
1914 	*sp = (char*)s;
1915 	if (!havedig)
1916 		*sp = (char*)s0 - 1;
1917 	if (zret)
1918 		goto retz1;
1919 	if (big) {
1920 		if (esign) {
1921 #ifdef IEEE_Arith
1922 			switch(rounding) {
1923 			  case Round_up:
1924 				if (sign)
1925 					break;
1926 				goto ret_tiny;
1927 			  case Round_down:
1928 				if (!sign)
1929 					break;
1930 				goto ret_tiny;
1931 			  }
1932 #endif
1933 			goto retz;
1934 #ifdef IEEE_Arith
1935  ret_tinyf:
1936 			Bfree(b);
1937  ret_tiny:
1938 #ifndef NO_ERRNO
1939 			errno = ERANGE;
1940 #endif
1941 			word0(rvp) = 0;
1942 			word1(rvp) = 1;
1943 			return;
1944 #endif /* IEEE_Arith */
1945 			}
1946 		switch(rounding) {
1947 		  case Round_near:
1948 			goto ovfl1;
1949 		  case Round_up:
1950 			if (!sign)
1951 				goto ovfl1;
1952 			goto ret_big;
1953 		  case Round_down:
1954 			if (sign)
1955 				goto ovfl1;
1956 			goto ret_big;
1957 		  }
1958  ret_big:
1959 		word0(rvp) = Big0;
1960 		word1(rvp) = Big1;
1961 		return;
1962 		}
1963 	n = s1 - s0 - 1;
1964 	for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
1965 		k++;
1966 	b = Balloc(k);
1967 	x = b->x;
1968 	n = 0;
1969 	L = 0;
1970 #ifdef USE_LOCALE
1971 	for(i = 0; decimalpoint[i+1]; ++i);
1972 #endif
1973 	while(s1 > s0) {
1974 #ifdef USE_LOCALE
1975 		if (*--s1 == decimalpoint[i]) {
1976 			s1 -= i;
1977 			continue;
1978 			}
1979 #else
1980 		if (*--s1 == '.')
1981 			continue;
1982 #endif
1983 		if (n == ULbits) {
1984 			*x++ = L;
1985 			L = 0;
1986 			n = 0;
1987 			}
1988 		L |= (hexdig[*s1] & 0x0f) << n;
1989 		n += 4;
1990 		}
1991 	*x++ = L;
1992 	b->wds = n = x - b->x;
1993 	n = ULbits*n - hi0bits(L);
1994 	nbits = Nbits;
1995 	lostbits = 0;
1996 	x = b->x;
1997 	if (n > nbits) {
1998 		n -= nbits;
1999 		if (any_on(b,n)) {
2000 			lostbits = 1;
2001 			k = n - 1;
2002 			if (x[k>>kshift] & 1 << (k & kmask)) {
2003 				lostbits = 2;
2004 				if (k > 0 && any_on(b,k))
2005 					lostbits = 3;
2006 				}
2007 			}
2008 		rshift(b, n);
2009 		e += n;
2010 		}
2011 	else if (n < nbits) {
2012 		n = nbits - n;
2013 		b = lshift(b, n);
2014 		e -= n;
2015 		x = b->x;
2016 		}
2017 	if (e > Emax) {
2018  ovfl:
2019 		Bfree(b);
2020  ovfl1:
2021 #ifndef NO_ERRNO
2022 		errno = ERANGE;
2023 #endif
2024 		word0(rvp) = Exp_mask;
2025 		word1(rvp) = 0;
2026 		return;
2027 		}
2028 	denorm = 0;
2029 	if (e < emin) {
2030 		denorm = 1;
2031 		n = emin - e;
2032 		if (n >= nbits) {
2033 #ifdef IEEE_Arith /*{*/
2034 			switch (rounding) {
2035 			  case Round_near:
2036 				if (n == nbits && (n < 2 || any_on(b,n-1)))
2037 					goto ret_tinyf;
2038 				break;
2039 			  case Round_up:
2040 				if (!sign)
2041 					goto ret_tinyf;
2042 				break;
2043 			  case Round_down:
2044 				if (sign)
2045 					goto ret_tinyf;
2046 			  }
2047 #endif /* } IEEE_Arith */
2048 			Bfree(b);
2049  retz:
2050 #ifndef NO_ERRNO
2051 			errno = ERANGE;
2052 #endif
2053  retz1:
2054 			rvp->d = 0.;
2055 			return;
2056 			}
2057 		k = n - 1;
2058 		if (lostbits)
2059 			lostbits = 1;
2060 		else if (k > 0)
2061 			lostbits = any_on(b,k);
2062 		if (x[k>>kshift] & 1 << (k & kmask))
2063 			lostbits |= 2;
2064 		nbits -= n;
2065 		rshift(b,n);
2066 		e = emin;
2067 		}
2068 	if (lostbits) {
2069 		up = 0;
2070 		switch(rounding) {
2071 		  case Round_zero:
2072 			break;
2073 		  case Round_near:
2074 			if (lostbits & 2
2075 			 && (lostbits & 1) | (x[0] & 1))
2076 				up = 1;
2077 			break;
2078 		  case Round_up:
2079 			up = 1 - sign;
2080 			break;
2081 		  case Round_down:
2082 			up = sign;
2083 		  }
2084 		if (up) {
2085 			k = b->wds;
2086 			b = increment(b);
2087 			x = b->x;
2088 			if (denorm) {
2089 #if 0
2090 				if (nbits == Nbits - 1
2091 				 && x[nbits >> kshift] & 1 << (nbits & kmask))
2092 					denorm = 0; /* not currently used */
2093 #endif
2094 				}
2095 			else if (b->wds > k
2096 			 || ((n = nbits & kmask) !=0
2097 			     && hi0bits(x[k-1]) < 32-n)) {
2098 				rshift(b,1);
2099 				if (++e > Emax)
2100 					goto ovfl;
2101 				}
2102 			}
2103 		}
2104 #ifdef IEEE_Arith
2105 	if (denorm)
2106 		word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
2107 	else
2108 		word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
2109 	word1(rvp) = b->x[0];
2110 #endif
2111 #ifdef IBM
2112 	if ((j = e & 3)) {
2113 		k = b->x[0] & ((1 << j) - 1);
2114 		rshift(b,j);
2115 		if (k) {
2116 			switch(rounding) {
2117 			  case Round_up:
2118 				if (!sign)
2119 					increment(b);
2120 				break;
2121 			  case Round_down:
2122 				if (sign)
2123 					increment(b);
2124 				break;
2125 			  case Round_near:
2126 				j = 1 << (j-1);
2127 				if (k & j && ((k & (j-1)) | lostbits))
2128 					increment(b);
2129 			  }
2130 			}
2131 		}
2132 	e >>= 2;
2133 	word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
2134 	word1(rvp) = b->x[0];
2135 #endif
2136 #ifdef VAX
2137 	/* The next two lines ignore swap of low- and high-order 2 bytes. */
2138 	/* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
2139 	/* word1(rvp) = b->x[0]; */
2140 	word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
2141 	word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
2142 #endif
2143 	Bfree(b);
2144 	}
2145 #endif /*!NO_HEX_FP}*/
2146 
2147  static int
2148 #ifdef KR_headers
dshift(b,p2)2149 dshift(b, p2) Bigint *b; int p2;
2150 #else
2151 dshift(Bigint *b, int p2)
2152 #endif
2153 {
2154 	int rv = hi0bits(b->x[b->wds-1]) - 4;
2155 	if (p2 > 0)
2156 		rv -= p2;
2157 	return rv & kmask;
2158 	}
2159 
2160  static int
quorem(b,S)2161 quorem
2162 #ifdef KR_headers
2163 	(b, S) Bigint *b, *S;
2164 #else
2165 	(Bigint *b, Bigint *S)
2166 #endif
2167 {
2168 	int n;
2169 	ULong *bx, *bxe, q, *sx, *sxe;
2170 #ifdef ULLong
2171 	ULLong borrow, carry, y, ys;
2172 #else
2173 	ULong borrow, carry, y, ys;
2174 #ifdef Pack_32
2175 	ULong si, z, zs;
2176 #endif
2177 #endif
2178 
2179 	n = S->wds;
2180 #ifdef DEBUG
2181 	/*debug*/ if (b->wds > n)
2182 	/*debug*/	Bug("oversize b in quorem");
2183 #endif
2184 	if (b->wds < n)
2185 		return 0;
2186 	sx = S->x;
2187 	sxe = sx + --n;
2188 	bx = b->x;
2189 	bxe = bx + n;
2190 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
2191 #ifdef DEBUG
2192 #ifdef NO_STRTOD_BIGCOMP
2193 	/*debug*/ if (q > 9)
2194 #else
2195 	/* An oversized q is possible when quorem is called from bigcomp and */
2196 	/* the input is near, e.g., twice the smallest denormalized number. */
2197 	/*debug*/ if (q > 15)
2198 #endif
2199 	/*debug*/	Bug("oversized quotient in quorem");
2200 #endif
2201 	if (q) {
2202 		borrow = 0;
2203 		carry = 0;
2204 		do {
2205 #ifdef ULLong
2206 			ys = *sx++ * (ULLong)q + carry;
2207 			carry = ys >> 32;
2208 			y = *bx - (ys & FFFFFFFF) - borrow;
2209 			borrow = y >> 32 & (ULong)1;
2210 			*bx++ = y & FFFFFFFF;
2211 #else
2212 #ifdef Pack_32
2213 			si = *sx++;
2214 			ys = (si & 0xffff) * q + carry;
2215 			zs = (si >> 16) * q + (ys >> 16);
2216 			carry = zs >> 16;
2217 			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2218 			borrow = (y & 0x10000) >> 16;
2219 			z = (*bx >> 16) - (zs & 0xffff) - borrow;
2220 			borrow = (z & 0x10000) >> 16;
2221 			Storeinc(bx, z, y);
2222 #else
2223 			ys = *sx++ * q + carry;
2224 			carry = ys >> 16;
2225 			y = *bx - (ys & 0xffff) - borrow;
2226 			borrow = (y & 0x10000) >> 16;
2227 			*bx++ = y & 0xffff;
2228 #endif
2229 #endif
2230 			}
2231 			while(sx <= sxe);
2232 		if (!*bxe) {
2233 			bx = b->x;
2234 			while(--bxe > bx && !*bxe)
2235 				--n;
2236 			b->wds = n;
2237 			}
2238 		}
2239 	if (cmp(b, S) >= 0) {
2240 		q++;
2241 		borrow = 0;
2242 		carry = 0;
2243 		bx = b->x;
2244 		sx = S->x;
2245 		do {
2246 #ifdef ULLong
2247 			ys = *sx++ + carry;
2248 			carry = ys >> 32;
2249 			y = *bx - (ys & FFFFFFFF) - borrow;
2250 			borrow = y >> 32 & (ULong)1;
2251 			*bx++ = y & FFFFFFFF;
2252 #else
2253 #ifdef Pack_32
2254 			si = *sx++;
2255 			ys = (si & 0xffff) + carry;
2256 			zs = (si >> 16) + (ys >> 16);
2257 			carry = zs >> 16;
2258 			y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
2259 			borrow = (y & 0x10000) >> 16;
2260 			z = (*bx >> 16) - (zs & 0xffff) - borrow;
2261 			borrow = (z & 0x10000) >> 16;
2262 			Storeinc(bx, z, y);
2263 #else
2264 			ys = *sx++ + carry;
2265 			carry = ys >> 16;
2266 			y = *bx - (ys & 0xffff) - borrow;
2267 			borrow = (y & 0x10000) >> 16;
2268 			*bx++ = y & 0xffff;
2269 #endif
2270 #endif
2271 			}
2272 			while(sx <= sxe);
2273 		bx = b->x;
2274 		bxe = bx + n;
2275 		if (!*bxe) {
2276 			while(--bxe > bx && !*bxe)
2277 				--n;
2278 			b->wds = n;
2279 			}
2280 		}
2281 	return q;
2282 	}
2283 
2284 #if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
2285  static double
sulp(x,bc)2286 sulp
2287 #ifdef KR_headers
2288 	(x, bc) U *x; BCinfo *bc;
2289 #else
2290 	(U *x, BCinfo *bc)
2291 #endif
2292 {
2293 	U u;
2294 	double rv;
2295 	int i;
2296 
2297 	rv = ulp(x);
2298 	if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
2299 		return rv; /* Is there an example where i <= 0 ? */
2300 	word0(&u) = Exp_1 + (i << Exp_shift);
2301 	word1(&u) = 0;
2302 	return rv * u.d;
2303 	}
2304 #endif /*}*/
2305 
2306 #ifndef NO_STRTOD_BIGCOMP
2307  static void
bigcomp(rv,s0,bc)2308 bigcomp
2309 #ifdef KR_headers
2310 	(rv, s0, bc)
2311 	U *rv; CONST char *s0; BCinfo *bc;
2312 #else
2313 	(U *rv, const char *s0, BCinfo *bc)
2314 #endif
2315 {
2316 	Bigint *b, *d;
2317 	int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
2318 
2319 	dsign = bc->dsign;
2320 	nd = bc->nd;
2321 	nd0 = bc->nd0;
2322 	p5 = nd + bc->e0 - 1;
2323 	speccase = 0;
2324 #ifndef Sudden_Underflow
2325 	if (rv->d == 0.) {	/* special case: value near underflow-to-zero */
2326 				/* threshold was rounded to zero */
2327 		b = i2b(1);
2328 		p2 = Emin - P + 1;
2329 		bbits = 1;
2330 #ifdef Avoid_Underflow
2331 		word0(rv) = (P+2) << Exp_shift;
2332 #else
2333 		word1(rv) = 1;
2334 #endif
2335 		i = 0;
2336 #ifdef Honor_FLT_ROUNDS
2337 		if (bc->rounding == 1)
2338 #endif
2339 			{
2340 			speccase = 1;
2341 			--p2;
2342 			dsign = 0;
2343 			goto have_i;
2344 			}
2345 		}
2346 	else
2347 #endif
2348 		b = d2b(rv, &p2, &bbits);
2349 #ifdef Avoid_Underflow
2350 	p2 -= bc->scale;
2351 #endif
2352 	/* floor(log2(rv)) == bbits - 1 + p2 */
2353 	/* Check for denormal case. */
2354 	i = P - bbits;
2355 	if (i > (j = P - Emin - 1 + p2)) {
2356 #ifdef Sudden_Underflow
2357 		Bfree(b);
2358 		b = i2b(1);
2359 		p2 = Emin;
2360 		i = P - 1;
2361 #ifdef Avoid_Underflow
2362 		word0(rv) = (1 + bc->scale) << Exp_shift;
2363 #else
2364 		word0(rv) = Exp_msk1;
2365 #endif
2366 		word1(rv) = 0;
2367 #else
2368 		i = j;
2369 #endif
2370 		}
2371 #ifdef Honor_FLT_ROUNDS
2372 	if (bc->rounding != 1) {
2373 		if (i > 0)
2374 			b = lshift(b, i);
2375 		if (dsign)
2376 			b = increment(b);
2377 		}
2378 	else
2379 #endif
2380 		{
2381 		b = lshift(b, ++i);
2382 		b->x[0] |= 1;
2383 		}
2384 #ifndef Sudden_Underflow
2385  have_i:
2386 #endif
2387 	p2 -= p5 + i;
2388 	d = i2b(1);
2389 	/* Arrange for convenient computation of quotients:
2390 	 * shift left if necessary so divisor has 4 leading 0 bits.
2391 	 */
2392 	if (p5 > 0)
2393 		d = pow5mult(d, p5);
2394 	else if (p5 < 0)
2395 		b = pow5mult(b, -p5);
2396 	if (p2 > 0) {
2397 		b2 = p2;
2398 		d2 = 0;
2399 		}
2400 	else {
2401 		b2 = 0;
2402 		d2 = -p2;
2403 		}
2404 	i = dshift(d, d2);
2405 	if ((b2 += i) > 0)
2406 		b = lshift(b, b2);
2407 	if ((d2 += i) > 0)
2408 		d = lshift(d, d2);
2409 
2410 	/* Now b/d = exactly half-way between the two floating-point values */
2411 	/* on either side of the input string.  Compute first digit of b/d. */
2412 
2413 	if (!(dig = quorem(b,d))) {
2414 		b = multadd(b, 10, 0);	/* very unlikely */
2415 		dig = quorem(b,d);
2416 		}
2417 
2418 	/* Compare b/d with s0 */
2419 
2420 	for(i = 0; i < nd0; ) {
2421 		if ((dd = s0[i++] - '0' - dig))
2422 			goto ret;
2423 		if (!b->x[0] && b->wds == 1) {
2424 			if (i < nd)
2425 				dd = 1;
2426 			goto ret;
2427 			}
2428 		b = multadd(b, 10, 0);
2429 		dig = quorem(b,d);
2430 		}
2431 	for(j = bc->dp1; i++ < nd;) {
2432 		if ((dd = s0[j++] - '0' - dig))
2433 			goto ret;
2434 		if (!b->x[0] && b->wds == 1) {
2435 			if (i < nd)
2436 				dd = 1;
2437 			goto ret;
2438 			}
2439 		b = multadd(b, 10, 0);
2440 		dig = quorem(b,d);
2441 		}
2442 	if (dig > 0 || b->x[0] || b->wds > 1)
2443 		dd = -1;
2444  ret:
2445 	Bfree(b);
2446 	Bfree(d);
2447 #ifdef Honor_FLT_ROUNDS
2448 	if (bc->rounding != 1) {
2449 		if (dd < 0) {
2450 			if (bc->rounding == 0) {
2451 				if (!dsign)
2452 					goto retlow1;
2453 				}
2454 			else if (dsign)
2455 				goto rethi1;
2456 			}
2457 		else if (dd > 0) {
2458 			if (bc->rounding == 0) {
2459 				if (dsign)
2460 					goto rethi1;
2461 				goto ret1;
2462 				}
2463 			if (!dsign)
2464 				goto rethi1;
2465 			dval(rv) += 2.*sulp(rv,bc);
2466 			}
2467 		else {
2468 			bc->inexact = 0;
2469 			if (dsign)
2470 				goto rethi1;
2471 			}
2472 		}
2473 	else
2474 #endif
2475 	if (speccase) {
2476 		if (dd <= 0)
2477 			rv->d = 0.;
2478 		}
2479 	else if (dd < 0) {
2480 		if (!dsign)	/* does not happen for round-near */
2481 retlow1:
2482 			dval(rv) -= sulp(rv,bc);
2483 		}
2484 	else if (dd > 0) {
2485 		if (dsign) {
2486  rethi1:
2487 			dval(rv) += sulp(rv,bc);
2488 			}
2489 		}
2490 	else {
2491 		/* Exact half-way case:  apply round-even rule. */
2492 		if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
2493 			i = 1 - j;
2494 			if (i <= 31) {
2495 				if (word1(rv) & (0x1 << i))
2496 					goto odd;
2497 				}
2498 			else if (word0(rv) & (0x1 << (i-32)))
2499 				goto odd;
2500 			}
2501 		else if (word1(rv) & 1) {
2502  odd:
2503 			if (dsign)
2504 				goto rethi1;
2505 			goto retlow1;
2506 			}
2507 		}
2508 
2509 #ifdef Honor_FLT_ROUNDS
2510  ret1:
2511 #endif
2512 	return;
2513 	}
2514 #endif /* NO_STRTOD_BIGCOMP */
2515 
2516 ZEND_API double
zend_strtod(s00,se)2517 zend_strtod
2518 #ifdef KR_headers
2519 	(s00, se) CONST char *s00; char **se;
2520 #else
2521 	(const char *s00, const char **se)
2522 #endif
2523 {
2524 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
2525 	int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
2526 	CONST char *s, *s0, *s1;
2527 	volatile double aadj, aadj1;
2528 	Long L;
2529 	U aadj2, adj, rv, rv0;
2530 	ULong y, z;
2531 	BCinfo bc;
2532 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
2533 #ifdef Avoid_Underflow
2534 	ULong Lsb, Lsb1;
2535 #endif
2536 #ifdef SET_INEXACT
2537 	int oldinexact;
2538 #endif
2539 #ifndef NO_STRTOD_BIGCOMP
2540 	int req_bigcomp = 0;
2541 #endif
2542 #ifdef Honor_FLT_ROUNDS /*{*/
2543 #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
2544 	bc.rounding = Flt_Rounds;
2545 #else /*}{*/
2546 	bc.rounding = 1;
2547 	switch(fegetround()) {
2548 	  case FE_TOWARDZERO:	bc.rounding = 0; break;
2549 	  case FE_UPWARD:	bc.rounding = 2; break;
2550 	  case FE_DOWNWARD:	bc.rounding = 3;
2551 	  }
2552 #endif /*}}*/
2553 #endif /*}*/
2554 #ifdef USE_LOCALE
2555 	CONST char *s2;
2556 #endif
2557 
2558 	sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
2559 	dval(&rv) = 0.;
2560 	for(s = s00;;s++) switch(*s) {
2561 		case '-':
2562 			sign = 1;
2563 			ZEND_FALLTHROUGH;
2564 		case '+':
2565 			if (*++s)
2566 				goto break2;
2567 			ZEND_FALLTHROUGH;
2568 		case 0:
2569 			goto ret0;
2570 		case '\t':
2571 		case '\n':
2572 		case '\v':
2573 		case '\f':
2574 		case '\r':
2575 		case ' ':
2576 			continue;
2577 		default:
2578 			goto break2;
2579 		}
2580  break2:
2581 	if (*s == '0') {
2582 #ifndef NO_HEX_FP /*{*/
2583 		switch(s[1]) {
2584 		  case 'x':
2585 		  case 'X':
2586 #ifdef Honor_FLT_ROUNDS
2587 			gethex(&s, &rv, bc.rounding, sign);
2588 #else
2589 			gethex(&s, &rv, 1, sign);
2590 #endif
2591 			goto ret;
2592 		  }
2593 #endif /*}*/
2594 		nz0 = 1;
2595 		while(*++s == '0') ;
2596 		if (!*s)
2597 			goto ret;
2598 		}
2599 	s0 = s;
2600 	y = z = 0;
2601 	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
2602 		if (nd < 9)
2603 			y = 10*y + c - '0';
2604 		else if (nd < DBL_DIG + 2)
2605 			z = 10*z + c - '0';
2606 	nd0 = nd;
2607 	bc.dp0 = bc.dp1 = s - s0;
2608 	for(s1 = s; s1 > s0 && *--s1 == '0'; )
2609 		++nz1;
2610 #ifdef USE_LOCALE
2611 	s1 = localeconv()->decimal_point;
2612 	if (c == *s1) {
2613 		c = '.';
2614 		if (*++s1) {
2615 			s2 = s;
2616 			for(;;) {
2617 				if (*++s2 != *s1) {
2618 					c = 0;
2619 					break;
2620 					}
2621 				if (!*++s1) {
2622 					s = s2;
2623 					break;
2624 					}
2625 				}
2626 			}
2627 		}
2628 #endif
2629 	if (c == '.') {
2630 		c = *++s;
2631 		bc.dp1 = s - s0;
2632 		bc.dplen = bc.dp1 - bc.dp0;
2633 		if (!nd) {
2634 			for(; c == '0'; c = *++s)
2635 				nz++;
2636 			if (c > '0' && c <= '9') {
2637 				bc.dp0 = s0 - s;
2638 				bc.dp1 = bc.dp0 + bc.dplen;
2639 				s0 = s;
2640 				nf += nz;
2641 				nz = 0;
2642 				goto have_dig;
2643 				}
2644 			goto dig_done;
2645 			}
2646 		for(; c >= '0' && c <= '9'; c = *++s) {
2647  have_dig:
2648 			nz++;
2649 			if (c -= '0') {
2650 				nf += nz;
2651 				for(i = 1; i < nz; i++)
2652 					if (nd++ < 9)
2653 						y *= 10;
2654 					else if (nd <= DBL_DIG + 2)
2655 						z *= 10;
2656 				if (nd++ < 9)
2657 					y = 10*y + c;
2658 				else if (nd <= DBL_DIG + 2)
2659 					z = 10*z + c;
2660 				nz = nz1 = 0;
2661 				}
2662 			}
2663 		}
2664  dig_done:
2665  	if (nd < 0) {
2666  		/* overflow */
2667  		nd = DBL_DIG + 2;
2668  	}
2669  	if (nf < 0) {
2670  		/* overflow */
2671  		nf = DBL_DIG + 2;
2672  	}
2673 	e = 0;
2674 	if (c == 'e' || c == 'E') {
2675 		if (!nd && !nz && !nz0) {
2676 			goto ret0;
2677 			}
2678 		s00 = s;
2679 		esign = 0;
2680 		switch(c = *++s) {
2681 			case '-':
2682 				esign = 1;
2683 				ZEND_FALLTHROUGH;
2684 			case '+':
2685 				c = *++s;
2686 			}
2687 		if (c >= '0' && c <= '9') {
2688 			while(c == '0')
2689 				c = *++s;
2690 			if (c > '0' && c <= '9') {
2691 				L = c - '0';
2692 				s1 = s;
2693 				while((c = *++s) >= '0' && c <= '9')
2694 					L = (Long) (10*(ULong)L + (c - '0'));
2695 				if (s - s1 > 8 || L > 19999)
2696 					/* Avoid confusion from exponents
2697 					 * so large that e might overflow.
2698 					 */
2699 					e = 19999; /* safe for 16 bit ints */
2700 				else
2701 					e = (int)L;
2702 				if (esign)
2703 					e = -e;
2704 				}
2705 			else
2706 				e = 0;
2707 			}
2708 		else
2709 			s = s00;
2710 		}
2711 	if (!nd) {
2712 		if (!nz && !nz0) {
2713 #ifdef INFNAN_CHECK
2714 			/* Check for Nan and Infinity */
2715 			if (!bc.dplen)
2716 			 switch(c) {
2717 			  case 'i':
2718 			  case 'I':
2719 				if (match(&s,"nf")) {
2720 					--s;
2721 					if (!match(&s,"inity"))
2722 						++s;
2723 					word0(&rv) = 0x7ff00000;
2724 					word1(&rv) = 0;
2725 					goto ret;
2726 					}
2727 				break;
2728 			  case 'n':
2729 			  case 'N':
2730 				if (match(&s, "an")) {
2731 					word0(&rv) = NAN_WORD0;
2732 					word1(&rv) = NAN_WORD1;
2733 #ifndef No_Hex_NaN
2734 					if (*s == '(') /*)*/
2735 						hexnan(&rv, &s);
2736 #endif
2737 					goto ret;
2738 					}
2739 			  }
2740 #endif /* INFNAN_CHECK */
2741  ret0:
2742 			s = s00;
2743 			sign = 0;
2744 			}
2745 		goto ret;
2746 		}
2747 	bc.e0 = e1 = e -= nf;
2748 
2749 	/* Now we have nd0 digits, starting at s0, followed by a
2750 	 * decimal point, followed by nd-nd0 digits.  The number we're
2751 	 * after is the integer represented by those digits times
2752 	 * 10**e */
2753 
2754 	if (!nd0)
2755 		nd0 = nd;
2756 	k = nd < DBL_DIG + 2 ? nd : DBL_DIG + 2;
2757 	dval(&rv) = y;
2758 	if (k > 9) {
2759 #ifdef SET_INEXACT
2760 		if (k > DBL_DIG)
2761 			oldinexact = get_inexact();
2762 #endif
2763 		dval(&rv) = tens[k - 9] * dval(&rv) + z;
2764 		}
2765 	bd0 = 0;
2766 	if (nd <= DBL_DIG
2767 #ifndef RND_PRODQUOT
2768 #ifndef Honor_FLT_ROUNDS
2769 		&& Flt_Rounds == 1
2770 #endif
2771 #endif
2772 			) {
2773 		if (!e)
2774 			goto ret;
2775 #ifndef ROUND_BIASED_without_Round_Up
2776 		if (e > 0) {
2777 			if (e <= Ten_pmax) {
2778 #ifdef VAX
2779 				goto vax_ovfl_check;
2780 #else
2781 #ifdef Honor_FLT_ROUNDS
2782 				/* round correctly FLT_ROUNDS = 2 or 3 */
2783 				if (sign) {
2784 					rv.d = -rv.d;
2785 					sign = 0;
2786 					}
2787 #endif
2788 				/* rv = */ rounded_product(dval(&rv), tens[e]);
2789 				goto ret;
2790 #endif
2791 				}
2792 			i = DBL_DIG - nd;
2793 			if (e <= Ten_pmax + i) {
2794 				/* A fancier test would sometimes let us do
2795 				 * this for larger i values.
2796 				 */
2797 #ifdef Honor_FLT_ROUNDS
2798 				/* round correctly FLT_ROUNDS = 2 or 3 */
2799 				if (sign) {
2800 					rv.d = -rv.d;
2801 					sign = 0;
2802 					}
2803 #endif
2804 				e -= i;
2805 				dval(&rv) *= tens[i];
2806 #ifdef VAX
2807 				/* VAX exponent range is so narrow we must
2808 				 * worry about overflow here...
2809 				 */
2810  vax_ovfl_check:
2811 				word0(&rv) -= P*Exp_msk1;
2812 				/* rv = */ rounded_product(dval(&rv), tens[e]);
2813 				if ((word0(&rv) & Exp_mask)
2814 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
2815 					goto ovfl;
2816 				word0(&rv) += P*Exp_msk1;
2817 #else
2818 				/* rv = */ rounded_product(dval(&rv), tens[e]);
2819 #endif
2820 				goto ret;
2821 				}
2822 			}
2823 #ifndef Inaccurate_Divide
2824 		else if (e >= -Ten_pmax) {
2825 #ifdef Honor_FLT_ROUNDS
2826 			/* round correctly FLT_ROUNDS = 2 or 3 */
2827 			if (sign) {
2828 				rv.d = -rv.d;
2829 				sign = 0;
2830 				}
2831 #endif
2832 			/* rv = */ rounded_quotient(dval(&rv), tens[-e]);
2833 			goto ret;
2834 			}
2835 #endif
2836 #endif /* ROUND_BIASED_without_Round_Up */
2837 		}
2838 	e1 += nd - k;
2839 
2840 #ifdef IEEE_Arith
2841 #ifdef SET_INEXACT
2842 	bc.inexact = 1;
2843 	if (k <= DBL_DIG)
2844 		oldinexact = get_inexact();
2845 #endif
2846 #ifdef Avoid_Underflow
2847 	bc.scale = 0;
2848 #endif
2849 #ifdef Honor_FLT_ROUNDS
2850 	if (bc.rounding >= 2) {
2851 		if (sign)
2852 			bc.rounding = bc.rounding == 2 ? 0 : 2;
2853 		else
2854 			if (bc.rounding != 2)
2855 				bc.rounding = 0;
2856 		}
2857 #endif
2858 #endif /*IEEE_Arith*/
2859 
2860 	/* Get starting approximation = rv * 10**e1 */
2861 
2862 	if (e1 > 0) {
2863 		if ((i = e1 & 15))
2864 			dval(&rv) *= tens[i];
2865 		if (e1 &= ~15) {
2866 			if (e1 > DBL_MAX_10_EXP) {
2867  ovfl:
2868 				/* Can't trust HUGE_VAL */
2869 #ifdef IEEE_Arith
2870 #ifdef Honor_FLT_ROUNDS
2871 				switch(bc.rounding) {
2872 				  case 0: /* toward 0 */
2873 				  case 3: /* toward -infinity */
2874 					word0(&rv) = Big0;
2875 					word1(&rv) = Big1;
2876 					break;
2877 				  default:
2878 					word0(&rv) = Exp_mask;
2879 					word1(&rv) = 0;
2880 				  }
2881 #else /*Honor_FLT_ROUNDS*/
2882 				word0(&rv) = Exp_mask;
2883 				word1(&rv) = 0;
2884 #endif /*Honor_FLT_ROUNDS*/
2885 #ifdef SET_INEXACT
2886 				/* set overflow bit */
2887 				dval(&rv0) = 1e300;
2888 				dval(&rv0) *= dval(&rv0);
2889 #endif
2890 #else /*IEEE_Arith*/
2891 				word0(&rv) = Big0;
2892 				word1(&rv) = Big1;
2893 #endif /*IEEE_Arith*/
2894  range_err:
2895 				if (bd0) {
2896 					Bfree(bb);
2897 					Bfree(bd);
2898 					Bfree(bs);
2899 					Bfree(bd0);
2900 					Bfree(delta);
2901 					}
2902 #ifndef NO_ERRNO
2903 				errno = ERANGE;
2904 #endif
2905 				goto ret;
2906 				}
2907 			e1 >>= 4;
2908 			for(j = 0; e1 > 1; j++, e1 >>= 1)
2909 				if (e1 & 1)
2910 					dval(&rv) *= bigtens[j];
2911 		/* The last multiplication could overflow. */
2912 			word0(&rv) -= P*Exp_msk1;
2913 			dval(&rv) *= bigtens[j];
2914 			if ((z = word0(&rv) & Exp_mask)
2915 			 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
2916 				goto ovfl;
2917 			if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
2918 				/* set to largest number */
2919 				/* (Can't trust DBL_MAX) */
2920 				word0(&rv) = Big0;
2921 				word1(&rv) = Big1;
2922 				}
2923 			else
2924 				word0(&rv) += P*Exp_msk1;
2925 			}
2926 		}
2927 	else if (e1 < 0) {
2928 		e1 = -e1;
2929 		if ((i = e1 & 15))
2930 			dval(&rv) /= tens[i];
2931 		if (e1 >>= 4) {
2932 			if (e1 >= 1 << n_bigtens)
2933 				goto undfl;
2934 #ifdef Avoid_Underflow
2935 			if (e1 & Scale_Bit)
2936 				bc.scale = 2*P;
2937 			for(j = 0; e1 > 0; j++, e1 >>= 1)
2938 				if (e1 & 1)
2939 					dval(&rv) *= tinytens[j];
2940 			if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
2941 						>> Exp_shift)) > 0) {
2942 				/* scaled rv is denormal; clear j low bits */
2943 				if (j >= 32) {
2944 					if (j > 54)
2945 						goto undfl;
2946 					word1(&rv) = 0;
2947 					if (j >= 53)
2948 					 word0(&rv) = (P+2)*Exp_msk1;
2949 					else
2950 					 word0(&rv) &= 0xffffffff << (j-32);
2951 					}
2952 				else
2953 					word1(&rv) &= 0xffffffff << j;
2954 				}
2955 #else
2956 			for(j = 0; e1 > 1; j++, e1 >>= 1)
2957 				if (e1 & 1)
2958 					dval(&rv) *= tinytens[j];
2959 			/* The last multiplication could underflow. */
2960 			dval(&rv0) = dval(&rv);
2961 			dval(&rv) *= tinytens[j];
2962 			if (!dval(&rv)) {
2963 				dval(&rv) = 2.*dval(&rv0);
2964 				dval(&rv) *= tinytens[j];
2965 #endif
2966 				if (!dval(&rv)) {
2967  undfl:
2968 					dval(&rv) = 0.;
2969 					goto range_err;
2970 					}
2971 #ifndef Avoid_Underflow
2972 				word0(&rv) = Tiny0;
2973 				word1(&rv) = Tiny1;
2974 				/* The refinement below will clean
2975 				 * this approximation up.
2976 				 */
2977 				}
2978 #endif
2979 			}
2980 		}
2981 
2982 	/* Now the hard part -- adjusting rv to the correct value.*/
2983 
2984 	/* Put digits into bd: true value = bd * 10^e */
2985 
2986 	bc.nd = nd - nz1;
2987 #ifndef NO_STRTOD_BIGCOMP
2988 	bc.nd0 = nd0;	/* Only needed if nd > strtod_diglim, but done here */
2989 			/* to silence an erroneous warning about bc.nd0 */
2990 			/* possibly not being initialized. */
2991 	if (nd > strtod_diglim) {
2992 		/* ASSERT(strtod_diglim >= 18); 18 == one more than the */
2993 		/* minimum number of decimal digits to distinguish double values */
2994 		/* in IEEE arithmetic. */
2995 		i = j = 18;
2996 		if (i > nd0)
2997 			j += bc.dplen;
2998 		for(;;) {
2999 			if (--j < bc.dp1 && j >= bc.dp0)
3000 				j = bc.dp0 - 1;
3001 			if (s0[j] != '0')
3002 				break;
3003 			--i;
3004 			}
3005 		e += nd - i;
3006 		nd = i;
3007 		if (nd0 > nd)
3008 			nd0 = nd;
3009 		if (nd < 9) { /* must recompute y */
3010 			y = 0;
3011 			for(i = 0; i < nd0; ++i)
3012 				y = 10*y + s0[i] - '0';
3013 			for(j = bc.dp1; i < nd; ++i)
3014 				y = 10*y + s0[j++] - '0';
3015 			}
3016 		}
3017 #endif
3018 	bd0 = s2b(s0, nd0, nd, y, bc.dplen);
3019 
3020 	for(;;) {
3021 		bd = Balloc(bd0->k);
3022 		Bcopy(bd, bd0);
3023 		bb = d2b(&rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
3024 		bs = i2b(1);
3025 
3026 		if (e >= 0) {
3027 			bb2 = bb5 = 0;
3028 			bd2 = bd5 = e;
3029 			}
3030 		else {
3031 			bb2 = bb5 = -e;
3032 			bd2 = bd5 = 0;
3033 			}
3034 		if (bbe >= 0)
3035 			bb2 += bbe;
3036 		else
3037 			bd2 -= bbe;
3038 		bs2 = bb2;
3039 #ifdef Honor_FLT_ROUNDS
3040 		if (bc.rounding != 1)
3041 			bs2++;
3042 #endif
3043 #ifdef Avoid_Underflow
3044 		Lsb = LSB;
3045 		Lsb1 = 0;
3046 		j = bbe - bc.scale;
3047 		i = j + bbbits - 1;	/* logb(rv) */
3048 		j = P + 1 - bbbits;
3049 		if (i < Emin) {	/* denormal */
3050 			i = Emin - i;
3051 			j -= i;
3052 			if (i < 32)
3053 				Lsb <<= i;
3054 			else if (i < 52)
3055 				Lsb1 = Lsb << (i-32);
3056 			else
3057 				Lsb1 = Exp_mask;
3058 			}
3059 #else /*Avoid_Underflow*/
3060 #ifdef Sudden_Underflow
3061 #ifdef IBM
3062 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
3063 #else
3064 		j = P + 1 - bbbits;
3065 #endif
3066 #else /*Sudden_Underflow*/
3067 		j = bbe;
3068 		i = j + bbbits - 1;	/* logb(rv) */
3069 		if (i < Emin)	/* denormal */
3070 			j += P - Emin;
3071 		else
3072 			j = P + 1 - bbbits;
3073 #endif /*Sudden_Underflow*/
3074 #endif /*Avoid_Underflow*/
3075 		bb2 += j;
3076 		bd2 += j;
3077 #ifdef Avoid_Underflow
3078 		bd2 += bc.scale;
3079 #endif
3080 		i = bb2 < bd2 ? bb2 : bd2;
3081 		if (i > bs2)
3082 			i = bs2;
3083 		if (i > 0) {
3084 			bb2 -= i;
3085 			bd2 -= i;
3086 			bs2 -= i;
3087 			}
3088 		if (bb5 > 0) {
3089 			bs = pow5mult(bs, bb5);
3090 			bb1 = mult(bs, bb);
3091 			Bfree(bb);
3092 			bb = bb1;
3093 			}
3094 		if (bb2 > 0)
3095 			bb = lshift(bb, bb2);
3096 		if (bd5 > 0)
3097 			bd = pow5mult(bd, bd5);
3098 		if (bd2 > 0)
3099 			bd = lshift(bd, bd2);
3100 		if (bs2 > 0)
3101 			bs = lshift(bs, bs2);
3102 		delta = diff(bb, bd);
3103 		bc.dsign = delta->sign;
3104 		delta->sign = 0;
3105 		i = cmp(delta, bs);
3106 #ifndef NO_STRTOD_BIGCOMP /*{*/
3107 		if (bc.nd > nd && i <= 0) {
3108 			if (bc.dsign) {
3109 				/* Must use bigcomp(). */
3110 				req_bigcomp = 1;
3111 				break;
3112 				}
3113 #ifdef Honor_FLT_ROUNDS
3114 			if (bc.rounding != 1) {
3115 				if (i < 0) {
3116 					req_bigcomp = 1;
3117 					break;
3118 					}
3119 				}
3120 			else
3121 #endif
3122 				i = -1;	/* Discarded digits make delta smaller. */
3123 			}
3124 #endif /*}*/
3125 #ifdef Honor_FLT_ROUNDS /*{*/
3126 		if (bc.rounding != 1) {
3127 			if (i < 0) {
3128 				/* Error is less than an ulp */
3129 				if (!delta->x[0] && delta->wds <= 1) {
3130 					/* exact */
3131 #ifdef SET_INEXACT
3132 					bc.inexact = 0;
3133 #endif
3134 					break;
3135 					}
3136 				if (bc.rounding) {
3137 					if (bc.dsign) {
3138 						adj.d = 1.;
3139 						goto apply_adj;
3140 						}
3141 					}
3142 				else if (!bc.dsign) {
3143 					adj.d = -1.;
3144 					if (!word1(&rv)
3145 					 && !(word0(&rv) & Frac_mask)) {
3146 						y = word0(&rv) & Exp_mask;
3147 #ifdef Avoid_Underflow
3148 						if (!bc.scale || y > 2*P*Exp_msk1)
3149 #else
3150 						if (y)
3151 #endif
3152 						  {
3153 						  delta = lshift(delta,Log2P);
3154 						  if (cmp(delta, bs) <= 0)
3155 							adj.d = -0.5;
3156 						  }
3157 						}
3158  apply_adj:
3159 #ifdef Avoid_Underflow /*{*/
3160 					if (bc.scale && (y = word0(&rv) & Exp_mask)
3161 						<= 2*P*Exp_msk1)
3162 					  word0(&adj) += (2*P+1)*Exp_msk1 - y;
3163 #else
3164 #ifdef Sudden_Underflow
3165 					if ((word0(&rv) & Exp_mask) <=
3166 							P*Exp_msk1) {
3167 						word0(&rv) += P*Exp_msk1;
3168 						dval(&rv) += adj.d*ulp(dval(&rv));
3169 						word0(&rv) -= P*Exp_msk1;
3170 						}
3171 					else
3172 #endif /*Sudden_Underflow*/
3173 #endif /*Avoid_Underflow}*/
3174 					dval(&rv) += adj.d*ulp(&rv);
3175 					}
3176 				break;
3177 				}
3178 			adj.d = ratio(delta, bs);
3179 			if (adj.d < 1.)
3180 				adj.d = 1.;
3181 			if (adj.d <= 0x7ffffffe) {
3182 				/* adj = rounding ? ceil(adj) : floor(adj); */
3183 				y = adj.d;
3184 				if (y != adj.d) {
3185 					if (!((bc.rounding>>1) ^ bc.dsign))
3186 						y++;
3187 					adj.d = y;
3188 					}
3189 				}
3190 #ifdef Avoid_Underflow /*{*/
3191 			if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3192 				word0(&adj) += (2*P+1)*Exp_msk1 - y;
3193 #else
3194 #ifdef Sudden_Underflow
3195 			if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3196 				word0(&rv) += P*Exp_msk1;
3197 				adj.d *= ulp(dval(&rv));
3198 				if (bc.dsign)
3199 					dval(&rv) += adj.d;
3200 				else
3201 					dval(&rv) -= adj.d;
3202 				word0(&rv) -= P*Exp_msk1;
3203 				goto cont;
3204 				}
3205 #endif /*Sudden_Underflow*/
3206 #endif /*Avoid_Underflow}*/
3207 			adj.d *= ulp(&rv);
3208 			if (bc.dsign) {
3209 				if (word0(&rv) == Big0 && word1(&rv) == Big1)
3210 					goto ovfl;
3211 				dval(&rv) += adj.d;
3212 				}
3213 			else
3214 				dval(&rv) -= adj.d;
3215 			goto cont;
3216 			}
3217 #endif /*}Honor_FLT_ROUNDS*/
3218 
3219 		if (i < 0) {
3220 			/* Error is less than half an ulp -- check for
3221 			 * special case of mantissa a power of two.
3222 			 */
3223 			if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
3224 #ifdef IEEE_Arith /*{*/
3225 #ifdef Avoid_Underflow
3226 			 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
3227 #else
3228 			 || (word0(&rv) & Exp_mask) <= Exp_msk1
3229 #endif
3230 #endif /*}*/
3231 				) {
3232 #ifdef SET_INEXACT
3233 				if (!delta->x[0] && delta->wds <= 1)
3234 					bc.inexact = 0;
3235 #endif
3236 				break;
3237 				}
3238 			if (!delta->x[0] && delta->wds <= 1) {
3239 				/* exact result */
3240 #ifdef SET_INEXACT
3241 				bc.inexact = 0;
3242 #endif
3243 				break;
3244 				}
3245 			delta = lshift(delta,Log2P);
3246 			if (cmp(delta, bs) > 0)
3247 				goto drop_down;
3248 			break;
3249 			}
3250 		if (i == 0) {
3251 			/* exactly half-way between */
3252 			if (bc.dsign) {
3253 				if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
3254 				 &&  word1(&rv) == (
3255 #ifdef Avoid_Underflow
3256 			(bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
3257 		? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
3258 #endif
3259 						   0xffffffff)) {
3260 					/*boundary case -- increment exponent*/
3261 					if (word0(&rv) == Big0 && word1(&rv) == Big1)
3262 						goto ovfl;
3263 					word0(&rv) = (word0(&rv) & Exp_mask)
3264 						+ Exp_msk1
3265 #ifdef IBM
3266 						| Exp_msk1 >> 4
3267 #endif
3268 						;
3269 					word1(&rv) = 0;
3270 #ifdef Avoid_Underflow
3271 					bc.dsign = 0;
3272 #endif
3273 					break;
3274 					}
3275 				}
3276 			else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
3277  drop_down:
3278 				/* boundary case -- decrement exponent */
3279 #ifdef Sudden_Underflow /*{{*/
3280 				L = word0(&rv) & Exp_mask;
3281 #ifdef IBM
3282 				if (L <  Exp_msk1)
3283 #else
3284 #ifdef Avoid_Underflow
3285 				if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
3286 #else
3287 				if (L <= Exp_msk1)
3288 #endif /*Avoid_Underflow*/
3289 #endif /*IBM*/
3290 					{
3291 					if (bc.nd >nd) {
3292 						bc.uflchk = 1;
3293 						break;
3294 						}
3295 					goto undfl;
3296 					}
3297 				L -= Exp_msk1;
3298 #else /*Sudden_Underflow}{*/
3299 #ifdef Avoid_Underflow
3300 				if (bc.scale) {
3301 					L = word0(&rv) & Exp_mask;
3302 					if (L <= (2*P+1)*Exp_msk1) {
3303 						if (L > (P+2)*Exp_msk1)
3304 							/* round even ==> */
3305 							/* accept rv */
3306 							break;
3307 						/* rv = smallest denormal */
3308 						if (bc.nd >nd) {
3309 							bc.uflchk = 1;
3310 							break;
3311 							}
3312 						goto undfl;
3313 						}
3314 					}
3315 #endif /*Avoid_Underflow*/
3316 				L = (word0(&rv) & Exp_mask) - Exp_msk1;
3317 #endif /*Sudden_Underflow}}*/
3318 				word0(&rv) = L | Bndry_mask1;
3319 				word1(&rv) = 0xffffffff;
3320 #ifdef IBM
3321 				goto cont;
3322 #else
3323 #ifndef NO_STRTOD_BIGCOMP
3324 				if (bc.nd > nd)
3325 					goto cont;
3326 #endif
3327 				break;
3328 #endif
3329 				}
3330 #ifndef ROUND_BIASED
3331 #ifdef Avoid_Underflow
3332 			if (Lsb1) {
3333 				if (!(word0(&rv) & Lsb1))
3334 					break;
3335 				}
3336 			else if (!(word1(&rv) & Lsb))
3337 				break;
3338 #else
3339 			if (!(word1(&rv) & LSB))
3340 				break;
3341 #endif
3342 #endif
3343 			if (bc.dsign)
3344 #ifdef Avoid_Underflow
3345 				dval(&rv) += sulp(&rv, &bc);
3346 #else
3347 				dval(&rv) += ulp(&rv);
3348 #endif
3349 #ifndef ROUND_BIASED
3350 			else {
3351 #ifdef Avoid_Underflow
3352 				dval(&rv) -= sulp(&rv, &bc);
3353 #else
3354 				dval(&rv) -= ulp(&rv);
3355 #endif
3356 #ifndef Sudden_Underflow
3357 				if (!dval(&rv)) {
3358 					if (bc.nd >nd) {
3359 						bc.uflchk = 1;
3360 						break;
3361 						}
3362 					goto undfl;
3363 					}
3364 #endif
3365 				}
3366 #ifdef Avoid_Underflow
3367 			bc.dsign = 1 - bc.dsign;
3368 #endif
3369 #endif
3370 			break;
3371 			}
3372 		if ((aadj = ratio(delta, bs)) <= 2.) {
3373 			if (bc.dsign)
3374 				aadj = aadj1 = 1.;
3375 			else if (word1(&rv) || word0(&rv) & Bndry_mask) {
3376 #ifndef Sudden_Underflow
3377 				if (word1(&rv) == Tiny1 && !word0(&rv)) {
3378 					if (bc.nd >nd) {
3379 						bc.uflchk = 1;
3380 						break;
3381 						}
3382 					goto undfl;
3383 					}
3384 #endif
3385 				aadj = 1.;
3386 				aadj1 = -1.;
3387 				}
3388 			else {
3389 				/* special case -- power of FLT_RADIX to be */
3390 				/* rounded down... */
3391 
3392 				if (aadj < 2./FLT_RADIX)
3393 					aadj = 1./FLT_RADIX;
3394 				else
3395 					aadj *= 0.5;
3396 				aadj1 = -aadj;
3397 				}
3398 			}
3399 		else {
3400 			aadj *= 0.5;
3401 			aadj1 = bc.dsign ? aadj : -aadj;
3402 #ifdef Check_FLT_ROUNDS
3403 			switch(bc.rounding) {
3404 				case 2: /* towards +infinity */
3405 					aadj1 -= 0.5;
3406 					break;
3407 				case 0: /* towards 0 */
3408 				case 3: /* towards -infinity */
3409 					aadj1 += 0.5;
3410 				}
3411 #else
3412 			if (Flt_Rounds == 0)
3413 				aadj1 += 0.5;
3414 #endif /*Check_FLT_ROUNDS*/
3415 			}
3416 		y = word0(&rv) & Exp_mask;
3417 
3418 		/* Check for overflow */
3419 
3420 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
3421 			dval(&rv0) = dval(&rv);
3422 			word0(&rv) -= P*Exp_msk1;
3423 			adj.d = aadj1 * ulp(&rv);
3424 			dval(&rv) += adj.d;
3425 			if ((word0(&rv) & Exp_mask) >=
3426 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
3427 				if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
3428 					goto ovfl;
3429 				word0(&rv) = Big0;
3430 				word1(&rv) = Big1;
3431 				goto cont;
3432 				}
3433 			else
3434 				word0(&rv) += P*Exp_msk1;
3435 			}
3436 		else {
3437 #ifdef Avoid_Underflow
3438 			if (bc.scale && y <= 2*P*Exp_msk1) {
3439 				if (aadj <= 0x7fffffff) {
3440 					if ((z = aadj) <= 0)
3441 						z = 1;
3442 					aadj = z;
3443 					aadj1 = bc.dsign ? aadj : -aadj;
3444 					}
3445 				dval(&aadj2) = aadj1;
3446 				word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
3447 				aadj1 = dval(&aadj2);
3448 				adj.d = aadj1 * ulp(&rv);
3449 				dval(&rv) += adj.d;
3450 				if (rv.d == 0.)
3451 #ifdef NO_STRTOD_BIGCOMP
3452 					goto undfl;
3453 #else
3454 					{
3455 					req_bigcomp = 1;
3456 					break;
3457 					}
3458 #endif
3459 				}
3460 			else {
3461 				adj.d = aadj1 * ulp(&rv);
3462 				dval(&rv) += adj.d;
3463 				}
3464 #else
3465 #ifdef Sudden_Underflow
3466 			if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
3467 				dval(&rv0) = dval(&rv);
3468 				word0(&rv) += P*Exp_msk1;
3469 				adj.d = aadj1 * ulp(&rv);
3470 				dval(&rv) += adj.d;
3471 #ifdef IBM
3472 				if ((word0(&rv) & Exp_mask) <  P*Exp_msk1)
3473 #else
3474 				if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
3475 #endif
3476 					{
3477 					if (word0(&rv0) == Tiny0
3478 					 && word1(&rv0) == Tiny1) {
3479 						if (bc.nd >nd) {
3480 							bc.uflchk = 1;
3481 							break;
3482 							}
3483 						goto undfl;
3484 						}
3485 					word0(&rv) = Tiny0;
3486 					word1(&rv) = Tiny1;
3487 					goto cont;
3488 					}
3489 				else
3490 					word0(&rv) -= P*Exp_msk1;
3491 				}
3492 			else {
3493 				adj.d = aadj1 * ulp(&rv);
3494 				dval(&rv) += adj.d;
3495 				}
3496 #else /*Sudden_Underflow*/
3497 			/* Compute adj so that the IEEE rounding rules will
3498 			 * correctly round rv + adj in some half-way cases.
3499 			 * If rv * ulp(rv) is denormalized (i.e.,
3500 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
3501 			 * trouble from bits lost to denormalization;
3502 			 * example: 1.2e-307 .
3503 			 */
3504 			if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
3505 				aadj1 = (double)(int)(aadj + 0.5);
3506 				if (!bc.dsign)
3507 					aadj1 = -aadj1;
3508 				}
3509 			adj.d = aadj1 * ulp(&rv);
3510 			dval(&rv) += adj.d;
3511 #endif /*Sudden_Underflow*/
3512 #endif /*Avoid_Underflow*/
3513 			}
3514 		z = word0(&rv) & Exp_mask;
3515 #ifndef SET_INEXACT
3516 		if (bc.nd == nd) {
3517 #ifdef Avoid_Underflow
3518 		if (!bc.scale)
3519 #endif
3520 		if (y == z) {
3521 			/* Can we stop now? */
3522 			L = (Long)aadj;
3523 			aadj -= L;
3524 			/* The tolerances below are conservative. */
3525 			if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
3526 				if (aadj < .4999999 || aadj > .5000001)
3527 					break;
3528 				}
3529 			else if (aadj < .4999999/FLT_RADIX)
3530 				break;
3531 			}
3532 		}
3533 #endif
3534  cont:
3535 		Bfree(bb);
3536 		Bfree(bd);
3537 		Bfree(bs);
3538 		Bfree(delta);
3539 		}
3540 	Bfree(bb);
3541 	Bfree(bd);
3542 	Bfree(bs);
3543 	Bfree(bd0);
3544 	Bfree(delta);
3545 #ifndef NO_STRTOD_BIGCOMP
3546 	if (req_bigcomp) {
3547 		bd0 = 0;
3548 		bc.e0 += nz1;
3549 		bigcomp(&rv, s0, &bc);
3550 		y = word0(&rv) & Exp_mask;
3551 		if (y == Exp_mask)
3552 			goto ovfl;
3553 		if (y == 0 && rv.d == 0.)
3554 			goto undfl;
3555 		}
3556 #endif
3557 #ifdef SET_INEXACT
3558 	if (bc.inexact) {
3559 		if (!oldinexact) {
3560 			word0(&rv0) = Exp_1 + (70 << Exp_shift);
3561 			word1(&rv0) = 0;
3562 			dval(&rv0) += 1.;
3563 			}
3564 		}
3565 	else if (!oldinexact)
3566 		clear_inexact();
3567 #endif
3568 #ifdef Avoid_Underflow
3569 	if (bc.scale) {
3570 		word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
3571 		word1(&rv0) = 0;
3572 		dval(&rv) *= dval(&rv0);
3573 #ifndef NO_ERRNO
3574 		/* try to avoid the bug of testing an 8087 register value */
3575 #ifdef IEEE_Arith
3576 		if (!(word0(&rv) & Exp_mask))
3577 #else
3578 		if (word0(&rv) == 0 && word1(&rv) == 0)
3579 #endif
3580 			errno = ERANGE;
3581 #endif
3582 		}
3583 #endif /* Avoid_Underflow */
3584 #ifdef SET_INEXACT
3585 	if (bc.inexact && !(word0(&rv) & Exp_mask)) {
3586 		/* set underflow bit */
3587 		dval(&rv0) = 1e-300;
3588 		dval(&rv0) *= dval(&rv0);
3589 		}
3590 #endif
3591  ret:
3592 	if (se)
3593 		*se = (char *)s;
3594 	return sign ? -dval(&rv) : dval(&rv);
3595 	}
3596 
3597 #if !defined(MULTIPLE_THREADS) && !defined(dtoa_result)
3598  ZEND_TLS char *dtoa_result;
3599 #endif
3600 
3601  static char *
3602 #ifdef KR_headers
rv_alloc(i)3603 rv_alloc(i) int i;
3604 #else
3605 rv_alloc(int i)
3606 #endif
3607 {
3608 
3609 	int j, k, *r;
3610 	size_t rem;
3611 
3612 	rem = sizeof(Bigint) - sizeof(ULong) - sizeof(int);
3613 
3614 
3615 	j = sizeof(ULong);
3616 	if (i > ((INT_MAX >> 2) + rem))
3617 		i = (INT_MAX >> 2) + rem;
3618 	for(k = 0;
3619 		rem + j <= (size_t)i; j <<= 1)
3620 			k++;
3621 
3622 	r = (int*)Balloc(k);
3623 	*r = k;
3624 	return
3625 #ifndef MULTIPLE_THREADS
3626 	dtoa_result =
3627 #endif
3628 		(char *)(r+1);
3629 	}
3630 
3631  static char *
3632 #ifdef KR_headers
nrv_alloc(s,rve,n)3633 nrv_alloc(s, rve, n) char *s, **rve; int n;
3634 #else
3635 nrv_alloc(const char *s, char **rve, int n)
3636 #endif
3637 {
3638 	char *rv, *t;
3639 
3640 	t = rv = rv_alloc(n);
3641 	while((*t = *s++)) t++;
3642 	if (rve)
3643 		*rve = t;
3644 	return rv;
3645 	}
3646 
3647 /* freedtoa(s) must be used to free values s returned by dtoa
3648  * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
3649  * but for consistency with earlier versions of dtoa, it is optional
3650  * when MULTIPLE_THREADS is not defined.
3651  */
3652 
3653 ZEND_API void
3654 #ifdef KR_headers
zend_freedtoa(s)3655 zend_freedtoa(s) char *s;
3656 #else
3657 zend_freedtoa(char *s)
3658 #endif
3659 {
3660 	Bigint *b = (Bigint *)((int *)s - 1);
3661 	b->maxwds = 1 << (b->k = *(int*)b);
3662 	Bfree(b);
3663 #ifndef MULTIPLE_THREADS
3664 	if (s == dtoa_result)
3665 		dtoa_result = 0;
3666 #endif
3667 	}
3668 
3669 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
3670  *
3671  * Inspired by "How to Print Floating-Point Numbers Accurately" by
3672  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
3673  *
3674  * Modifications:
3675  *	1. Rather than iterating, we use a simple numeric overestimate
3676  *	   to determine k = floor(log10(d)).  We scale relevant
3677  *	   quantities using O(log2(k)) rather than O(k) multiplications.
3678  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
3679  *	   try to generate digits strictly left to right.  Instead, we
3680  *	   compute with fewer bits and propagate the carry if necessary
3681  *	   when rounding the final digit up.  This is often faster.
3682  *	3. Under the assumption that input will be rounded nearest,
3683  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
3684  *	   That is, we allow equality in stopping tests when the
3685  *	   round-nearest rule will give the same floating-point value
3686  *	   as would satisfaction of the stopping test with strict
3687  *	   inequality.
3688  *	4. We remove common factors of powers of 2 from relevant
3689  *	   quantities.
3690  *	5. When converting floating-point integers less than 1e16,
3691  *	   we use floating-point arithmetic rather than resorting
3692  *	   to multiple-precision integers.
3693  *	6. When asked to produce fewer than 15 digits, we first try
3694  *	   to get by with floating-point arithmetic; we resort to
3695  *	   multiple-precision integer arithmetic only if we cannot
3696  *	   guarantee that the floating-point calculation has given
3697  *	   the correctly rounded result.  For k requested digits and
3698  *	   "uniformly" distributed input, the probability is
3699  *	   something like 10^(k-15) that we must resort to the Long
3700  *	   calculation.
3701  */
3702 
zend_dtoa(double dd,int mode,int ndigits,int * decpt,bool * sign,char ** rve)3703 ZEND_API char *zend_dtoa(double dd, int mode, int ndigits, int *decpt, bool *sign, char **rve)
3704 {
3705  /*	Arguments ndigits, decpt, sign are similar to those
3706 	of ecvt and fcvt; trailing zeros are suppressed from
3707 	the returned string.  If not null, *rve is set to point
3708 	to the end of the return value.  If d is +-Infinity or NaN,
3709 	then *decpt is set to 9999.
3710 
3711 	mode:
3712 		0 ==> shortest string that yields d when read in
3713 			and rounded to nearest.
3714 		1 ==> like 0, but with Steele & White stopping rule;
3715 			e.g. with IEEE P754 arithmetic , mode 0 gives
3716 			1e23 whereas mode 1 gives 9.999999999999999e22.
3717 		2 ==> max(1,ndigits) significant digits.  This gives a
3718 			return value similar to that of ecvt, except
3719 			that trailing zeros are suppressed.
3720 		3 ==> through ndigits past the decimal point.  This
3721 			gives a return value similar to that from fcvt,
3722 			except that trailing zeros are suppressed, and
3723 			ndigits can be negative.
3724 		4,5 ==> similar to 2 and 3, respectively, but (in
3725 			round-nearest mode) with the tests of mode 0 to
3726 			possibly return a shorter string that rounds to d.
3727 			With IEEE arithmetic and compilation with
3728 			-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
3729 			as modes 2 and 3 when FLT_ROUNDS != 1.
3730 		6-9 ==> Debugging modes similar to mode - 4:  don't try
3731 			fast floating-point estimate (if applicable).
3732 
3733 		Values of mode other than 0-9 are treated as mode 0.
3734 
3735 		Sufficient space is allocated to the return value
3736 		to hold the suppressed trailing zeros.
3737 	*/
3738 
3739 	int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
3740 		j, j1 = 0, k, k0, k_check, leftright, m2, m5, s2, s5,
3741 		spec_case = 0, try_quick;
3742 	Long L;
3743 #ifndef Sudden_Underflow
3744 	int denorm;
3745 	ULong x;
3746 #endif
3747 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
3748 	U d2, eps, u;
3749 	double ds;
3750 	char *s, *s0;
3751 #ifndef No_leftright
3752 #ifdef IEEE_Arith
3753 	U eps1;
3754 #endif
3755 #endif
3756 #ifdef SET_INEXACT
3757 	int inexact, oldinexact;
3758 #endif
3759 #ifdef Honor_FLT_ROUNDS /*{*/
3760 	int Rounding;
3761 #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
3762 	Rounding = Flt_Rounds;
3763 #else /*}{*/
3764 	Rounding = 1;
3765 	switch(fegetround()) {
3766 	  case FE_TOWARDZERO:	Rounding = 0; break;
3767 	  case FE_UPWARD:	Rounding = 2; break;
3768 	  case FE_DOWNWARD:	Rounding = 3;
3769 	  }
3770 #endif /*}}*/
3771 #endif /*}*/
3772 
3773 #ifndef MULTIPLE_THREADS
3774 	if (dtoa_result) {
3775 		zend_freedtoa(dtoa_result);
3776 		dtoa_result = 0;
3777 		}
3778 #endif
3779 
3780 	u.d = dd;
3781 	if (word0(&u) & Sign_bit) {
3782 		/* set sign for everything, including 0's and NaNs */
3783 		*sign = 1;
3784 		word0(&u) &= ~Sign_bit;	/* clear sign bit */
3785 		}
3786 	else
3787 		*sign = 0;
3788 
3789 #if defined(IEEE_Arith) + defined(VAX)
3790 #ifdef IEEE_Arith
3791 	if ((word0(&u) & Exp_mask) == Exp_mask)
3792 #else
3793 	if (word0(&u)  == 0x8000)
3794 #endif
3795 		{
3796 		/* Infinity or NaN */
3797 		*decpt = 9999;
3798 #ifdef IEEE_Arith
3799 		if (!word1(&u) && !(word0(&u) & 0xfffff))
3800 			return nrv_alloc("Infinity", rve, 8);
3801 #endif
3802 		return nrv_alloc("NaN", rve, 3);
3803 		}
3804 #endif
3805 #ifdef IBM
3806 	dval(&u) += 0; /* normalize */
3807 #endif
3808 	if (!dval(&u)) {
3809 		*decpt = 1;
3810 		return nrv_alloc("0", rve, 1);
3811 		}
3812 
3813 #ifdef SET_INEXACT
3814 	try_quick = oldinexact = get_inexact();
3815 	inexact = 1;
3816 #endif
3817 #ifdef Honor_FLT_ROUNDS
3818 	if (Rounding >= 2) {
3819 		if (*sign)
3820 			Rounding = Rounding == 2 ? 0 : 2;
3821 		else
3822 			if (Rounding != 2)
3823 				Rounding = 0;
3824 		}
3825 #endif
3826 
3827 	b = d2b(&u, &be, &bbits);
3828 #ifdef Sudden_Underflow
3829 	i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
3830 #else
3831 	if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
3832 #endif
3833 		dval(&d2) = dval(&u);
3834 		word0(&d2) &= Frac_mask1;
3835 		word0(&d2) |= Exp_11;
3836 #ifdef IBM
3837 		if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
3838 			dval(&d2) /= 1 << j;
3839 #endif
3840 
3841 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
3842 		 * log10(x)	 =  log(x) / log(10)
3843 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
3844 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
3845 		 *
3846 		 * This suggests computing an approximation k to log10(d) by
3847 		 *
3848 		 * k = (i - Bias)*0.301029995663981
3849 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
3850 		 *
3851 		 * We want k to be too large rather than too small.
3852 		 * The error in the first-order Taylor series approximation
3853 		 * is in our favor, so we just round up the constant enough
3854 		 * to compensate for any error in the multiplication of
3855 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
3856 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
3857 		 * adding 1e-13 to the constant term more than suffices.
3858 		 * Hence we adjust the constant term to 0.1760912590558.
3859 		 * (We could get a more accurate k by invoking log10,
3860 		 *  but this is probably not worthwhile.)
3861 		 */
3862 
3863 		i -= Bias;
3864 #ifdef IBM
3865 		i <<= 2;
3866 		i += j;
3867 #endif
3868 #ifndef Sudden_Underflow
3869 		denorm = 0;
3870 		}
3871 	else {
3872 		/* d is denormalized */
3873 
3874 		i = bbits + be + (Bias + (P-1) - 1);
3875 		x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
3876 			    : word1(&u) << (32 - i);
3877 		dval(&d2) = x;
3878 		word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
3879 		i -= (Bias + (P-1) - 1) + 1;
3880 		denorm = 1;
3881 		}
3882 #endif
3883 	ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
3884 	k = (int)ds;
3885 	if (ds < 0. && ds != k)
3886 		k--;	/* want k = floor(ds) */
3887 	k_check = 1;
3888 	if (k >= 0 && k <= Ten_pmax) {
3889 		if (dval(&u) < tens[k])
3890 			k--;
3891 		k_check = 0;
3892 		}
3893 	j = bbits - i - 1;
3894 	if (j >= 0) {
3895 		b2 = 0;
3896 		s2 = j;
3897 		}
3898 	else {
3899 		b2 = -j;
3900 		s2 = 0;
3901 		}
3902 	if (k >= 0) {
3903 		b5 = 0;
3904 		s5 = k;
3905 		s2 += k;
3906 		}
3907 	else {
3908 		b2 -= k;
3909 		b5 = -k;
3910 		s5 = 0;
3911 		}
3912 	if (mode < 0 || mode > 9)
3913 		mode = 0;
3914 
3915 #ifndef SET_INEXACT
3916 #ifdef Check_FLT_ROUNDS
3917 	try_quick = Rounding == 1;
3918 #else
3919 	try_quick = 1;
3920 #endif
3921 #endif /*SET_INEXACT*/
3922 
3923 	if (mode > 5) {
3924 		mode -= 4;
3925 		try_quick = 0;
3926 		}
3927 	leftright = 1;
3928 	ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */
3929 				/* silence erroneous "gcc -Wall" warning. */
3930 	switch(mode) {
3931 		case 0:
3932 		case 1:
3933 			i = 18;
3934 			ndigits = 0;
3935 			break;
3936 		case 2:
3937 			leftright = 0;
3938 			ZEND_FALLTHROUGH;
3939 		case 4:
3940 			if (ndigits <= 0)
3941 				ndigits = 1;
3942 			ilim = ilim1 = i = ndigits;
3943 			break;
3944 		case 3:
3945 			leftright = 0;
3946 			ZEND_FALLTHROUGH;
3947 		case 5:
3948 			i = ndigits + k + 1;
3949 			ilim = i;
3950 			ilim1 = i - 1;
3951 			if (i <= 0)
3952 				i = 1;
3953 		}
3954 	s = s0 = rv_alloc(i);
3955 
3956 #ifdef Honor_FLT_ROUNDS
3957 	if (mode > 1 && Rounding != 1)
3958 		leftright = 0;
3959 #endif
3960 
3961 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
3962 
3963 		/* Try to get by with floating-point arithmetic. */
3964 
3965 		i = 0;
3966 		dval(&d2) = dval(&u);
3967 		k0 = k;
3968 		ilim0 = ilim;
3969 		ieps = 2; /* conservative */
3970 		if (k > 0) {
3971 			ds = tens[k&0xf];
3972 			j = k >> 4;
3973 			if (j & Bletch) {
3974 				/* prevent overflows */
3975 				j &= Bletch - 1;
3976 				dval(&u) /= bigtens[n_bigtens-1];
3977 				ieps++;
3978 				}
3979 			for(; j; j >>= 1, i++)
3980 				if (j & 1) {
3981 					ieps++;
3982 					ds *= bigtens[i];
3983 					}
3984 			dval(&u) /= ds;
3985 			}
3986 		else if ((j1 = -k)) {
3987 			dval(&u) *= tens[j1 & 0xf];
3988 			for(j = j1 >> 4; j; j >>= 1, i++)
3989 				if (j & 1) {
3990 					ieps++;
3991 					dval(&u) *= bigtens[i];
3992 					}
3993 			}
3994 		if (k_check && dval(&u) < 1. && ilim > 0) {
3995 			if (ilim1 <= 0)
3996 				goto fast_failed;
3997 			ilim = ilim1;
3998 			k--;
3999 			dval(&u) *= 10.;
4000 			ieps++;
4001 			}
4002 		dval(&eps) = ieps*dval(&u) + 7.;
4003 		word0(&eps) -= (P-1)*Exp_msk1;
4004 		if (ilim == 0) {
4005 			S = mhi = 0;
4006 			dval(&u) -= 5.;
4007 			if (dval(&u) > dval(&eps))
4008 				goto one_digit;
4009 			if (dval(&u) < -dval(&eps))
4010 				goto no_digits;
4011 			goto fast_failed;
4012 			}
4013 #ifndef No_leftright
4014 		if (leftright) {
4015 			/* Use Steele & White method of only
4016 			 * generating digits needed.
4017 			 */
4018 			dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
4019 #ifdef IEEE_Arith
4020 			if (k0 < 0 && j1 >= 307) {
4021 				eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
4022 				word0(&eps1) -= Exp_msk1 * (Bias+P-1);
4023 				dval(&eps1) *= tens[j1 & 0xf];
4024 				for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
4025 					if (j & 1)
4026 						dval(&eps1) *= bigtens[i];
4027 				if (eps.d < eps1.d)
4028 					eps.d = eps1.d;
4029 				}
4030 #endif
4031 			for(i = 0;;) {
4032 				L = dval(&u);
4033 				dval(&u) -= L;
4034 				*s++ = '0' + (int)L;
4035 				if (1. - dval(&u) < dval(&eps))
4036 					goto bump_up;
4037 				if (dval(&u) < dval(&eps))
4038 					goto ret1;
4039 				if (++i >= ilim)
4040 					break;
4041 				dval(&eps) *= 10.;
4042 				dval(&u) *= 10.;
4043 				}
4044 			}
4045 		else {
4046 #endif
4047 			/* Generate ilim digits, then fix them up. */
4048 			dval(&eps) *= tens[ilim-1];
4049 			for(i = 1;; i++, dval(&u) *= 10.) {
4050 				L = (Long)(dval(&u));
4051 				if (!(dval(&u) -= L))
4052 					ilim = i;
4053 				*s++ = '0' + (int)L;
4054 				if (i == ilim) {
4055 					if (dval(&u) > 0.5 + dval(&eps))
4056 						goto bump_up;
4057 					else if (dval(&u) < 0.5 - dval(&eps)) {
4058 						while(*--s == '0');
4059 						s++;
4060 						goto ret1;
4061 						}
4062 					break;
4063 					}
4064 				}
4065 #ifndef No_leftright
4066 			}
4067 #endif
4068  fast_failed:
4069 		s = s0;
4070 		dval(&u) = dval(&d2);
4071 		k = k0;
4072 		ilim = ilim0;
4073 		}
4074 
4075 	/* Do we have a "small" integer? */
4076 
4077 	if (be >= 0 && k <= Int_max) {
4078 		/* Yes. */
4079 		ds = tens[k];
4080 		if (ndigits < 0 && ilim <= 0) {
4081 			S = mhi = 0;
4082 			if (ilim < 0 || dval(&u) <= 5*ds)
4083 				goto no_digits;
4084 			goto one_digit;
4085 			}
4086 		for(i = 1;; i++, dval(&u) *= 10.) {
4087 			L = (Long)(dval(&u) / ds);
4088 			dval(&u) -= L*ds;
4089 #ifdef Check_FLT_ROUNDS
4090 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
4091 			if (dval(&u) < 0) {
4092 				L--;
4093 				dval(&u) += ds;
4094 				}
4095 #endif
4096 			*s++ = '0' + (int)L;
4097 			if (!dval(&u)) {
4098 #ifdef SET_INEXACT
4099 				inexact = 0;
4100 #endif
4101 				break;
4102 				}
4103 			if (i == ilim) {
4104 #ifdef Honor_FLT_ROUNDS
4105 				if (mode > 1)
4106 				switch(Rounding) {
4107 				  case 0: goto ret1;
4108 				  case 2: goto bump_up;
4109 				  }
4110 #endif
4111 				dval(&u) += dval(&u);
4112 #ifdef ROUND_BIASED
4113 				if (dval(&u) >= ds)
4114 #else
4115 				if (dval(&u) > ds || (dval(&u) == ds && L & 1))
4116 #endif
4117 					{
4118  bump_up:
4119 					while(*--s == '9')
4120 						if (s == s0) {
4121 							k++;
4122 							*s = '0';
4123 							break;
4124 							}
4125 					++*s++;
4126 					}
4127 				break;
4128 				}
4129 			}
4130 		goto ret1;
4131 		}
4132 
4133 	m2 = b2;
4134 	m5 = b5;
4135 	mhi = mlo = 0;
4136 	if (leftright) {
4137 		i =
4138 #ifndef Sudden_Underflow
4139 			denorm ? be + (Bias + (P-1) - 1 + 1) :
4140 #endif
4141 #ifdef IBM
4142 			1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
4143 #else
4144 			1 + P - bbits;
4145 #endif
4146 		b2 += i;
4147 		s2 += i;
4148 		mhi = i2b(1);
4149 		}
4150 	if (m2 > 0 && s2 > 0) {
4151 		i = m2 < s2 ? m2 : s2;
4152 		b2 -= i;
4153 		m2 -= i;
4154 		s2 -= i;
4155 		}
4156 	if (b5 > 0) {
4157 		if (leftright) {
4158 			if (m5 > 0) {
4159 				mhi = pow5mult(mhi, m5);
4160 				b1 = mult(mhi, b);
4161 				Bfree(b);
4162 				b = b1;
4163 				}
4164 			if ((j = b5 - m5))
4165 				b = pow5mult(b, j);
4166 			}
4167 		else
4168 			b = pow5mult(b, b5);
4169 		}
4170 	S = i2b(1);
4171 	if (s5 > 0)
4172 		S = pow5mult(S, s5);
4173 
4174 	/* Check for special case that d is a normalized power of 2. */
4175 
4176 	spec_case = 0;
4177 	if ((mode < 2 || leftright)
4178 #ifdef Honor_FLT_ROUNDS
4179 			&& Rounding == 1
4180 #endif
4181 				) {
4182 		if (!word1(&u) && !(word0(&u) & Bndry_mask)
4183 #ifndef Sudden_Underflow
4184 		 && word0(&u) & (Exp_mask & ~Exp_msk1)
4185 #endif
4186 				) {
4187 			/* The special case */
4188 			b2 += Log2P;
4189 			s2 += Log2P;
4190 			spec_case = 1;
4191 			}
4192 		}
4193 
4194 	/* Arrange for convenient computation of quotients:
4195 	 * shift left if necessary so divisor has 4 leading 0 bits.
4196 	 *
4197 	 * Perhaps we should just compute leading 28 bits of S once
4198 	 * and for all and pass them and a shift to quorem, so it
4199 	 * can do shifts and ORs to compute the numerator for q.
4200 	 */
4201 	i = dshift(S, s2);
4202 	b2 += i;
4203 	m2 += i;
4204 	s2 += i;
4205 	if (b2 > 0)
4206 		b = lshift(b, b2);
4207 	if (s2 > 0)
4208 		S = lshift(S, s2);
4209 	if (k_check) {
4210 		if (cmp(b,S) < 0) {
4211 			k--;
4212 			b = multadd(b, 10, 0);	/* we botched the k estimate */
4213 			if (leftright)
4214 				mhi = multadd(mhi, 10, 0);
4215 			ilim = ilim1;
4216 			}
4217 		}
4218 	if (ilim <= 0 && (mode == 3 || mode == 5)) {
4219 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
4220 			/* no digits, fcvt style */
4221  no_digits:
4222 			k = -1 - ndigits;
4223 			goto ret;
4224 			}
4225  one_digit:
4226 		*s++ = '1';
4227 		k++;
4228 		goto ret;
4229 		}
4230 	if (leftright) {
4231 		if (m2 > 0)
4232 			mhi = lshift(mhi, m2);
4233 
4234 		/* Compute mlo -- check for special case
4235 		 * that d is a normalized power of 2.
4236 		 */
4237 
4238 		mlo = mhi;
4239 		if (spec_case) {
4240 			mhi = Balloc(mhi->k);
4241 			Bcopy(mhi, mlo);
4242 			mhi = lshift(mhi, Log2P);
4243 			}
4244 
4245 		for(i = 1;;i++) {
4246 			dig = quorem(b,S) + '0';
4247 			/* Do we yet have the shortest decimal string
4248 			 * that will round to d?
4249 			 */
4250 			j = cmp(b, mlo);
4251 			delta = diff(S, mhi);
4252 			j1 = delta->sign ? 1 : cmp(b, delta);
4253 			Bfree(delta);
4254 #ifndef ROUND_BIASED
4255 			if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
4256 #ifdef Honor_FLT_ROUNDS
4257 				&& Rounding >= 1
4258 #endif
4259 								   ) {
4260 				if (dig == '9')
4261 					goto round_9_up;
4262 				if (j > 0)
4263 					dig++;
4264 #ifdef SET_INEXACT
4265 				else if (!b->x[0] && b->wds <= 1)
4266 					inexact = 0;
4267 #endif
4268 				*s++ = dig;
4269 				goto ret;
4270 				}
4271 #endif
4272 			if (j < 0 || (j == 0 && mode != 1
4273 #ifndef ROUND_BIASED
4274 							&& !(word1(&u) & 1)
4275 #endif
4276 					)) {
4277 				if (!b->x[0] && b->wds <= 1) {
4278 #ifdef SET_INEXACT
4279 					inexact = 0;
4280 #endif
4281 					goto accept_dig;
4282 					}
4283 #ifdef Honor_FLT_ROUNDS
4284 				if (mode > 1)
4285 				 switch(Rounding) {
4286 				  case 0: goto accept_dig;
4287 				  case 2: goto keep_dig;
4288 				  }
4289 #endif /*Honor_FLT_ROUNDS*/
4290 				if (j1 > 0) {
4291 					b = lshift(b, 1);
4292 					j1 = cmp(b, S);
4293 #ifdef ROUND_BIASED
4294 					if (j1 >= 0 /*)*/
4295 #else
4296 					if ((j1 > 0 || (j1 == 0 && dig & 1))
4297 #endif
4298 					&& dig++ == '9')
4299 						goto round_9_up;
4300 					}
4301  accept_dig:
4302 				*s++ = dig;
4303 				goto ret;
4304 				}
4305 			if (j1 > 0) {
4306 #ifdef Honor_FLT_ROUNDS
4307 				if (!Rounding)
4308 					goto accept_dig;
4309 #endif
4310 				if (dig == '9') { /* possible if i == 1 */
4311  round_9_up:
4312 					*s++ = '9';
4313 					goto roundoff;
4314 					}
4315 				*s++ = dig + 1;
4316 				goto ret;
4317 				}
4318 #ifdef Honor_FLT_ROUNDS
4319  keep_dig:
4320 #endif
4321 			*s++ = dig;
4322 			if (i == ilim)
4323 				break;
4324 			b = multadd(b, 10, 0);
4325 			if (mlo == mhi)
4326 				mlo = mhi = multadd(mhi, 10, 0);
4327 			else {
4328 				mlo = multadd(mlo, 10, 0);
4329 				mhi = multadd(mhi, 10, 0);
4330 				}
4331 			}
4332 		}
4333 	else
4334 		for(i = 1;; i++) {
4335 			*s++ = dig = quorem(b,S) + '0';
4336 			if (!b->x[0] && b->wds <= 1) {
4337 #ifdef SET_INEXACT
4338 				inexact = 0;
4339 #endif
4340 				goto ret;
4341 				}
4342 			if (i >= ilim)
4343 				break;
4344 			b = multadd(b, 10, 0);
4345 			}
4346 
4347 	/* Round off last digit */
4348 
4349 #ifdef Honor_FLT_ROUNDS
4350 	switch(Rounding) {
4351 	  case 0: goto trimzeros;
4352 	  case 2: goto roundoff;
4353 	  }
4354 #endif
4355 	b = lshift(b, 1);
4356 	j = cmp(b, S);
4357 #ifdef ROUND_BIASED
4358 	if (j >= 0)
4359 #else
4360 	if (j > 0 || (j == 0 && dig & 1))
4361 #endif
4362 		{
4363  roundoff:
4364 		while(*--s == '9')
4365 			if (s == s0) {
4366 				k++;
4367 				*s++ = '1';
4368 				goto ret;
4369 				}
4370 		++*s++;
4371 		}
4372 	else {
4373 #ifdef Honor_FLT_ROUNDS
4374  trimzeros:
4375 #endif
4376 		while(*--s == '0');
4377 		s++;
4378 		}
4379  ret:
4380 	Bfree(S);
4381 	if (mhi) {
4382 		if (mlo && mlo != mhi)
4383 			Bfree(mlo);
4384 		Bfree(mhi);
4385 		}
4386  ret1:
4387 #ifdef SET_INEXACT
4388 	if (inexact) {
4389 		if (!oldinexact) {
4390 			word0(&u) = Exp_1 + (70 << Exp_shift);
4391 			word1(&u) = 0;
4392 			dval(&u) += 1.;
4393 			}
4394 		}
4395 	else if (!oldinexact)
4396 		clear_inexact();
4397 #endif
4398 	Bfree(b);
4399 	*s = 0;
4400 	*decpt = k + 1;
4401 	if (rve)
4402 		*rve = s;
4403 	return s0;
4404 	}
4405 
zend_hex_strtod(const char * str,const char ** endptr)4406 ZEND_API double zend_hex_strtod(const char *str, const char **endptr)
4407 {
4408 	const char *s = str;
4409 	char c;
4410 	int any = 0;
4411 	double value = 0;
4412 
4413 	if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
4414 		s += 2;
4415 	}
4416 
4417 	while ((c = *s++)) {
4418 		if (c >= '0' && c <= '9') {
4419 			c -= '0';
4420 		} else if (c >= 'A' && c <= 'F') {
4421 			c -= 'A' - 10;
4422 		} else if (c >= 'a' && c <= 'f') {
4423 			c -= 'a' - 10;
4424 		} else {
4425 			break;
4426 		}
4427 
4428 		any = 1;
4429 		value = value * 16 + c;
4430 	}
4431 
4432 	if (endptr != NULL) {
4433 		*endptr = any ? s - 1 : str;
4434 	}
4435 
4436 	return value;
4437 }
4438 
zend_oct_strtod(const char * str,const char ** endptr)4439 ZEND_API double zend_oct_strtod(const char *str, const char **endptr)
4440 {
4441 	const char *s = str;
4442 	char c;
4443 	double value = 0;
4444 	int any = 0;
4445 
4446 	if (str[0] == '\0') {
4447 		if (endptr != NULL) {
4448 			*endptr = str;
4449 		}
4450 		return 0.0;
4451 	}
4452 
4453 	while ((c = *s++)) {
4454 		if (c < '0' || c > '7') {
4455 			/* break and return the current value if the number is not well-formed
4456 			 * that's what Linux strtol() does
4457 			 */
4458 			break;
4459 		}
4460 		value = value * 8 + c - '0';
4461 		any = 1;
4462 	}
4463 
4464 	if (endptr != NULL) {
4465 		*endptr = any ? s - 1 : str;
4466 	}
4467 
4468 	return value;
4469 }
4470 
zend_bin_strtod(const char * str,const char ** endptr)4471 ZEND_API double zend_bin_strtod(const char *str, const char **endptr)
4472 {
4473 	const char *s = str;
4474 	char 		c;
4475 	double 		value = 0;
4476 	int 		any = 0;
4477 
4478 	if ('0' == *s && ('b' == s[1] || 'B' == s[1])) {
4479 		s += 2;
4480 	}
4481 
4482 	while ((c = *s++)) {
4483 		/*
4484 		 * Verify the validity of the current character as a base-2 digit.  In
4485 		 * the event that an invalid digit is found, halt the conversion and
4486 		 * return the portion which has been converted thus far.
4487 		 */
4488 		if ('0' == c || '1' == c)
4489 			value = value * 2 + c - '0';
4490 		else
4491 			break;
4492 
4493 		any = 1;
4494 	}
4495 
4496 	/*
4497 	 * As with many strtoX implementations, should the subject sequence be
4498 	 * empty or not well-formed, no conversion is performed and the original
4499 	 * value of str is stored in *endptr, provided that endptr is not a null
4500 	 * pointer.
4501 	 */
4502 	if (NULL != endptr) {
4503 		*endptr = (char *)(any ? s - 1 : str);
4504 	}
4505 
4506 	return value;
4507 }
4508 
zend_gcvt(double value,int ndigit,char dec_point,char exponent,char * buf)4509 ZEND_API char *zend_gcvt(double value, int ndigit, char dec_point, char exponent, char *buf)
4510 {
4511 	char *digits, *dst, *src;
4512 	int i, decpt;
4513 	bool sign;
4514 	int mode = ndigit >= 0 ? 2 : 0;
4515 
4516 	if (mode == 0) {
4517 		ndigit = 17;
4518 	}
4519 	digits = zend_dtoa(value, mode, ndigit, &decpt, &sign, NULL);
4520 	if (decpt == 9999) {
4521 		/*
4522 		 * Infinity or NaN, convert to inf or nan with sign.
4523 		 * We assume the buffer is at least ndigit long.
4524 		 */
4525 		snprintf(buf, ndigit + 1, "%s%s", (sign && *digits == 'I') ? "-" : "", *digits == 'I' ? "INF" : "NAN");
4526 		zend_freedtoa(digits);
4527 		return (buf);
4528 	}
4529 
4530 	dst = buf;
4531 	if (sign) {
4532 		*dst++ = '-';
4533 	}
4534 
4535 	if ((decpt >= 0 && decpt > ndigit) || decpt < -3) { /* use E-style */
4536 		/* exponential format (e.g. 1.2345e+13) */
4537 		if (--decpt < 0) {
4538 			sign = 1;
4539 			decpt = -decpt;
4540 		} else {
4541 			sign = 0;
4542 		}
4543 		src = digits;
4544 		*dst++ = *src++;
4545 		*dst++ = dec_point;
4546 		if (*src == '\0') {
4547 			*dst++ = '0';
4548 		} else {
4549 			do {
4550 				*dst++ = *src++;
4551 			} while (*src != '\0');
4552 		}
4553 		*dst++ = exponent;
4554 		if (sign) {
4555 			*dst++ = '-';
4556 		} else {
4557 			*dst++ = '+';
4558 		}
4559 		if (decpt < 10) {
4560 			*dst++ = '0' + decpt;
4561 			*dst = '\0';
4562 		} else {
4563 			/* XXX - optimize */
4564 			int n;
4565 			for (n = decpt, i = 0; (n /= 10) != 0; i++);
4566 			dst[i + 1] = '\0';
4567 			while (decpt != 0) {
4568 				dst[i--] = '0' + decpt % 10;
4569 				decpt /= 10;
4570 			}
4571 		}
4572 	} else if (decpt < 0) {
4573 		/* standard format 0. */
4574 		*dst++ = '0';   /* zero before decimal point */
4575 		*dst++ = dec_point;
4576 		do {
4577 			*dst++ = '0';
4578 		} while (++decpt < 0);
4579 		src = digits;
4580 		while (*src != '\0') {
4581 			*dst++ = *src++;
4582 		}
4583 		*dst = '\0';
4584 	} else {
4585 		/* standard format */
4586 		for (i = 0, src = digits; i < decpt; i++) {
4587 			if (*src != '\0') {
4588 				*dst++ = *src++;
4589 			} else {
4590 				*dst++ = '0';
4591 			}
4592 		}
4593 		if (*src != '\0') {
4594 			if (src == digits) {
4595 				*dst++ = '0';   /* zero before decimal point */
4596 			}
4597 			*dst++ = dec_point;
4598 			for (i = decpt; digits[i] != '\0'; i++) {
4599 				*dst++ = digits[i];
4600 			}
4601 		}
4602 		*dst = '\0';
4603 	}
4604 	zend_freedtoa(digits);
4605 	return (buf);
4606 }
4607 
destroy_freelist(void)4608 static void destroy_freelist(void)
4609 {
4610 	int i;
4611 	Bigint *tmp;
4612 
4613 	ACQUIRE_DTOA_LOCK(0)
4614 	for (i = 0; i <= Kmax; i++) {
4615 		Bigint **listp = &freelist[i];
4616 		while ((tmp = *listp) != NULL) {
4617 			*listp = tmp->next;
4618 			FREE(tmp);
4619 		}
4620 		freelist[i] = NULL;
4621 	}
4622 	FREE_DTOA_LOCK(0)
4623 }
4624 
free_p5s(void)4625 static void free_p5s(void)
4626 {
4627 	Bigint **listp, *tmp;
4628 
4629 	ACQUIRE_DTOA_LOCK(1)
4630 	listp = &p5s;
4631 	while ((tmp = *listp) != NULL) {
4632 		*listp = tmp->next;
4633 		FREE(tmp);
4634 	}
4635 	p5s = NULL;
4636 	FREE_DTOA_LOCK(1)
4637 }
4638