1 /*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include "quic/quic_local.h"
28 #include <openssl/ct.h>
29
30 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
31 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
32
33 SSL3_ENC_METHOD const TLSv1_enc_data = {
34 tls1_setup_key_block,
35 tls1_generate_master_secret,
36 tls1_change_cipher_state,
37 tls1_final_finish_mac,
38 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
39 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
40 tls1_alert_code,
41 tls1_export_keying_material,
42 0,
43 ssl3_set_handshake_header,
44 tls_close_construct_packet,
45 ssl3_handshake_write
46 };
47
48 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
49 tls1_setup_key_block,
50 tls1_generate_master_secret,
51 tls1_change_cipher_state,
52 tls1_final_finish_mac,
53 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
54 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
55 tls1_alert_code,
56 tls1_export_keying_material,
57 0,
58 ssl3_set_handshake_header,
59 tls_close_construct_packet,
60 ssl3_handshake_write
61 };
62
63 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
64 tls1_setup_key_block,
65 tls1_generate_master_secret,
66 tls1_change_cipher_state,
67 tls1_final_finish_mac,
68 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
69 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
70 tls1_alert_code,
71 tls1_export_keying_material,
72 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
73 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
74 ssl3_set_handshake_header,
75 tls_close_construct_packet,
76 ssl3_handshake_write
77 };
78
79 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
80 tls13_setup_key_block,
81 tls13_generate_master_secret,
82 tls13_change_cipher_state,
83 tls13_final_finish_mac,
84 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
85 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
86 tls13_alert_code,
87 tls13_export_keying_material,
88 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
89 ssl3_set_handshake_header,
90 tls_close_construct_packet,
91 ssl3_handshake_write
92 };
93
tls1_default_timeout(void)94 OSSL_TIME tls1_default_timeout(void)
95 {
96 /*
97 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
98 * http, the cache would over fill
99 */
100 return ossl_seconds2time(60 * 60 * 2);
101 }
102
tls1_new(SSL * s)103 int tls1_new(SSL *s)
104 {
105 if (!ssl3_new(s))
106 return 0;
107 if (!s->method->ssl_clear(s))
108 return 0;
109
110 return 1;
111 }
112
tls1_free(SSL * s)113 void tls1_free(SSL *s)
114 {
115 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
116
117 if (sc == NULL)
118 return;
119
120 OPENSSL_free(sc->ext.session_ticket);
121 ssl3_free(s);
122 }
123
tls1_clear(SSL * s)124 int tls1_clear(SSL *s)
125 {
126 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
127
128 if (sc == NULL)
129 return 0;
130
131 if (!ssl3_clear(s))
132 return 0;
133
134 if (s->method->version == TLS_ANY_VERSION)
135 sc->version = TLS_MAX_VERSION_INTERNAL;
136 else
137 sc->version = s->method->version;
138
139 return 1;
140 }
141
142 /* Legacy NID to group_id mapping. Only works for groups we know about */
143 static const struct {
144 int nid;
145 uint16_t group_id;
146 } nid_to_group[] = {
147 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
148 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
149 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
150 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
151 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
152 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
153 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
154 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
155 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
156 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
157 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
158 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
159 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
160 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
161 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
162 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
163 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
164 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
165 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
166 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
167 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
168 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
169 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
170 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
171 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
172 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
173 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
174 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
175 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
176 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
177 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
178 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
179 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
180 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
181 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
182 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
183 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
184 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
185 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
186 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
187 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
188 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
189 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
190 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
191 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
192 };
193
194 static const unsigned char ecformats_default[] = {
195 TLSEXT_ECPOINTFORMAT_uncompressed,
196 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
197 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
198 };
199
200 /* The default curves */
201 static const uint16_t supported_groups_default[] = {
202 OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
203 OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
204 OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
205 OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
206 OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
207 OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
208 OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
209 OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
210 OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
211 OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
212 OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
213 OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
214 OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
215 OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
216 OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
217 OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
218 OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
219 };
220
221 static const uint16_t suiteb_curves[] = {
222 OSSL_TLS_GROUP_ID_secp256r1,
223 OSSL_TLS_GROUP_ID_secp384r1,
224 };
225
226 struct provider_ctx_data_st {
227 SSL_CTX *ctx;
228 OSSL_PROVIDER *provider;
229 };
230
231 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
232 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)233 static int add_provider_groups(const OSSL_PARAM params[], void *data)
234 {
235 struct provider_ctx_data_st *pgd = data;
236 SSL_CTX *ctx = pgd->ctx;
237 OSSL_PROVIDER *provider = pgd->provider;
238 const OSSL_PARAM *p;
239 TLS_GROUP_INFO *ginf = NULL;
240 EVP_KEYMGMT *keymgmt;
241 unsigned int gid;
242 unsigned int is_kem = 0;
243 int ret = 0;
244
245 if (ctx->group_list_max_len == ctx->group_list_len) {
246 TLS_GROUP_INFO *tmp = NULL;
247
248 if (ctx->group_list_max_len == 0)
249 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
250 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251 else
252 tmp = OPENSSL_realloc(ctx->group_list,
253 (ctx->group_list_max_len
254 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
255 * sizeof(TLS_GROUP_INFO));
256 if (tmp == NULL)
257 return 0;
258 ctx->group_list = tmp;
259 memset(tmp + ctx->group_list_max_len,
260 0,
261 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263 }
264
265 ginf = &ctx->group_list[ctx->group_list_len];
266
267 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270 goto err;
271 }
272 ginf->tlsname = OPENSSL_strdup(p->data);
273 if (ginf->tlsname == NULL)
274 goto err;
275
276 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
277 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
278 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
279 goto err;
280 }
281 ginf->realname = OPENSSL_strdup(p->data);
282 if (ginf->realname == NULL)
283 goto err;
284
285 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
286 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
287 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288 goto err;
289 }
290 ginf->group_id = (uint16_t)gid;
291
292 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
293 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
294 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
295 goto err;
296 }
297 ginf->algorithm = OPENSSL_strdup(p->data);
298 if (ginf->algorithm == NULL)
299 goto err;
300
301 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
302 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
303 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
304 goto err;
305 }
306
307 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
308 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
309 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310 goto err;
311 }
312 ginf->is_kem = 1 & is_kem;
313
314 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
315 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
316 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
317 goto err;
318 }
319
320 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
321 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
322 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323 goto err;
324 }
325
326 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
327 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
328 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329 goto err;
330 }
331
332 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
333 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
334 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335 goto err;
336 }
337 /*
338 * Now check that the algorithm is actually usable for our property query
339 * string. Regardless of the result we still return success because we have
340 * successfully processed this group, even though we may decide not to use
341 * it.
342 */
343 ret = 1;
344 ERR_set_mark();
345 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
346 if (keymgmt != NULL) {
347 /*
348 * We have successfully fetched the algorithm - however if the provider
349 * doesn't match this one then we ignore it.
350 *
351 * Note: We're cheating a little here. Technically if the same algorithm
352 * is available from more than one provider then it is undefined which
353 * implementation you will get back. Theoretically this could be
354 * different every time...we assume here that you'll always get the
355 * same one back if you repeat the exact same fetch. Is this a reasonable
356 * assumption to make (in which case perhaps we should document this
357 * behaviour)?
358 */
359 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
360 /* We have a match - so we will use this group */
361 ctx->group_list_len++;
362 ginf = NULL;
363 }
364 EVP_KEYMGMT_free(keymgmt);
365 }
366 ERR_pop_to_mark();
367 err:
368 if (ginf != NULL) {
369 OPENSSL_free(ginf->tlsname);
370 OPENSSL_free(ginf->realname);
371 OPENSSL_free(ginf->algorithm);
372 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
373 }
374 return ret;
375 }
376
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)377 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
378 {
379 struct provider_ctx_data_st pgd;
380
381 pgd.ctx = vctx;
382 pgd.provider = provider;
383 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
384 add_provider_groups, &pgd);
385 }
386
ssl_load_groups(SSL_CTX * ctx)387 int ssl_load_groups(SSL_CTX *ctx)
388 {
389 size_t i, j, num_deflt_grps = 0;
390 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
391
392 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
393 return 0;
394
395 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
396 for (j = 0; j < ctx->group_list_len; j++) {
397 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
398 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
399 break;
400 }
401 }
402 }
403
404 if (num_deflt_grps == 0)
405 return 1;
406
407 ctx->ext.supported_groups_default
408 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
409
410 if (ctx->ext.supported_groups_default == NULL)
411 return 0;
412
413 memcpy(ctx->ext.supported_groups_default,
414 tmp_supp_groups,
415 num_deflt_grps * sizeof(tmp_supp_groups[0]));
416 ctx->ext.supported_groups_default_len = num_deflt_grps;
417
418 return 1;
419 }
420
421 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
422 static OSSL_CALLBACK add_provider_sigalgs;
add_provider_sigalgs(const OSSL_PARAM params[],void * data)423 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
424 {
425 struct provider_ctx_data_st *pgd = data;
426 SSL_CTX *ctx = pgd->ctx;
427 OSSL_PROVIDER *provider = pgd->provider;
428 const OSSL_PARAM *p;
429 TLS_SIGALG_INFO *sinf = NULL;
430 EVP_KEYMGMT *keymgmt;
431 const char *keytype;
432 unsigned int code_point = 0;
433 int ret = 0;
434
435 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
436 TLS_SIGALG_INFO *tmp = NULL;
437
438 if (ctx->sigalg_list_max_len == 0)
439 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
440 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
441 else
442 tmp = OPENSSL_realloc(ctx->sigalg_list,
443 (ctx->sigalg_list_max_len
444 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
445 * sizeof(TLS_SIGALG_INFO));
446 if (tmp == NULL)
447 return 0;
448 ctx->sigalg_list = tmp;
449 memset(tmp + ctx->sigalg_list_max_len, 0,
450 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
451 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
452 }
453
454 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
455
456 /* First, mandatory parameters */
457 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
458 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
459 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
460 goto err;
461 }
462 OPENSSL_free(sinf->sigalg_name);
463 sinf->sigalg_name = OPENSSL_strdup(p->data);
464 if (sinf->sigalg_name == NULL)
465 goto err;
466
467 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
468 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
469 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
470 goto err;
471 }
472 OPENSSL_free(sinf->name);
473 sinf->name = OPENSSL_strdup(p->data);
474 if (sinf->name == NULL)
475 goto err;
476
477 p = OSSL_PARAM_locate_const(params,
478 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
479 if (p == NULL
480 || !OSSL_PARAM_get_uint(p, &code_point)
481 || code_point > UINT16_MAX) {
482 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
483 goto err;
484 }
485 sinf->code_point = (uint16_t)code_point;
486
487 p = OSSL_PARAM_locate_const(params,
488 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
489 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
490 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
491 goto err;
492 }
493
494 /* Now, optional parameters */
495 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
496 if (p == NULL) {
497 sinf->sigalg_oid = NULL;
498 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
499 goto err;
500 } else {
501 OPENSSL_free(sinf->sigalg_oid);
502 sinf->sigalg_oid = OPENSSL_strdup(p->data);
503 if (sinf->sigalg_oid == NULL)
504 goto err;
505 }
506
507 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
508 if (p == NULL) {
509 sinf->sig_name = NULL;
510 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
511 goto err;
512 } else {
513 OPENSSL_free(sinf->sig_name);
514 sinf->sig_name = OPENSSL_strdup(p->data);
515 if (sinf->sig_name == NULL)
516 goto err;
517 }
518
519 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
520 if (p == NULL) {
521 sinf->sig_oid = NULL;
522 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
523 goto err;
524 } else {
525 OPENSSL_free(sinf->sig_oid);
526 sinf->sig_oid = OPENSSL_strdup(p->data);
527 if (sinf->sig_oid == NULL)
528 goto err;
529 }
530
531 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
532 if (p == NULL) {
533 sinf->hash_name = NULL;
534 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
535 goto err;
536 } else {
537 OPENSSL_free(sinf->hash_name);
538 sinf->hash_name = OPENSSL_strdup(p->data);
539 if (sinf->hash_name == NULL)
540 goto err;
541 }
542
543 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
544 if (p == NULL) {
545 sinf->hash_oid = NULL;
546 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
547 goto err;
548 } else {
549 OPENSSL_free(sinf->hash_oid);
550 sinf->hash_oid = OPENSSL_strdup(p->data);
551 if (sinf->hash_oid == NULL)
552 goto err;
553 }
554
555 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
556 if (p == NULL) {
557 sinf->keytype = NULL;
558 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
559 goto err;
560 } else {
561 OPENSSL_free(sinf->keytype);
562 sinf->keytype = OPENSSL_strdup(p->data);
563 if (sinf->keytype == NULL)
564 goto err;
565 }
566
567 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
568 if (p == NULL) {
569 sinf->keytype_oid = NULL;
570 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
571 goto err;
572 } else {
573 OPENSSL_free(sinf->keytype_oid);
574 sinf->keytype_oid = OPENSSL_strdup(p->data);
575 if (sinf->keytype_oid == NULL)
576 goto err;
577 }
578
579 /* The remaining parameters below are mandatory again */
580 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
581 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
582 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
583 goto err;
584 }
585 if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
586 ((sinf->mintls < TLS1_3_VERSION))) {
587 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
588 ret = 1;
589 goto err;
590 }
591
592 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
593 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
594 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
595 goto err;
596 }
597 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
598 ((sinf->maxtls < sinf->mintls))) {
599 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
600 goto err;
601 }
602 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
603 ((sinf->maxtls < TLS1_3_VERSION))) {
604 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
605 ret = 1;
606 goto err;
607 }
608
609 /*
610 * Now check that the algorithm is actually usable for our property query
611 * string. Regardless of the result we still return success because we have
612 * successfully processed this signature, even though we may decide not to
613 * use it.
614 */
615 ret = 1;
616 ERR_set_mark();
617 keytype = (sinf->keytype != NULL
618 ? sinf->keytype
619 : (sinf->sig_name != NULL
620 ? sinf->sig_name
621 : sinf->sigalg_name));
622 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
623 if (keymgmt != NULL) {
624 /*
625 * We have successfully fetched the algorithm - however if the provider
626 * doesn't match this one then we ignore it.
627 *
628 * Note: We're cheating a little here. Technically if the same algorithm
629 * is available from more than one provider then it is undefined which
630 * implementation you will get back. Theoretically this could be
631 * different every time...we assume here that you'll always get the
632 * same one back if you repeat the exact same fetch. Is this a reasonable
633 * assumption to make (in which case perhaps we should document this
634 * behaviour)?
635 */
636 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
637 /*
638 * We have a match - so we could use this signature;
639 * Check proper object registration first, though.
640 * Don't care about return value as this may have been
641 * done within providers or previous calls to
642 * add_provider_sigalgs.
643 */
644 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
645 /* sanity check: Without successful registration don't use alg */
646 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
647 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
648 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
649 goto err;
650 }
651 if (sinf->sig_name != NULL)
652 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
653 if (sinf->keytype != NULL)
654 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
655 if (sinf->hash_name != NULL)
656 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
657 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
658 (sinf->hash_name != NULL
659 ? OBJ_txt2nid(sinf->hash_name)
660 : NID_undef),
661 OBJ_txt2nid(keytype));
662 ctx->sigalg_list_len++;
663 sinf = NULL;
664 }
665 EVP_KEYMGMT_free(keymgmt);
666 }
667 ERR_pop_to_mark();
668 err:
669 if (sinf != NULL) {
670 OPENSSL_free(sinf->name);
671 sinf->name = NULL;
672 OPENSSL_free(sinf->sigalg_name);
673 sinf->sigalg_name = NULL;
674 OPENSSL_free(sinf->sigalg_oid);
675 sinf->sigalg_oid = NULL;
676 OPENSSL_free(sinf->sig_name);
677 sinf->sig_name = NULL;
678 OPENSSL_free(sinf->sig_oid);
679 sinf->sig_oid = NULL;
680 OPENSSL_free(sinf->hash_name);
681 sinf->hash_name = NULL;
682 OPENSSL_free(sinf->hash_oid);
683 sinf->hash_oid = NULL;
684 OPENSSL_free(sinf->keytype);
685 sinf->keytype = NULL;
686 OPENSSL_free(sinf->keytype_oid);
687 sinf->keytype_oid = NULL;
688 }
689 return ret;
690 }
691
discover_provider_sigalgs(OSSL_PROVIDER * provider,void * vctx)692 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
693 {
694 struct provider_ctx_data_st pgd;
695
696 pgd.ctx = vctx;
697 pgd.provider = provider;
698 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
699 add_provider_sigalgs, &pgd);
700 /*
701 * Always OK, even if provider doesn't support the capability:
702 * Reconsider testing retval when legacy sigalgs are also loaded this way.
703 */
704 return 1;
705 }
706
ssl_load_sigalgs(SSL_CTX * ctx)707 int ssl_load_sigalgs(SSL_CTX *ctx)
708 {
709 size_t i;
710 SSL_CERT_LOOKUP lu;
711
712 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
713 return 0;
714
715 /* now populate ctx->ssl_cert_info */
716 if (ctx->sigalg_list_len > 0) {
717 OPENSSL_free(ctx->ssl_cert_info);
718 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
719 if (ctx->ssl_cert_info == NULL)
720 return 0;
721 for(i = 0; i < ctx->sigalg_list_len; i++) {
722 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
723 ctx->ssl_cert_info[i].amask = SSL_aANY;
724 }
725 }
726
727 /*
728 * For now, leave it at this: legacy sigalgs stay in their own
729 * data structures until "legacy cleanup" occurs.
730 */
731
732 return 1;
733 }
734
tls1_group_name2id(SSL_CTX * ctx,const char * name)735 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
736 {
737 size_t i;
738
739 for (i = 0; i < ctx->group_list_len; i++) {
740 if (strcmp(ctx->group_list[i].tlsname, name) == 0
741 || strcmp(ctx->group_list[i].realname, name) == 0)
742 return ctx->group_list[i].group_id;
743 }
744
745 return 0;
746 }
747
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)748 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
749 {
750 size_t i;
751
752 for (i = 0; i < ctx->group_list_len; i++) {
753 if (ctx->group_list[i].group_id == group_id)
754 return &ctx->group_list[i];
755 }
756
757 return NULL;
758 }
759
tls1_group_id2name(SSL_CTX * ctx,uint16_t group_id)760 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
761 {
762 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
763
764 if (tls_group_info == NULL)
765 return NULL;
766
767 return tls_group_info->tlsname;
768 }
769
tls1_group_id2nid(uint16_t group_id,int include_unknown)770 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
771 {
772 size_t i;
773
774 if (group_id == 0)
775 return NID_undef;
776
777 /*
778 * Return well known Group NIDs - for backwards compatibility. This won't
779 * work for groups we don't know about.
780 */
781 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
782 {
783 if (nid_to_group[i].group_id == group_id)
784 return nid_to_group[i].nid;
785 }
786 if (!include_unknown)
787 return NID_undef;
788 return TLSEXT_nid_unknown | (int)group_id;
789 }
790
tls1_nid2group_id(int nid)791 uint16_t tls1_nid2group_id(int nid)
792 {
793 size_t i;
794
795 /*
796 * Return well known Group ids - for backwards compatibility. This won't
797 * work for groups we don't know about.
798 */
799 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
800 {
801 if (nid_to_group[i].nid == nid)
802 return nid_to_group[i].group_id;
803 }
804
805 return 0;
806 }
807
808 /*
809 * Set *pgroups to the supported groups list and *pgroupslen to
810 * the number of groups supported.
811 */
tls1_get_supported_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)812 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
813 size_t *pgroupslen)
814 {
815 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
816
817 /* For Suite B mode only include P-256, P-384 */
818 switch (tls1_suiteb(s)) {
819 case SSL_CERT_FLAG_SUITEB_128_LOS:
820 *pgroups = suiteb_curves;
821 *pgroupslen = OSSL_NELEM(suiteb_curves);
822 break;
823
824 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
825 *pgroups = suiteb_curves;
826 *pgroupslen = 1;
827 break;
828
829 case SSL_CERT_FLAG_SUITEB_192_LOS:
830 *pgroups = suiteb_curves + 1;
831 *pgroupslen = 1;
832 break;
833
834 default:
835 if (s->ext.supportedgroups == NULL) {
836 *pgroups = sctx->ext.supported_groups_default;
837 *pgroupslen = sctx->ext.supported_groups_default_len;
838 } else {
839 *pgroups = s->ext.supportedgroups;
840 *pgroupslen = s->ext.supportedgroups_len;
841 }
842 break;
843 }
844 }
845
tls_valid_group(SSL_CONNECTION * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)846 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
847 int minversion, int maxversion,
848 int isec, int *okfortls13)
849 {
850 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
851 group_id);
852 int ret;
853 int group_minversion, group_maxversion;
854
855 if (okfortls13 != NULL)
856 *okfortls13 = 0;
857
858 if (ginfo == NULL)
859 return 0;
860
861 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
862 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
863
864 if (group_minversion < 0 || group_maxversion < 0)
865 return 0;
866 if (group_maxversion == 0)
867 ret = 1;
868 else
869 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
870 if (group_minversion > 0)
871 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
872
873 if (!SSL_CONNECTION_IS_DTLS(s)) {
874 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
875 *okfortls13 = (group_maxversion == 0)
876 || (group_maxversion >= TLS1_3_VERSION);
877 }
878 ret &= !isec
879 || strcmp(ginfo->algorithm, "EC") == 0
880 || strcmp(ginfo->algorithm, "X25519") == 0
881 || strcmp(ginfo->algorithm, "X448") == 0;
882
883 return ret;
884 }
885
886 /* See if group is allowed by security callback */
tls_group_allowed(SSL_CONNECTION * s,uint16_t group,int op)887 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
888 {
889 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
890 group);
891 unsigned char gtmp[2];
892
893 if (ginfo == NULL)
894 return 0;
895
896 gtmp[0] = group >> 8;
897 gtmp[1] = group & 0xff;
898 return ssl_security(s, op, ginfo->secbits,
899 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
900 }
901
902 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)903 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
904 {
905 size_t i;
906 for (i = 0; i < listlen; i++)
907 if (list[i] == id)
908 return 1;
909 return 0;
910 }
911
912 /*-
913 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
914 * if there is no match.
915 * For nmatch == -1, return number of matches
916 * For nmatch == -2, return the id of the group to use for
917 * a tmp key, or 0 if there is no match.
918 */
tls1_shared_group(SSL_CONNECTION * s,int nmatch)919 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
920 {
921 const uint16_t *pref, *supp;
922 size_t num_pref, num_supp, i;
923 int k;
924 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
925
926 /* Can't do anything on client side */
927 if (s->server == 0)
928 return 0;
929 if (nmatch == -2) {
930 if (tls1_suiteb(s)) {
931 /*
932 * For Suite B ciphersuite determines curve: we already know
933 * these are acceptable due to previous checks.
934 */
935 unsigned long cid = s->s3.tmp.new_cipher->id;
936
937 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
938 return OSSL_TLS_GROUP_ID_secp256r1;
939 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
940 return OSSL_TLS_GROUP_ID_secp384r1;
941 /* Should never happen */
942 return 0;
943 }
944 /* If not Suite B just return first preference shared curve */
945 nmatch = 0;
946 }
947 /*
948 * If server preference set, our groups are the preference order
949 * otherwise peer decides.
950 */
951 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
952 tls1_get_supported_groups(s, &pref, &num_pref);
953 tls1_get_peer_groups(s, &supp, &num_supp);
954 } else {
955 tls1_get_peer_groups(s, &pref, &num_pref);
956 tls1_get_supported_groups(s, &supp, &num_supp);
957 }
958
959 for (k = 0, i = 0; i < num_pref; i++) {
960 uint16_t id = pref[i];
961 const TLS_GROUP_INFO *inf;
962 int minversion, maxversion;
963
964 if (!tls1_in_list(id, supp, num_supp)
965 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
966 continue;
967 inf = tls1_group_id_lookup(ctx, id);
968 if (!ossl_assert(inf != NULL))
969 return 0;
970
971 minversion = SSL_CONNECTION_IS_DTLS(s)
972 ? inf->mindtls : inf->mintls;
973 maxversion = SSL_CONNECTION_IS_DTLS(s)
974 ? inf->maxdtls : inf->maxtls;
975 if (maxversion == -1)
976 continue;
977 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
978 || (maxversion != 0
979 && ssl_version_cmp(s, s->version, maxversion) > 0))
980 continue;
981
982 if (nmatch == k)
983 return id;
984 k++;
985 }
986 if (nmatch == -1)
987 return k;
988 /* Out of range (nmatch > k). */
989 return 0;
990 }
991
tls1_set_groups(uint16_t ** pext,size_t * pextlen,int * groups,size_t ngroups)992 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
993 int *groups, size_t ngroups)
994 {
995 uint16_t *glist;
996 size_t i;
997 /*
998 * Bitmap of groups included to detect duplicates: two variables are added
999 * to detect duplicates as some values are more than 32.
1000 */
1001 unsigned long *dup_list = NULL;
1002 unsigned long dup_list_egrp = 0;
1003 unsigned long dup_list_dhgrp = 0;
1004
1005 if (ngroups == 0) {
1006 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1007 return 0;
1008 }
1009 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1010 return 0;
1011 for (i = 0; i < ngroups; i++) {
1012 unsigned long idmask;
1013 uint16_t id;
1014 id = tls1_nid2group_id(groups[i]);
1015 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1016 goto err;
1017 idmask = 1L << (id & 0x00FF);
1018 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1019 if (!id || ((*dup_list) & idmask))
1020 goto err;
1021 *dup_list |= idmask;
1022 glist[i] = id;
1023 }
1024 OPENSSL_free(*pext);
1025 *pext = glist;
1026 *pextlen = ngroups;
1027 return 1;
1028 err:
1029 OPENSSL_free(glist);
1030 return 0;
1031 }
1032
1033 # define GROUPLIST_INCREMENT 40
1034 # define GROUP_NAME_BUFFER_LENGTH 64
1035 typedef struct {
1036 SSL_CTX *ctx;
1037 size_t gidcnt;
1038 size_t gidmax;
1039 uint16_t *gid_arr;
1040 } gid_cb_st;
1041
gid_cb(const char * elem,int len,void * arg)1042 static int gid_cb(const char *elem, int len, void *arg)
1043 {
1044 gid_cb_st *garg = arg;
1045 size_t i;
1046 uint16_t gid = 0;
1047 char etmp[GROUP_NAME_BUFFER_LENGTH];
1048 int ignore_unknown = 0;
1049 int remove_group = 0;
1050 int found_group = 0;
1051 int add_default_groups = 0;
1052 size_t groups_to_add = 0;
1053
1054 if (elem == NULL)
1055 return 0;
1056
1057 while (((elem[0] == '-' && !remove_group) || (elem[0] == '?' && !ignore_unknown))
1058 && len > 0) {
1059 if (elem[0] == '-') {
1060 remove_group = 1;
1061 ++elem;
1062 --len;
1063 }
1064 if (elem[0] == '?') {
1065 ignore_unknown = 1;
1066 ++elem;
1067 --len;
1068 }
1069 }
1070
1071 if (len == strlen("DEFAULT") && OPENSSL_strncasecmp("DEFAULT", elem, len) == 0)
1072 add_default_groups = 1;
1073
1074 if (add_default_groups)
1075 groups_to_add = garg->ctx->ext.supported_groups_default_len;
1076 else if (!remove_group)
1077 groups_to_add = 1;
1078
1079 if (groups_to_add > garg->gidmax - garg->gidcnt) {
1080 size_t list_increment = groups_to_add > GROUPLIST_INCREMENT ? groups_to_add
1081 : GROUPLIST_INCREMENT;
1082 uint16_t *tmp =
1083 OPENSSL_realloc(garg->gid_arr,
1084 (garg->gidmax + list_increment) * sizeof(*garg->gid_arr));
1085
1086 if (tmp == NULL)
1087 return 0;
1088
1089 garg->gidmax += list_increment;
1090 garg->gid_arr = tmp;
1091 }
1092
1093 if (add_default_groups) {
1094 size_t j;
1095
1096 for (j = 0; j < garg->ctx->ext.supported_groups_default_len; j++) {
1097 gid = garg->ctx->ext.supported_groups_default[j];
1098 found_group = 0;
1099
1100 for (i = 0; i < garg->gidcnt; i++) {
1101 if (garg->gid_arr[i] == gid) {
1102 found_group = 1;
1103 break;
1104 }
1105 }
1106
1107 if (!found_group)
1108 garg->gid_arr[garg->gidcnt++] = gid;
1109 }
1110
1111 return 1;
1112 }
1113
1114 if (len > (int) (sizeof(etmp) - 1))
1115 return 0;
1116 memcpy(etmp, elem, len);
1117 etmp[len] = 0;
1118
1119 gid = tls1_group_name2id(garg->ctx, etmp);
1120 if (gid == 0) {
1121 /* Unknown group - ignore, if ignore_unknown */
1122 return ignore_unknown;
1123 }
1124
1125 for (i = 0; i < garg->gidcnt; i++)
1126 if (garg->gid_arr[i] == gid) {
1127 found_group = 1;
1128 break;
1129 }
1130
1131 if (found_group && remove_group) {
1132 size_t j;
1133
1134 for (j = i + 1; j < garg->gidcnt; j++)
1135 garg->gid_arr[j - 1] = garg->gid_arr[j];
1136
1137 garg->gidcnt--;
1138 }
1139
1140 if (!found_group && !remove_group)
1141 garg->gid_arr[garg->gidcnt++] = gid;
1142
1143 return 1;
1144 }
1145
1146 /* Set groups based on a colon separated list */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** pext,size_t * pextlen,const char * str)1147 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1148 const char *str)
1149 {
1150 gid_cb_st gcb;
1151 uint16_t *tmparr;
1152 int ret = 0;
1153
1154 gcb.gidcnt = 0;
1155 gcb.gidmax = GROUPLIST_INCREMENT;
1156 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1157 if (gcb.gid_arr == NULL)
1158 return 0;
1159 gcb.ctx = ctx;
1160 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1161 goto end;
1162 if (gcb.gidcnt == 0) {
1163 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1164 "No valid groups in '%s'", str);
1165 goto end;
1166 }
1167 if (pext == NULL) {
1168 ret = 1;
1169 goto end;
1170 }
1171
1172 /*
1173 * gid_cb ensurse there are no duplicates so we can just go ahead and set
1174 * the result
1175 */
1176 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1177 if (tmparr == NULL)
1178 goto end;
1179 OPENSSL_free(*pext);
1180 *pext = tmparr;
1181 *pextlen = gcb.gidcnt;
1182 ret = 1;
1183 end:
1184 OPENSSL_free(gcb.gid_arr);
1185 return ret;
1186 }
1187
1188 /* Check a group id matches preferences */
tls1_check_group_id(SSL_CONNECTION * s,uint16_t group_id,int check_own_groups)1189 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1190 int check_own_groups)
1191 {
1192 const uint16_t *groups;
1193 size_t groups_len;
1194
1195 if (group_id == 0)
1196 return 0;
1197
1198 /* Check for Suite B compliance */
1199 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1200 unsigned long cid = s->s3.tmp.new_cipher->id;
1201
1202 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1203 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1204 return 0;
1205 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1206 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1207 return 0;
1208 } else {
1209 /* Should never happen */
1210 return 0;
1211 }
1212 }
1213
1214 if (check_own_groups) {
1215 /* Check group is one of our preferences */
1216 tls1_get_supported_groups(s, &groups, &groups_len);
1217 if (!tls1_in_list(group_id, groups, groups_len))
1218 return 0;
1219 }
1220
1221 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1222 return 0;
1223
1224 /* For clients, nothing more to check */
1225 if (!s->server)
1226 return 1;
1227
1228 /* Check group is one of peers preferences */
1229 tls1_get_peer_groups(s, &groups, &groups_len);
1230
1231 /*
1232 * RFC 4492 does not require the supported elliptic curves extension
1233 * so if it is not sent we can just choose any curve.
1234 * It is invalid to send an empty list in the supported groups
1235 * extension, so groups_len == 0 always means no extension.
1236 */
1237 if (groups_len == 0)
1238 return 1;
1239 return tls1_in_list(group_id, groups, groups_len);
1240 }
1241
tls1_get_formatlist(SSL_CONNECTION * s,const unsigned char ** pformats,size_t * num_formats)1242 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1243 size_t *num_formats)
1244 {
1245 /*
1246 * If we have a custom point format list use it otherwise use default
1247 */
1248 if (s->ext.ecpointformats) {
1249 *pformats = s->ext.ecpointformats;
1250 *num_formats = s->ext.ecpointformats_len;
1251 } else {
1252 *pformats = ecformats_default;
1253 /* For Suite B we don't support char2 fields */
1254 if (tls1_suiteb(s))
1255 *num_formats = sizeof(ecformats_default) - 1;
1256 else
1257 *num_formats = sizeof(ecformats_default);
1258 }
1259 }
1260
1261 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL_CONNECTION * s,EVP_PKEY * pkey)1262 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1263 {
1264 unsigned char comp_id;
1265 size_t i;
1266 int point_conv;
1267
1268 /* If not an EC key nothing to check */
1269 if (!EVP_PKEY_is_a(pkey, "EC"))
1270 return 1;
1271
1272
1273 /* Get required compression id */
1274 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1275 if (point_conv == 0)
1276 return 0;
1277 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1278 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1279 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1280 /*
1281 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1282 * this check.
1283 */
1284 return 1;
1285 } else {
1286 int field_type = EVP_PKEY_get_field_type(pkey);
1287
1288 if (field_type == NID_X9_62_prime_field)
1289 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1290 else if (field_type == NID_X9_62_characteristic_two_field)
1291 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1292 else
1293 return 0;
1294 }
1295 /*
1296 * If point formats extension present check it, otherwise everything is
1297 * supported (see RFC4492).
1298 */
1299 if (s->ext.peer_ecpointformats == NULL)
1300 return 1;
1301
1302 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1303 if (s->ext.peer_ecpointformats[i] == comp_id)
1304 return 1;
1305 }
1306 return 0;
1307 }
1308
1309 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)1310 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1311 {
1312 int curve_nid = ssl_get_EC_curve_nid(pkey);
1313
1314 if (curve_nid == NID_undef)
1315 return 0;
1316 return tls1_nid2group_id(curve_nid);
1317 }
1318
1319 /*
1320 * Check cert parameters compatible with extensions: currently just checks EC
1321 * certificates have compatible curves and compression.
1322 */
tls1_check_cert_param(SSL_CONNECTION * s,X509 * x,int check_ee_md)1323 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1324 {
1325 uint16_t group_id;
1326 EVP_PKEY *pkey;
1327 pkey = X509_get0_pubkey(x);
1328 if (pkey == NULL)
1329 return 0;
1330 /* If not EC nothing to do */
1331 if (!EVP_PKEY_is_a(pkey, "EC"))
1332 return 1;
1333 /* Check compression */
1334 if (!tls1_check_pkey_comp(s, pkey))
1335 return 0;
1336 group_id = tls1_get_group_id(pkey);
1337 /*
1338 * For a server we allow the certificate to not be in our list of supported
1339 * groups.
1340 */
1341 if (!tls1_check_group_id(s, group_id, !s->server))
1342 return 0;
1343 /*
1344 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1345 * SHA384+P-384.
1346 */
1347 if (check_ee_md && tls1_suiteb(s)) {
1348 int check_md;
1349 size_t i;
1350
1351 /* Check to see we have necessary signing algorithm */
1352 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1353 check_md = NID_ecdsa_with_SHA256;
1354 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1355 check_md = NID_ecdsa_with_SHA384;
1356 else
1357 return 0; /* Should never happen */
1358 for (i = 0; i < s->shared_sigalgslen; i++) {
1359 if (check_md == s->shared_sigalgs[i]->sigandhash)
1360 return 1;
1361 }
1362 return 0;
1363 }
1364 return 1;
1365 }
1366
1367 /*
1368 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1369 * @s: SSL connection
1370 * @cid: Cipher ID we're considering using
1371 *
1372 * Checks that the kECDHE cipher suite we're considering using
1373 * is compatible with the client extensions.
1374 *
1375 * Returns 0 when the cipher can't be used or 1 when it can.
1376 */
tls1_check_ec_tmp_key(SSL_CONNECTION * s,unsigned long cid)1377 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1378 {
1379 /* If not Suite B just need a shared group */
1380 if (!tls1_suiteb(s))
1381 return tls1_shared_group(s, 0) != 0;
1382 /*
1383 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1384 * curves permitted.
1385 */
1386 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1387 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1388 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1389 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1390
1391 return 0;
1392 }
1393
1394 /* Default sigalg schemes */
1395 static const uint16_t tls12_sigalgs[] = {
1396 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1397 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1398 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1399 TLSEXT_SIGALG_ed25519,
1400 TLSEXT_SIGALG_ed448,
1401 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1402 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1403 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1404
1405 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1406 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1407 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1408 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1409 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1410 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1411
1412 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1413 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1414 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1415
1416 TLSEXT_SIGALG_ecdsa_sha224,
1417 TLSEXT_SIGALG_ecdsa_sha1,
1418
1419 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1420 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1421
1422 TLSEXT_SIGALG_dsa_sha224,
1423 TLSEXT_SIGALG_dsa_sha1,
1424
1425 TLSEXT_SIGALG_dsa_sha256,
1426 TLSEXT_SIGALG_dsa_sha384,
1427 TLSEXT_SIGALG_dsa_sha512,
1428
1429 #ifndef OPENSSL_NO_GOST
1430 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1431 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1432 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1433 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1434 TLSEXT_SIGALG_gostr34102001_gostr3411,
1435 #endif
1436 };
1437
1438
1439 static const uint16_t suiteb_sigalgs[] = {
1440 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1441 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1442 };
1443
1444 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1445 {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name, TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1446 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1447 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1448 {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name, TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1449 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1450 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1451 {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name, TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1452 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1453 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1454 {TLSEXT_SIGALG_ed25519_name, TLSEXT_SIGALG_ed25519,
1455 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1456 NID_undef, NID_undef, 1},
1457 {TLSEXT_SIGALG_ed448_name, TLSEXT_SIGALG_ed448,
1458 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1459 NID_undef, NID_undef, 1},
1460 {TLSEXT_SIGALG_ecdsa_sha224_name, TLSEXT_SIGALG_ecdsa_sha224,
1461 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1462 NID_ecdsa_with_SHA224, NID_undef, 1},
1463 {TLSEXT_SIGALG_ecdsa_sha1_name, TLSEXT_SIGALG_ecdsa_sha1,
1464 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1465 NID_ecdsa_with_SHA1, NID_undef, 1},
1466 {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name, TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1467 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1468 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1469 {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name, TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1470 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1471 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1472 {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name, TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1473 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1474 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1475 {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name, TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1476 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1477 NID_undef, NID_undef, 1},
1478 {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name, TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1479 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1480 NID_undef, NID_undef, 1},
1481 {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name, TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1482 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1483 NID_undef, NID_undef, 1},
1484 {TLSEXT_SIGALG_rsa_pss_pss_sha256_name, TLSEXT_SIGALG_rsa_pss_pss_sha256,
1485 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1486 NID_undef, NID_undef, 1},
1487 {TLSEXT_SIGALG_rsa_pss_pss_sha384_name, TLSEXT_SIGALG_rsa_pss_pss_sha384,
1488 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1489 NID_undef, NID_undef, 1},
1490 {TLSEXT_SIGALG_rsa_pss_pss_sha512_name, TLSEXT_SIGALG_rsa_pss_pss_sha512,
1491 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1492 NID_undef, NID_undef, 1},
1493 {TLSEXT_SIGALG_rsa_pkcs1_sha256_name, TLSEXT_SIGALG_rsa_pkcs1_sha256,
1494 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1495 NID_sha256WithRSAEncryption, NID_undef, 1},
1496 {TLSEXT_SIGALG_rsa_pkcs1_sha384_name, TLSEXT_SIGALG_rsa_pkcs1_sha384,
1497 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1498 NID_sha384WithRSAEncryption, NID_undef, 1},
1499 {TLSEXT_SIGALG_rsa_pkcs1_sha512_name, TLSEXT_SIGALG_rsa_pkcs1_sha512,
1500 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1501 NID_sha512WithRSAEncryption, NID_undef, 1},
1502 {TLSEXT_SIGALG_rsa_pkcs1_sha224_name, TLSEXT_SIGALG_rsa_pkcs1_sha224,
1503 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1504 NID_sha224WithRSAEncryption, NID_undef, 1},
1505 {TLSEXT_SIGALG_rsa_pkcs1_sha1_name, TLSEXT_SIGALG_rsa_pkcs1_sha1,
1506 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1507 NID_sha1WithRSAEncryption, NID_undef, 1},
1508 {TLSEXT_SIGALG_dsa_sha256_name, TLSEXT_SIGALG_dsa_sha256,
1509 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1510 NID_dsa_with_SHA256, NID_undef, 1},
1511 {TLSEXT_SIGALG_dsa_sha384_name, TLSEXT_SIGALG_dsa_sha384,
1512 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1513 NID_undef, NID_undef, 1},
1514 {TLSEXT_SIGALG_dsa_sha512_name, TLSEXT_SIGALG_dsa_sha512,
1515 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1516 NID_undef, NID_undef, 1},
1517 {TLSEXT_SIGALG_dsa_sha224_name, TLSEXT_SIGALG_dsa_sha224,
1518 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1519 NID_undef, NID_undef, 1},
1520 {TLSEXT_SIGALG_dsa_sha1_name, TLSEXT_SIGALG_dsa_sha1,
1521 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1522 NID_dsaWithSHA1, NID_undef, 1},
1523 #ifndef OPENSSL_NO_GOST
1524 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_name, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1525 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1526 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1527 NID_undef, NID_undef, 1},
1528 {TLSEXT_SIGALG_gostr34102012_512_intrinsic_name, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1529 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1530 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1531 NID_undef, NID_undef, 1},
1532 {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1533 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1534 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1535 NID_undef, NID_undef, 1},
1536 {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1537 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1538 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1539 NID_undef, NID_undef, 1},
1540 {TLSEXT_SIGALG_gostr34102001_gostr3411_name, TLSEXT_SIGALG_gostr34102001_gostr3411,
1541 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1542 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1543 NID_undef, NID_undef, 1}
1544 #endif
1545 };
1546 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1547 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1548 "rsa_pkcs1_md5_sha1", 0,
1549 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1550 EVP_PKEY_RSA, SSL_PKEY_RSA,
1551 NID_undef, NID_undef, 1
1552 };
1553
1554 /*
1555 * Default signature algorithm values used if signature algorithms not present.
1556 * From RFC5246. Note: order must match certificate index order.
1557 */
1558 static const uint16_t tls_default_sigalg[] = {
1559 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1560 0, /* SSL_PKEY_RSA_PSS_SIGN */
1561 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1562 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1563 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1564 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1565 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1566 0, /* SSL_PKEY_ED25519 */
1567 0, /* SSL_PKEY_ED448 */
1568 };
1569
ssl_setup_sigalgs(SSL_CTX * ctx)1570 int ssl_setup_sigalgs(SSL_CTX *ctx)
1571 {
1572 size_t i, cache_idx, sigalgs_len;
1573 const SIGALG_LOOKUP *lu;
1574 SIGALG_LOOKUP *cache = NULL;
1575 uint16_t *tls12_sigalgs_list = NULL;
1576 EVP_PKEY *tmpkey = EVP_PKEY_new();
1577 int ret = 0;
1578
1579 if (ctx == NULL)
1580 goto err;
1581
1582 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1583
1584 cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1585 if (cache == NULL || tmpkey == NULL)
1586 goto err;
1587
1588 tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1589 if (tls12_sigalgs_list == NULL)
1590 goto err;
1591
1592 ERR_set_mark();
1593 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1594 for (i = 0, lu = sigalg_lookup_tbl;
1595 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1596 EVP_PKEY_CTX *pctx;
1597
1598 cache[i] = *lu;
1599 tls12_sigalgs_list[i] = tls12_sigalgs[i];
1600
1601 /*
1602 * Check hash is available.
1603 * This test is not perfect. A provider could have support
1604 * for a signature scheme, but not a particular hash. However the hash
1605 * could be available from some other loaded provider. In that case it
1606 * could be that the signature is available, and the hash is available
1607 * independently - but not as a combination. We ignore this for now.
1608 */
1609 if (lu->hash != NID_undef
1610 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1611 cache[i].enabled = 0;
1612 continue;
1613 }
1614
1615 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1616 cache[i].enabled = 0;
1617 continue;
1618 }
1619 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1620 /* If unable to create pctx we assume the sig algorithm is unavailable */
1621 if (pctx == NULL)
1622 cache[i].enabled = 0;
1623 EVP_PKEY_CTX_free(pctx);
1624 }
1625
1626 /* Now complete cache and tls12_sigalgs list with provider sig information */
1627 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1628 for (i = 0; i < ctx->sigalg_list_len; i++) {
1629 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1630 cache[cache_idx].name = si.name;
1631 cache[cache_idx].sigalg = si.code_point;
1632 tls12_sigalgs_list[cache_idx] = si.code_point;
1633 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1634 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1635 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1636 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1637 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1638 cache[cache_idx].curve = NID_undef;
1639 /* all provided sigalgs are enabled by load */
1640 cache[cache_idx].enabled = 1;
1641 cache_idx++;
1642 }
1643 ERR_pop_to_mark();
1644 ctx->sigalg_lookup_cache = cache;
1645 ctx->tls12_sigalgs = tls12_sigalgs_list;
1646 ctx->tls12_sigalgs_len = sigalgs_len;
1647 cache = NULL;
1648 tls12_sigalgs_list = NULL;
1649
1650 ret = 1;
1651 err:
1652 OPENSSL_free(cache);
1653 OPENSSL_free(tls12_sigalgs_list);
1654 EVP_PKEY_free(tmpkey);
1655 return ret;
1656 }
1657
1658 #define SIGLEN_BUF_INCREMENT 100
1659
SSL_get1_builtin_sigalgs(OSSL_LIB_CTX * libctx)1660 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
1661 {
1662 size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
1663 const SIGALG_LOOKUP *lu;
1664 EVP_PKEY *tmpkey = EVP_PKEY_new();
1665 char *retval = OPENSSL_malloc(maxretlen);
1666
1667 if (retval == NULL)
1668 return NULL;
1669
1670 /* ensure retval string is NUL terminated */
1671 retval[0] = (char)0;
1672
1673 for (i = 0, lu = sigalg_lookup_tbl;
1674 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1675 EVP_PKEY_CTX *pctx;
1676 int enabled = 1;
1677
1678 ERR_set_mark();
1679 /* Check hash is available in some provider. */
1680 if (lu->hash != NID_undef) {
1681 EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
1682
1683 /* If unable to create we assume the hash algorithm is unavailable */
1684 if (hash == NULL) {
1685 enabled = 0;
1686 ERR_pop_to_mark();
1687 continue;
1688 }
1689 EVP_MD_free(hash);
1690 }
1691
1692 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1693 enabled = 0;
1694 ERR_pop_to_mark();
1695 continue;
1696 }
1697 pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
1698 /* If unable to create pctx we assume the sig algorithm is unavailable */
1699 if (pctx == NULL)
1700 enabled = 0;
1701 ERR_pop_to_mark();
1702 EVP_PKEY_CTX_free(pctx);
1703
1704 if (enabled) {
1705 const char *sa = lu->name;
1706
1707 if (sa != NULL) {
1708 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
1709 char *tmp;
1710
1711 maxretlen += SIGLEN_BUF_INCREMENT;
1712 tmp = OPENSSL_realloc(retval, maxretlen);
1713 if (tmp == NULL) {
1714 OPENSSL_free(retval);
1715 return NULL;
1716 }
1717 retval = tmp;
1718 }
1719 if (strlen(retval) > 0)
1720 OPENSSL_strlcat(retval, ":", maxretlen);
1721 OPENSSL_strlcat(retval, sa, maxretlen);
1722 } else {
1723 /* lu->name must not be NULL */
1724 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1725 }
1726 }
1727 }
1728
1729 EVP_PKEY_free(tmpkey);
1730 return retval;
1731 }
1732
1733 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL_CONNECTION * s,uint16_t sigalg)1734 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1735 uint16_t sigalg)
1736 {
1737 size_t i;
1738 const SIGALG_LOOKUP *lu;
1739
1740 for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1741 i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1742 lu++, i++) {
1743 if (lu->sigalg == sigalg) {
1744 if (!lu->enabled)
1745 return NULL;
1746 return lu;
1747 }
1748 }
1749 return NULL;
1750 }
1751 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)1752 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1753 {
1754 const EVP_MD *md;
1755
1756 if (lu == NULL)
1757 return 0;
1758 /* lu->hash == NID_undef means no associated digest */
1759 if (lu->hash == NID_undef) {
1760 md = NULL;
1761 } else {
1762 md = ssl_md(ctx, lu->hash_idx);
1763 if (md == NULL)
1764 return 0;
1765 }
1766 if (pmd)
1767 *pmd = md;
1768 return 1;
1769 }
1770
1771 /*
1772 * Check if key is large enough to generate RSA-PSS signature.
1773 *
1774 * The key must greater than or equal to 2 * hash length + 2.
1775 * SHA512 has a hash length of 64 bytes, which is incompatible
1776 * with a 128 byte (1024 bit) key.
1777 */
1778 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)1779 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1780 const SIGALG_LOOKUP *lu)
1781 {
1782 const EVP_MD *md;
1783
1784 if (pkey == NULL)
1785 return 0;
1786 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1787 return 0;
1788 if (EVP_MD_get_size(md) <= 0)
1789 return 0;
1790 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1791 return 0;
1792 return 1;
1793 }
1794
1795 /*
1796 * Returns a signature algorithm when the peer did not send a list of supported
1797 * signature algorithms. The signature algorithm is fixed for the certificate
1798 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1799 * certificate type from |s| will be used.
1800 * Returns the signature algorithm to use, or NULL on error.
1801 */
tls1_get_legacy_sigalg(const SSL_CONNECTION * s,int idx)1802 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1803 int idx)
1804 {
1805 if (idx == -1) {
1806 if (s->server) {
1807 size_t i;
1808
1809 /* Work out index corresponding to ciphersuite */
1810 for (i = 0; i < s->ssl_pkey_num; i++) {
1811 const SSL_CERT_LOOKUP *clu
1812 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1813
1814 if (clu == NULL)
1815 continue;
1816 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1817 idx = i;
1818 break;
1819 }
1820 }
1821
1822 /*
1823 * Some GOST ciphersuites allow more than one signature algorithms
1824 * */
1825 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1826 int real_idx;
1827
1828 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1829 real_idx--) {
1830 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1831 idx = real_idx;
1832 break;
1833 }
1834 }
1835 }
1836 /*
1837 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1838 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1839 */
1840 else if (idx == SSL_PKEY_GOST12_256) {
1841 int real_idx;
1842
1843 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1844 real_idx--) {
1845 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1846 idx = real_idx;
1847 break;
1848 }
1849 }
1850 }
1851 } else {
1852 idx = s->cert->key - s->cert->pkeys;
1853 }
1854 }
1855 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1856 return NULL;
1857
1858 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1859 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1860
1861 if (lu == NULL)
1862 return NULL;
1863 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1864 return NULL;
1865 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1866 return NULL;
1867 return lu;
1868 }
1869 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1870 return NULL;
1871 return &legacy_rsa_sigalg;
1872 }
1873 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL_CONNECTION * s,const EVP_PKEY * pkey)1874 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1875 {
1876 size_t idx;
1877 const SIGALG_LOOKUP *lu;
1878
1879 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1880 return 0;
1881 lu = tls1_get_legacy_sigalg(s, idx);
1882 if (lu == NULL)
1883 return 0;
1884 s->s3.tmp.peer_sigalg = lu;
1885 return 1;
1886 }
1887
tls12_get_psigalgs(SSL_CONNECTION * s,int sent,const uint16_t ** psigs)1888 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1889 {
1890 /*
1891 * If Suite B mode use Suite B sigalgs only, ignore any other
1892 * preferences.
1893 */
1894 switch (tls1_suiteb(s)) {
1895 case SSL_CERT_FLAG_SUITEB_128_LOS:
1896 *psigs = suiteb_sigalgs;
1897 return OSSL_NELEM(suiteb_sigalgs);
1898
1899 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1900 *psigs = suiteb_sigalgs;
1901 return 1;
1902
1903 case SSL_CERT_FLAG_SUITEB_192_LOS:
1904 *psigs = suiteb_sigalgs + 1;
1905 return 1;
1906 }
1907 /*
1908 * We use client_sigalgs (if not NULL) if we're a server
1909 * and sending a certificate request or if we're a client and
1910 * determining which shared algorithm to use.
1911 */
1912 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1913 *psigs = s->cert->client_sigalgs;
1914 return s->cert->client_sigalgslen;
1915 } else if (s->cert->conf_sigalgs) {
1916 *psigs = s->cert->conf_sigalgs;
1917 return s->cert->conf_sigalgslen;
1918 } else {
1919 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1920 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1921 }
1922 }
1923
1924 /*
1925 * Called by servers only. Checks that we have a sig alg that supports the
1926 * specified EC curve.
1927 */
tls_check_sigalg_curve(const SSL_CONNECTION * s,int curve)1928 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1929 {
1930 const uint16_t *sigs;
1931 size_t siglen, i;
1932
1933 if (s->cert->conf_sigalgs) {
1934 sigs = s->cert->conf_sigalgs;
1935 siglen = s->cert->conf_sigalgslen;
1936 } else {
1937 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1938 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1939 }
1940
1941 for (i = 0; i < siglen; i++) {
1942 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1943
1944 if (lu == NULL)
1945 continue;
1946 if (lu->sig == EVP_PKEY_EC
1947 && lu->curve != NID_undef
1948 && curve == lu->curve)
1949 return 1;
1950 }
1951
1952 return 0;
1953 }
1954
1955 /*
1956 * Return the number of security bits for the signature algorithm, or 0 on
1957 * error.
1958 */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)1959 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1960 {
1961 const EVP_MD *md = NULL;
1962 int secbits = 0;
1963
1964 if (!tls1_lookup_md(ctx, lu, &md))
1965 return 0;
1966 if (md != NULL)
1967 {
1968 int md_type = EVP_MD_get_type(md);
1969
1970 /* Security bits: half digest bits */
1971 secbits = EVP_MD_get_size(md) * 4;
1972 if (secbits <= 0)
1973 return 0;
1974 /*
1975 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1976 * they're no longer accepted at security level 1. The real values don't
1977 * really matter as long as they're lower than 80, which is our
1978 * security level 1.
1979 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1980 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1981 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1982 * puts a chosen-prefix attack for MD5 at 2^39.
1983 */
1984 if (md_type == NID_sha1)
1985 secbits = 64;
1986 else if (md_type == NID_md5_sha1)
1987 secbits = 67;
1988 else if (md_type == NID_md5)
1989 secbits = 39;
1990 } else {
1991 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1992 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1993 secbits = 128;
1994 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1995 secbits = 224;
1996 }
1997 /*
1998 * For provider-based sigalgs we have secbits information available
1999 * in the (provider-loaded) sigalg_list structure
2000 */
2001 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2002 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2003 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2004 }
2005 return secbits;
2006 }
2007
2008 /*
2009 * Check signature algorithm is consistent with sent supported signature
2010 * algorithms and if so set relevant digest and signature scheme in
2011 * s.
2012 */
tls12_check_peer_sigalg(SSL_CONNECTION * s,uint16_t sig,EVP_PKEY * pkey)2013 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2014 {
2015 const uint16_t *sent_sigs;
2016 const EVP_MD *md = NULL;
2017 char sigalgstr[2];
2018 size_t sent_sigslen, i, cidx;
2019 int pkeyid = -1;
2020 const SIGALG_LOOKUP *lu;
2021 int secbits = 0;
2022
2023 pkeyid = EVP_PKEY_get_id(pkey);
2024
2025 if (SSL_CONNECTION_IS_TLS13(s)) {
2026 /* Disallow DSA for TLS 1.3 */
2027 if (pkeyid == EVP_PKEY_DSA) {
2028 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2029 return 0;
2030 }
2031 /* Only allow PSS for TLS 1.3 */
2032 if (pkeyid == EVP_PKEY_RSA)
2033 pkeyid = EVP_PKEY_RSA_PSS;
2034 }
2035 lu = tls1_lookup_sigalg(s, sig);
2036 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2037 if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
2038 pkeyid = lu->sig;
2039
2040 /* Should never happen */
2041 if (pkeyid == -1)
2042 return -1;
2043
2044 /*
2045 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2046 * is consistent with signature: RSA keys can be used for RSA-PSS
2047 */
2048 if (lu == NULL
2049 || (SSL_CONNECTION_IS_TLS13(s)
2050 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2051 || (pkeyid != lu->sig
2052 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2053 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2054 return 0;
2055 }
2056 /* Check the sigalg is consistent with the key OID */
2057 if (!ssl_cert_lookup_by_nid(
2058 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2059 &cidx, SSL_CONNECTION_GET_CTX(s))
2060 || lu->sig_idx != (int)cidx) {
2061 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2062 return 0;
2063 }
2064
2065 if (pkeyid == EVP_PKEY_EC) {
2066
2067 /* Check point compression is permitted */
2068 if (!tls1_check_pkey_comp(s, pkey)) {
2069 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2070 SSL_R_ILLEGAL_POINT_COMPRESSION);
2071 return 0;
2072 }
2073
2074 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2075 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2076 int curve = ssl_get_EC_curve_nid(pkey);
2077
2078 if (lu->curve != NID_undef && curve != lu->curve) {
2079 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2080 return 0;
2081 }
2082 }
2083 if (!SSL_CONNECTION_IS_TLS13(s)) {
2084 /* Check curve matches extensions */
2085 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2086 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2087 return 0;
2088 }
2089 if (tls1_suiteb(s)) {
2090 /* Check sigalg matches a permissible Suite B value */
2091 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2092 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2093 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2094 SSL_R_WRONG_SIGNATURE_TYPE);
2095 return 0;
2096 }
2097 }
2098 }
2099 } else if (tls1_suiteb(s)) {
2100 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2101 return 0;
2102 }
2103
2104 /* Check signature matches a type we sent */
2105 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2106 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2107 if (sig == *sent_sigs)
2108 break;
2109 }
2110 /* Allow fallback to SHA1 if not strict mode */
2111 if (i == sent_sigslen && (lu->hash != NID_sha1
2112 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2113 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2114 return 0;
2115 }
2116 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2117 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2118 return 0;
2119 }
2120 /*
2121 * Make sure security callback allows algorithm. For historical
2122 * reasons we have to pass the sigalg as a two byte char array.
2123 */
2124 sigalgstr[0] = (sig >> 8) & 0xff;
2125 sigalgstr[1] = sig & 0xff;
2126 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2127 if (secbits == 0 ||
2128 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2129 md != NULL ? EVP_MD_get_type(md) : NID_undef,
2130 (void *)sigalgstr)) {
2131 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2132 return 0;
2133 }
2134 /* Store the sigalg the peer uses */
2135 s->s3.tmp.peer_sigalg = lu;
2136 return 1;
2137 }
2138
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)2139 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2140 {
2141 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2142
2143 if (sc == NULL)
2144 return 0;
2145
2146 if (sc->s3.tmp.peer_sigalg == NULL)
2147 return 0;
2148 *pnid = sc->s3.tmp.peer_sigalg->sig;
2149 return 1;
2150 }
2151
SSL_get_signature_type_nid(const SSL * s,int * pnid)2152 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2153 {
2154 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2155
2156 if (sc == NULL)
2157 return 0;
2158
2159 if (sc->s3.tmp.sigalg == NULL)
2160 return 0;
2161 *pnid = sc->s3.tmp.sigalg->sig;
2162 return 1;
2163 }
2164
2165 /*
2166 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2167 * supported, doesn't appear in supported signature algorithms, isn't supported
2168 * by the enabled protocol versions or by the security level.
2169 *
2170 * This function should only be used for checking which ciphers are supported
2171 * by the client.
2172 *
2173 * Call ssl_cipher_disabled() to check that it's enabled or not.
2174 */
ssl_set_client_disabled(SSL_CONNECTION * s)2175 int ssl_set_client_disabled(SSL_CONNECTION *s)
2176 {
2177 s->s3.tmp.mask_a = 0;
2178 s->s3.tmp.mask_k = 0;
2179 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2180 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2181 &s->s3.tmp.max_ver, NULL) != 0)
2182 return 0;
2183 #ifndef OPENSSL_NO_PSK
2184 /* with PSK there must be client callback set */
2185 if (!s->psk_client_callback) {
2186 s->s3.tmp.mask_a |= SSL_aPSK;
2187 s->s3.tmp.mask_k |= SSL_PSK;
2188 }
2189 #endif /* OPENSSL_NO_PSK */
2190 #ifndef OPENSSL_NO_SRP
2191 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2192 s->s3.tmp.mask_a |= SSL_aSRP;
2193 s->s3.tmp.mask_k |= SSL_kSRP;
2194 }
2195 #endif
2196 return 1;
2197 }
2198
2199 /*
2200 * ssl_cipher_disabled - check that a cipher is disabled or not
2201 * @s: SSL connection that you want to use the cipher on
2202 * @c: cipher to check
2203 * @op: Security check that you want to do
2204 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2205 *
2206 * Returns 1 when it's disabled, 0 when enabled.
2207 */
ssl_cipher_disabled(const SSL_CONNECTION * s,const SSL_CIPHER * c,int op,int ecdhe)2208 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2209 int op, int ecdhe)
2210 {
2211 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2212 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2213
2214 if (c->algorithm_mkey & s->s3.tmp.mask_k
2215 || c->algorithm_auth & s->s3.tmp.mask_a)
2216 return 1;
2217 if (s->s3.tmp.max_ver == 0)
2218 return 1;
2219
2220 if (SSL_IS_QUIC_HANDSHAKE(s))
2221 /* For QUIC, only allow these ciphersuites. */
2222 switch (SSL_CIPHER_get_id(c)) {
2223 case TLS1_3_CK_AES_128_GCM_SHA256:
2224 case TLS1_3_CK_AES_256_GCM_SHA384:
2225 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2226 break;
2227 default:
2228 return 1;
2229 }
2230
2231 /*
2232 * For historical reasons we will allow ECHDE to be selected by a server
2233 * in SSLv3 if we are a client
2234 */
2235 if (minversion == TLS1_VERSION
2236 && ecdhe
2237 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2238 minversion = SSL3_VERSION;
2239
2240 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2241 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2242 return 1;
2243
2244 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2245 }
2246
tls_use_ticket(SSL_CONNECTION * s)2247 int tls_use_ticket(SSL_CONNECTION *s)
2248 {
2249 if ((s->options & SSL_OP_NO_TICKET))
2250 return 0;
2251 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2252 }
2253
tls1_set_server_sigalgs(SSL_CONNECTION * s)2254 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2255 {
2256 size_t i;
2257
2258 /* Clear any shared signature algorithms */
2259 OPENSSL_free(s->shared_sigalgs);
2260 s->shared_sigalgs = NULL;
2261 s->shared_sigalgslen = 0;
2262
2263 /* Clear certificate validity flags */
2264 if (s->s3.tmp.valid_flags)
2265 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2266 else
2267 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2268 if (s->s3.tmp.valid_flags == NULL)
2269 return 0;
2270 /*
2271 * If peer sent no signature algorithms check to see if we support
2272 * the default algorithm for each certificate type
2273 */
2274 if (s->s3.tmp.peer_cert_sigalgs == NULL
2275 && s->s3.tmp.peer_sigalgs == NULL) {
2276 const uint16_t *sent_sigs;
2277 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2278
2279 for (i = 0; i < s->ssl_pkey_num; i++) {
2280 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2281 size_t j;
2282
2283 if (lu == NULL)
2284 continue;
2285 /* Check default matches a type we sent */
2286 for (j = 0; j < sent_sigslen; j++) {
2287 if (lu->sigalg == sent_sigs[j]) {
2288 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2289 break;
2290 }
2291 }
2292 }
2293 return 1;
2294 }
2295
2296 if (!tls1_process_sigalgs(s)) {
2297 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2298 return 0;
2299 }
2300 if (s->shared_sigalgs != NULL)
2301 return 1;
2302
2303 /* Fatal error if no shared signature algorithms */
2304 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2305 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2306 return 0;
2307 }
2308
2309 /*-
2310 * Gets the ticket information supplied by the client if any.
2311 *
2312 * hello: The parsed ClientHello data
2313 * ret: (output) on return, if a ticket was decrypted, then this is set to
2314 * point to the resulting session.
2315 */
tls_get_ticket_from_client(SSL_CONNECTION * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)2316 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2317 CLIENTHELLO_MSG *hello,
2318 SSL_SESSION **ret)
2319 {
2320 size_t size;
2321 RAW_EXTENSION *ticketext;
2322
2323 *ret = NULL;
2324 s->ext.ticket_expected = 0;
2325
2326 /*
2327 * If tickets disabled or not supported by the protocol version
2328 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2329 * resumption.
2330 */
2331 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2332 return SSL_TICKET_NONE;
2333
2334 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2335 if (!ticketext->present)
2336 return SSL_TICKET_NONE;
2337
2338 size = PACKET_remaining(&ticketext->data);
2339
2340 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2341 hello->session_id, hello->session_id_len, ret);
2342 }
2343
2344 /*-
2345 * tls_decrypt_ticket attempts to decrypt a session ticket.
2346 *
2347 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2348 * expecting a pre-shared key ciphersuite, in which case we have no use for
2349 * session tickets and one will never be decrypted, nor will
2350 * s->ext.ticket_expected be set to 1.
2351 *
2352 * Side effects:
2353 * Sets s->ext.ticket_expected to 1 if the server will have to issue
2354 * a new session ticket to the client because the client indicated support
2355 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2356 * a session ticket or we couldn't use the one it gave us, or if
2357 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2358 * Otherwise, s->ext.ticket_expected is set to 0.
2359 *
2360 * etick: points to the body of the session ticket extension.
2361 * eticklen: the length of the session tickets extension.
2362 * sess_id: points at the session ID.
2363 * sesslen: the length of the session ID.
2364 * psess: (output) on return, if a ticket was decrypted, then this is set to
2365 * point to the resulting session.
2366 */
tls_decrypt_ticket(SSL_CONNECTION * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)2367 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2368 const unsigned char *etick,
2369 size_t eticklen,
2370 const unsigned char *sess_id,
2371 size_t sesslen, SSL_SESSION **psess)
2372 {
2373 SSL_SESSION *sess = NULL;
2374 unsigned char *sdec;
2375 const unsigned char *p;
2376 int slen, ivlen, renew_ticket = 0, declen;
2377 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2378 size_t mlen;
2379 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2380 SSL_HMAC *hctx = NULL;
2381 EVP_CIPHER_CTX *ctx = NULL;
2382 SSL_CTX *tctx = s->session_ctx;
2383 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2384
2385 if (eticklen == 0) {
2386 /*
2387 * The client will accept a ticket but doesn't currently have
2388 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2389 */
2390 ret = SSL_TICKET_EMPTY;
2391 goto end;
2392 }
2393 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2394 /*
2395 * Indicate that the ticket couldn't be decrypted rather than
2396 * generating the session from ticket now, trigger
2397 * abbreviated handshake based on external mechanism to
2398 * calculate the master secret later.
2399 */
2400 ret = SSL_TICKET_NO_DECRYPT;
2401 goto end;
2402 }
2403
2404 /* Need at least keyname + iv */
2405 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2406 ret = SSL_TICKET_NO_DECRYPT;
2407 goto end;
2408 }
2409
2410 /* Initialize session ticket encryption and HMAC contexts */
2411 hctx = ssl_hmac_new(tctx);
2412 if (hctx == NULL) {
2413 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2414 goto end;
2415 }
2416 ctx = EVP_CIPHER_CTX_new();
2417 if (ctx == NULL) {
2418 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2419 goto end;
2420 }
2421 #ifndef OPENSSL_NO_DEPRECATED_3_0
2422 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2423 #else
2424 if (tctx->ext.ticket_key_evp_cb != NULL)
2425 #endif
2426 {
2427 unsigned char *nctick = (unsigned char *)etick;
2428 int rv = 0;
2429
2430 if (tctx->ext.ticket_key_evp_cb != NULL)
2431 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
2432 nctick,
2433 nctick + TLSEXT_KEYNAME_LENGTH,
2434 ctx,
2435 ssl_hmac_get0_EVP_MAC_CTX(hctx),
2436 0);
2437 #ifndef OPENSSL_NO_DEPRECATED_3_0
2438 else if (tctx->ext.ticket_key_cb != NULL)
2439 /* if 0 is returned, write an empty ticket */
2440 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
2441 nctick + TLSEXT_KEYNAME_LENGTH,
2442 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2443 #endif
2444 if (rv < 0) {
2445 ret = SSL_TICKET_FATAL_ERR_OTHER;
2446 goto end;
2447 }
2448 if (rv == 0) {
2449 ret = SSL_TICKET_NO_DECRYPT;
2450 goto end;
2451 }
2452 if (rv == 2)
2453 renew_ticket = 1;
2454 } else {
2455 EVP_CIPHER *aes256cbc = NULL;
2456
2457 /* Check key name matches */
2458 if (memcmp(etick, tctx->ext.tick_key_name,
2459 TLSEXT_KEYNAME_LENGTH) != 0) {
2460 ret = SSL_TICKET_NO_DECRYPT;
2461 goto end;
2462 }
2463
2464 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2465 sctx->propq);
2466 if (aes256cbc == NULL
2467 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2468 sizeof(tctx->ext.secure->tick_hmac_key),
2469 "SHA256") <= 0
2470 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2471 tctx->ext.secure->tick_aes_key,
2472 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2473 EVP_CIPHER_free(aes256cbc);
2474 ret = SSL_TICKET_FATAL_ERR_OTHER;
2475 goto end;
2476 }
2477 EVP_CIPHER_free(aes256cbc);
2478 if (SSL_CONNECTION_IS_TLS13(s))
2479 renew_ticket = 1;
2480 }
2481 /*
2482 * Attempt to process session ticket, first conduct sanity and integrity
2483 * checks on ticket.
2484 */
2485 mlen = ssl_hmac_size(hctx);
2486 if (mlen == 0) {
2487 ret = SSL_TICKET_FATAL_ERR_OTHER;
2488 goto end;
2489 }
2490
2491 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2492 if (ivlen < 0) {
2493 ret = SSL_TICKET_FATAL_ERR_OTHER;
2494 goto end;
2495 }
2496
2497 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2498 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2499 ret = SSL_TICKET_NO_DECRYPT;
2500 goto end;
2501 }
2502 eticklen -= mlen;
2503 /* Check HMAC of encrypted ticket */
2504 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2505 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2506 ret = SSL_TICKET_FATAL_ERR_OTHER;
2507 goto end;
2508 }
2509
2510 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2511 ret = SSL_TICKET_NO_DECRYPT;
2512 goto end;
2513 }
2514 /* Attempt to decrypt session data */
2515 /* Move p after IV to start of encrypted ticket, update length */
2516 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2517 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2518 sdec = OPENSSL_malloc(eticklen);
2519 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2520 (int)eticklen) <= 0) {
2521 OPENSSL_free(sdec);
2522 ret = SSL_TICKET_FATAL_ERR_OTHER;
2523 goto end;
2524 }
2525 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2526 OPENSSL_free(sdec);
2527 ret = SSL_TICKET_NO_DECRYPT;
2528 goto end;
2529 }
2530 slen += declen;
2531 p = sdec;
2532
2533 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2534 slen -= p - sdec;
2535 OPENSSL_free(sdec);
2536 if (sess) {
2537 /* Some additional consistency checks */
2538 if (slen != 0) {
2539 SSL_SESSION_free(sess);
2540 sess = NULL;
2541 ret = SSL_TICKET_NO_DECRYPT;
2542 goto end;
2543 }
2544 /*
2545 * The session ID, if non-empty, is used by some clients to detect
2546 * that the ticket has been accepted. So we copy it to the session
2547 * structure. If it is empty set length to zero as required by
2548 * standard.
2549 */
2550 if (sesslen) {
2551 memcpy(sess->session_id, sess_id, sesslen);
2552 sess->session_id_length = sesslen;
2553 }
2554 if (renew_ticket)
2555 ret = SSL_TICKET_SUCCESS_RENEW;
2556 else
2557 ret = SSL_TICKET_SUCCESS;
2558 goto end;
2559 }
2560 ERR_clear_error();
2561 /*
2562 * For session parse failure, indicate that we need to send a new ticket.
2563 */
2564 ret = SSL_TICKET_NO_DECRYPT;
2565
2566 end:
2567 EVP_CIPHER_CTX_free(ctx);
2568 ssl_hmac_free(hctx);
2569
2570 /*
2571 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2572 * detected above. The callback is responsible for checking |ret| before it
2573 * performs any action
2574 */
2575 if (s->session_ctx->decrypt_ticket_cb != NULL
2576 && (ret == SSL_TICKET_EMPTY
2577 || ret == SSL_TICKET_NO_DECRYPT
2578 || ret == SSL_TICKET_SUCCESS
2579 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2580 size_t keyname_len = eticklen;
2581 int retcb;
2582
2583 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2584 keyname_len = TLSEXT_KEYNAME_LENGTH;
2585 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2586 sess, etick, keyname_len,
2587 ret,
2588 s->session_ctx->ticket_cb_data);
2589 switch (retcb) {
2590 case SSL_TICKET_RETURN_ABORT:
2591 ret = SSL_TICKET_FATAL_ERR_OTHER;
2592 break;
2593
2594 case SSL_TICKET_RETURN_IGNORE:
2595 ret = SSL_TICKET_NONE;
2596 SSL_SESSION_free(sess);
2597 sess = NULL;
2598 break;
2599
2600 case SSL_TICKET_RETURN_IGNORE_RENEW:
2601 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2602 ret = SSL_TICKET_NO_DECRYPT;
2603 /* else the value of |ret| will already do the right thing */
2604 SSL_SESSION_free(sess);
2605 sess = NULL;
2606 break;
2607
2608 case SSL_TICKET_RETURN_USE:
2609 case SSL_TICKET_RETURN_USE_RENEW:
2610 if (ret != SSL_TICKET_SUCCESS
2611 && ret != SSL_TICKET_SUCCESS_RENEW)
2612 ret = SSL_TICKET_FATAL_ERR_OTHER;
2613 else if (retcb == SSL_TICKET_RETURN_USE)
2614 ret = SSL_TICKET_SUCCESS;
2615 else
2616 ret = SSL_TICKET_SUCCESS_RENEW;
2617 break;
2618
2619 default:
2620 ret = SSL_TICKET_FATAL_ERR_OTHER;
2621 }
2622 }
2623
2624 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2625 switch (ret) {
2626 case SSL_TICKET_NO_DECRYPT:
2627 case SSL_TICKET_SUCCESS_RENEW:
2628 case SSL_TICKET_EMPTY:
2629 s->ext.ticket_expected = 1;
2630 }
2631 }
2632
2633 *psess = sess;
2634
2635 return ret;
2636 }
2637
2638 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL_CONNECTION * s,int op,const SIGALG_LOOKUP * lu)2639 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2640 const SIGALG_LOOKUP *lu)
2641 {
2642 unsigned char sigalgstr[2];
2643 int secbits;
2644
2645 if (lu == NULL || !lu->enabled)
2646 return 0;
2647 /* DSA is not allowed in TLS 1.3 */
2648 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2649 return 0;
2650 /*
2651 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2652 * spec
2653 */
2654 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2655 && s->s3.tmp.min_ver >= TLS1_3_VERSION
2656 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2657 || lu->hash_idx == SSL_MD_MD5_IDX
2658 || lu->hash_idx == SSL_MD_SHA224_IDX))
2659 return 0;
2660
2661 /* See if public key algorithm allowed */
2662 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2663 return 0;
2664
2665 if (lu->sig == NID_id_GostR3410_2012_256
2666 || lu->sig == NID_id_GostR3410_2012_512
2667 || lu->sig == NID_id_GostR3410_2001) {
2668 /* We never allow GOST sig algs on the server with TLSv1.3 */
2669 if (s->server && SSL_CONNECTION_IS_TLS13(s))
2670 return 0;
2671 if (!s->server
2672 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2673 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2674 int i, num;
2675 STACK_OF(SSL_CIPHER) *sk;
2676
2677 /*
2678 * We're a client that could negotiate TLSv1.3. We only allow GOST
2679 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2680 * ciphersuites enabled.
2681 */
2682
2683 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2684 return 0;
2685
2686 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2687 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2688 for (i = 0; i < num; i++) {
2689 const SSL_CIPHER *c;
2690
2691 c = sk_SSL_CIPHER_value(sk, i);
2692 /* Skip disabled ciphers */
2693 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2694 continue;
2695
2696 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2697 break;
2698 }
2699 if (i == num)
2700 return 0;
2701 }
2702 }
2703
2704 /* Finally see if security callback allows it */
2705 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2706 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2707 sigalgstr[1] = lu->sigalg & 0xff;
2708 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2709 }
2710
2711 /*
2712 * Get a mask of disabled public key algorithms based on supported signature
2713 * algorithms. For example if no signature algorithm supports RSA then RSA is
2714 * disabled.
2715 */
2716
ssl_set_sig_mask(uint32_t * pmask_a,SSL_CONNECTION * s,int op)2717 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2718 {
2719 const uint16_t *sigalgs;
2720 size_t i, sigalgslen;
2721 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2722 /*
2723 * Go through all signature algorithms seeing if we support any
2724 * in disabled_mask.
2725 */
2726 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2727 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2728 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2729 const SSL_CERT_LOOKUP *clu;
2730
2731 if (lu == NULL)
2732 continue;
2733
2734 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2735 SSL_CONNECTION_GET_CTX(s));
2736 if (clu == NULL)
2737 continue;
2738
2739 /* If algorithm is disabled see if we can enable it */
2740 if ((clu->amask & disabled_mask) != 0
2741 && tls12_sigalg_allowed(s, op, lu))
2742 disabled_mask &= ~clu->amask;
2743 }
2744 *pmask_a |= disabled_mask;
2745 }
2746
tls12_copy_sigalgs(SSL_CONNECTION * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)2747 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2748 const uint16_t *psig, size_t psiglen)
2749 {
2750 size_t i;
2751 int rv = 0;
2752
2753 for (i = 0; i < psiglen; i++, psig++) {
2754 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2755
2756 if (lu == NULL
2757 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2758 continue;
2759 if (!WPACKET_put_bytes_u16(pkt, *psig))
2760 return 0;
2761 /*
2762 * If TLS 1.3 must have at least one valid TLS 1.3 message
2763 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2764 */
2765 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2766 || (lu->sig != EVP_PKEY_RSA
2767 && lu->hash != NID_sha1
2768 && lu->hash != NID_sha224)))
2769 rv = 1;
2770 }
2771 if (rv == 0)
2772 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2773 return rv;
2774 }
2775
2776 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL_CONNECTION * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)2777 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2778 const SIGALG_LOOKUP **shsig,
2779 const uint16_t *pref, size_t preflen,
2780 const uint16_t *allow, size_t allowlen)
2781 {
2782 const uint16_t *ptmp, *atmp;
2783 size_t i, j, nmatch = 0;
2784 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2785 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2786
2787 /* Skip disabled hashes or signature algorithms */
2788 if (lu == NULL
2789 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2790 continue;
2791 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2792 if (*ptmp == *atmp) {
2793 nmatch++;
2794 if (shsig)
2795 *shsig++ = lu;
2796 break;
2797 }
2798 }
2799 }
2800 return nmatch;
2801 }
2802
2803 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL_CONNECTION * s)2804 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2805 {
2806 const uint16_t *pref, *allow, *conf;
2807 size_t preflen, allowlen, conflen;
2808 size_t nmatch;
2809 const SIGALG_LOOKUP **salgs = NULL;
2810 CERT *c = s->cert;
2811 unsigned int is_suiteb = tls1_suiteb(s);
2812
2813 OPENSSL_free(s->shared_sigalgs);
2814 s->shared_sigalgs = NULL;
2815 s->shared_sigalgslen = 0;
2816 /* If client use client signature algorithms if not NULL */
2817 if (!s->server && c->client_sigalgs && !is_suiteb) {
2818 conf = c->client_sigalgs;
2819 conflen = c->client_sigalgslen;
2820 } else if (c->conf_sigalgs && !is_suiteb) {
2821 conf = c->conf_sigalgs;
2822 conflen = c->conf_sigalgslen;
2823 } else
2824 conflen = tls12_get_psigalgs(s, 0, &conf);
2825 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2826 pref = conf;
2827 preflen = conflen;
2828 allow = s->s3.tmp.peer_sigalgs;
2829 allowlen = s->s3.tmp.peer_sigalgslen;
2830 } else {
2831 allow = conf;
2832 allowlen = conflen;
2833 pref = s->s3.tmp.peer_sigalgs;
2834 preflen = s->s3.tmp.peer_sigalgslen;
2835 }
2836 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2837 if (nmatch) {
2838 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2839 return 0;
2840 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2841 } else {
2842 salgs = NULL;
2843 }
2844 s->shared_sigalgs = salgs;
2845 s->shared_sigalgslen = nmatch;
2846 return 1;
2847 }
2848
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)2849 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2850 {
2851 unsigned int stmp;
2852 size_t size, i;
2853 uint16_t *buf;
2854
2855 size = PACKET_remaining(pkt);
2856
2857 /* Invalid data length */
2858 if (size == 0 || (size & 1) != 0)
2859 return 0;
2860
2861 size >>= 1;
2862
2863 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2864 return 0;
2865 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2866 buf[i] = stmp;
2867
2868 if (i != size) {
2869 OPENSSL_free(buf);
2870 return 0;
2871 }
2872
2873 OPENSSL_free(*pdest);
2874 *pdest = buf;
2875 *pdestlen = size;
2876
2877 return 1;
2878 }
2879
tls1_save_sigalgs(SSL_CONNECTION * s,PACKET * pkt,int cert)2880 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2881 {
2882 /* Extension ignored for inappropriate versions */
2883 if (!SSL_USE_SIGALGS(s))
2884 return 1;
2885 /* Should never happen */
2886 if (s->cert == NULL)
2887 return 0;
2888
2889 if (cert)
2890 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2891 &s->s3.tmp.peer_cert_sigalgslen);
2892 else
2893 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2894 &s->s3.tmp.peer_sigalgslen);
2895
2896 }
2897
2898 /* Set preferred digest for each key type */
2899
tls1_process_sigalgs(SSL_CONNECTION * s)2900 int tls1_process_sigalgs(SSL_CONNECTION *s)
2901 {
2902 size_t i;
2903 uint32_t *pvalid = s->s3.tmp.valid_flags;
2904
2905 if (!tls1_set_shared_sigalgs(s))
2906 return 0;
2907
2908 for (i = 0; i < s->ssl_pkey_num; i++)
2909 pvalid[i] = 0;
2910
2911 for (i = 0; i < s->shared_sigalgslen; i++) {
2912 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2913 int idx = sigptr->sig_idx;
2914
2915 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2916 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2917 continue;
2918 /* If not disabled indicate we can explicitly sign */
2919 if (pvalid[idx] == 0
2920 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2921 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2922 }
2923 return 1;
2924 }
2925
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)2926 int SSL_get_sigalgs(SSL *s, int idx,
2927 int *psign, int *phash, int *psignhash,
2928 unsigned char *rsig, unsigned char *rhash)
2929 {
2930 uint16_t *psig;
2931 size_t numsigalgs;
2932 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2933
2934 if (sc == NULL)
2935 return 0;
2936
2937 psig = sc->s3.tmp.peer_sigalgs;
2938 numsigalgs = sc->s3.tmp.peer_sigalgslen;
2939
2940 if (psig == NULL || numsigalgs > INT_MAX)
2941 return 0;
2942 if (idx >= 0) {
2943 const SIGALG_LOOKUP *lu;
2944
2945 if (idx >= (int)numsigalgs)
2946 return 0;
2947 psig += idx;
2948 if (rhash != NULL)
2949 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2950 if (rsig != NULL)
2951 *rsig = (unsigned char)(*psig & 0xff);
2952 lu = tls1_lookup_sigalg(sc, *psig);
2953 if (psign != NULL)
2954 *psign = lu != NULL ? lu->sig : NID_undef;
2955 if (phash != NULL)
2956 *phash = lu != NULL ? lu->hash : NID_undef;
2957 if (psignhash != NULL)
2958 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2959 }
2960 return (int)numsigalgs;
2961 }
2962
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)2963 int SSL_get_shared_sigalgs(SSL *s, int idx,
2964 int *psign, int *phash, int *psignhash,
2965 unsigned char *rsig, unsigned char *rhash)
2966 {
2967 const SIGALG_LOOKUP *shsigalgs;
2968 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2969
2970 if (sc == NULL)
2971 return 0;
2972
2973 if (sc->shared_sigalgs == NULL
2974 || idx < 0
2975 || idx >= (int)sc->shared_sigalgslen
2976 || sc->shared_sigalgslen > INT_MAX)
2977 return 0;
2978 shsigalgs = sc->shared_sigalgs[idx];
2979 if (phash != NULL)
2980 *phash = shsigalgs->hash;
2981 if (psign != NULL)
2982 *psign = shsigalgs->sig;
2983 if (psignhash != NULL)
2984 *psignhash = shsigalgs->sigandhash;
2985 if (rsig != NULL)
2986 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2987 if (rhash != NULL)
2988 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2989 return (int)sc->shared_sigalgslen;
2990 }
2991
2992 /* Maximum possible number of unique entries in sigalgs array */
2993 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2994
2995 typedef struct {
2996 size_t sigalgcnt;
2997 /* TLSEXT_SIGALG_XXX values */
2998 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2999 SSL_CTX *ctx;
3000 } sig_cb_st;
3001
get_sigorhash(int * psig,int * phash,const char * str)3002 static void get_sigorhash(int *psig, int *phash, const char *str)
3003 {
3004 if (strcmp(str, "RSA") == 0) {
3005 *psig = EVP_PKEY_RSA;
3006 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
3007 *psig = EVP_PKEY_RSA_PSS;
3008 } else if (strcmp(str, "DSA") == 0) {
3009 *psig = EVP_PKEY_DSA;
3010 } else if (strcmp(str, "ECDSA") == 0) {
3011 *psig = EVP_PKEY_EC;
3012 } else {
3013 *phash = OBJ_sn2nid(str);
3014 if (*phash == NID_undef)
3015 *phash = OBJ_ln2nid(str);
3016 }
3017 }
3018 /* Maximum length of a signature algorithm string component */
3019 #define TLS_MAX_SIGSTRING_LEN 40
3020
sig_cb(const char * elem,int len,void * arg)3021 static int sig_cb(const char *elem, int len, void *arg)
3022 {
3023 sig_cb_st *sarg = arg;
3024 size_t i = 0;
3025 const SIGALG_LOOKUP *s;
3026 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3027 int sig_alg = NID_undef, hash_alg = NID_undef;
3028 int ignore_unknown = 0;
3029
3030 if (elem == NULL)
3031 return 0;
3032 if (elem[0] == '?') {
3033 ignore_unknown = 1;
3034 ++elem;
3035 --len;
3036 }
3037 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3038 return 0;
3039 if (len > (int)(sizeof(etmp) - 1))
3040 return 0;
3041 memcpy(etmp, elem, len);
3042 etmp[len] = 0;
3043 p = strchr(etmp, '+');
3044 /*
3045 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3046 * if there's no '+' in the provided name, look for the new-style combined
3047 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3048 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3049 * rsa_pss_rsae_* that differ only by public key OID; in such cases
3050 * we will pick the _rsae_ variant, by virtue of them appearing earlier
3051 * in the table.
3052 */
3053 if (p == NULL) {
3054 /* Load provider sigalgs */
3055 if (sarg->ctx != NULL) {
3056 /* Check if a provider supports the sigalg */
3057 for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
3058 if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
3059 && strcmp(etmp,
3060 sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
3061 sarg->sigalgs[sarg->sigalgcnt++] =
3062 sarg->ctx->sigalg_list[i].code_point;
3063 break;
3064 }
3065 }
3066 }
3067 /* Check the built-in sigalgs */
3068 if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
3069 for (i = 0, s = sigalg_lookup_tbl;
3070 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3071 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
3072 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3073 break;
3074 }
3075 }
3076 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3077 /* Ignore unknown algorithms if ignore_unknown */
3078 return ignore_unknown;
3079 }
3080 }
3081 } else {
3082 *p = 0;
3083 p++;
3084 if (*p == 0)
3085 return 0;
3086 get_sigorhash(&sig_alg, &hash_alg, etmp);
3087 get_sigorhash(&sig_alg, &hash_alg, p);
3088 if (sig_alg == NID_undef || hash_alg == NID_undef) {
3089 /* Ignore unknown algorithms if ignore_unknown */
3090 return ignore_unknown;
3091 }
3092 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
3093 i++, s++) {
3094 if (s->hash == hash_alg && s->sig == sig_alg) {
3095 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3096 break;
3097 }
3098 }
3099 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
3100 /* Ignore unknown algorithms if ignore_unknown */
3101 return ignore_unknown;
3102 }
3103 }
3104
3105 /* Ignore duplicates */
3106 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3107 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3108 sarg->sigalgcnt--;
3109 return 1;
3110 }
3111 }
3112 return 1;
3113 }
3114
3115 /*
3116 * Set supported signature algorithms based on a colon separated list of the
3117 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3118 */
tls1_set_sigalgs_list(SSL_CTX * ctx,CERT * c,const char * str,int client)3119 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3120 {
3121 sig_cb_st sig;
3122 sig.sigalgcnt = 0;
3123
3124 if (ctx != NULL && ssl_load_sigalgs(ctx)) {
3125 sig.ctx = ctx;
3126 }
3127 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3128 return 0;
3129 if (sig.sigalgcnt == 0) {
3130 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3131 "No valid signature algorithms in '%s'", str);
3132 return 0;
3133 }
3134 if (c == NULL)
3135 return 1;
3136 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3137 }
3138
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)3139 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3140 int client)
3141 {
3142 uint16_t *sigalgs;
3143
3144 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3145 return 0;
3146 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3147
3148 if (client) {
3149 OPENSSL_free(c->client_sigalgs);
3150 c->client_sigalgs = sigalgs;
3151 c->client_sigalgslen = salglen;
3152 } else {
3153 OPENSSL_free(c->conf_sigalgs);
3154 c->conf_sigalgs = sigalgs;
3155 c->conf_sigalgslen = salglen;
3156 }
3157
3158 return 1;
3159 }
3160
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)3161 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3162 {
3163 uint16_t *sigalgs, *sptr;
3164 size_t i;
3165
3166 if (salglen & 1)
3167 return 0;
3168 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3169 return 0;
3170 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3171 size_t j;
3172 const SIGALG_LOOKUP *curr;
3173 int md_id = *psig_nids++;
3174 int sig_id = *psig_nids++;
3175
3176 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3177 j++, curr++) {
3178 if (curr->hash == md_id && curr->sig == sig_id) {
3179 *sptr++ = curr->sigalg;
3180 break;
3181 }
3182 }
3183
3184 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3185 goto err;
3186 }
3187
3188 if (client) {
3189 OPENSSL_free(c->client_sigalgs);
3190 c->client_sigalgs = sigalgs;
3191 c->client_sigalgslen = salglen / 2;
3192 } else {
3193 OPENSSL_free(c->conf_sigalgs);
3194 c->conf_sigalgs = sigalgs;
3195 c->conf_sigalgslen = salglen / 2;
3196 }
3197
3198 return 1;
3199
3200 err:
3201 OPENSSL_free(sigalgs);
3202 return 0;
3203 }
3204
tls1_check_sig_alg(SSL_CONNECTION * s,X509 * x,int default_nid)3205 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3206 {
3207 int sig_nid, use_pc_sigalgs = 0;
3208 size_t i;
3209 const SIGALG_LOOKUP *sigalg;
3210 size_t sigalgslen;
3211
3212 if (default_nid == -1)
3213 return 1;
3214 sig_nid = X509_get_signature_nid(x);
3215 if (default_nid)
3216 return sig_nid == default_nid ? 1 : 0;
3217
3218 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3219 /*
3220 * If we're in TLSv1.3 then we only get here if we're checking the
3221 * chain. If the peer has specified peer_cert_sigalgs then we use them
3222 * otherwise we default to normal sigalgs.
3223 */
3224 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3225 use_pc_sigalgs = 1;
3226 } else {
3227 sigalgslen = s->shared_sigalgslen;
3228 }
3229 for (i = 0; i < sigalgslen; i++) {
3230 sigalg = use_pc_sigalgs
3231 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3232 : s->shared_sigalgs[i];
3233 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3234 return 1;
3235 }
3236 return 0;
3237 }
3238
3239 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)3240 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3241 {
3242 const X509_NAME *nm;
3243 int i;
3244 nm = X509_get_issuer_name(x);
3245 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3246 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3247 return 1;
3248 }
3249 return 0;
3250 }
3251
3252 /*
3253 * Check certificate chain is consistent with TLS extensions and is usable by
3254 * server. This servers two purposes: it allows users to check chains before
3255 * passing them to the server and it allows the server to check chains before
3256 * attempting to use them.
3257 */
3258
3259 /* Flags which need to be set for a certificate when strict mode not set */
3260
3261 #define CERT_PKEY_VALID_FLAGS \
3262 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3263 /* Strict mode flags */
3264 #define CERT_PKEY_STRICT_FLAGS \
3265 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3266 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3267
tls1_check_chain(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)3268 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3269 STACK_OF(X509) *chain, int idx)
3270 {
3271 int i;
3272 int rv = 0;
3273 int check_flags = 0, strict_mode;
3274 CERT_PKEY *cpk = NULL;
3275 CERT *c = s->cert;
3276 uint32_t *pvalid;
3277 unsigned int suiteb_flags = tls1_suiteb(s);
3278
3279 /*
3280 * Meaning of idx:
3281 * idx == -1 means SSL_check_chain() invocation
3282 * idx == -2 means checking client certificate chains
3283 * idx >= 0 means checking SSL_PKEY index
3284 *
3285 * For RPK, where there may be no cert, we ignore -1
3286 */
3287 if (idx != -1) {
3288 if (idx == -2) {
3289 cpk = c->key;
3290 idx = (int)(cpk - c->pkeys);
3291 } else
3292 cpk = c->pkeys + idx;
3293 pvalid = s->s3.tmp.valid_flags + idx;
3294 x = cpk->x509;
3295 pk = cpk->privatekey;
3296 chain = cpk->chain;
3297 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3298 if (tls12_rpk_and_privkey(s, idx)) {
3299 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3300 return 0;
3301 *pvalid = rv = CERT_PKEY_RPK;
3302 return rv;
3303 }
3304 /* If no cert or key, forget it */
3305 if (x == NULL || pk == NULL)
3306 goto end;
3307 } else {
3308 size_t certidx;
3309
3310 if (x == NULL || pk == NULL)
3311 return 0;
3312
3313 if (ssl_cert_lookup_by_pkey(pk, &certidx,
3314 SSL_CONNECTION_GET_CTX(s)) == NULL)
3315 return 0;
3316 idx = certidx;
3317 pvalid = s->s3.tmp.valid_flags + idx;
3318
3319 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3320 check_flags = CERT_PKEY_STRICT_FLAGS;
3321 else
3322 check_flags = CERT_PKEY_VALID_FLAGS;
3323 strict_mode = 1;
3324 }
3325
3326 if (suiteb_flags) {
3327 int ok;
3328 if (check_flags)
3329 check_flags |= CERT_PKEY_SUITEB;
3330 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3331 if (ok == X509_V_OK)
3332 rv |= CERT_PKEY_SUITEB;
3333 else if (!check_flags)
3334 goto end;
3335 }
3336
3337 /*
3338 * Check all signature algorithms are consistent with signature
3339 * algorithms extension if TLS 1.2 or later and strict mode.
3340 */
3341 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3342 && strict_mode) {
3343 int default_nid;
3344 int rsign = 0;
3345
3346 if (s->s3.tmp.peer_cert_sigalgs != NULL
3347 || s->s3.tmp.peer_sigalgs != NULL) {
3348 default_nid = 0;
3349 /* If no sigalgs extension use defaults from RFC5246 */
3350 } else {
3351 switch (idx) {
3352 case SSL_PKEY_RSA:
3353 rsign = EVP_PKEY_RSA;
3354 default_nid = NID_sha1WithRSAEncryption;
3355 break;
3356
3357 case SSL_PKEY_DSA_SIGN:
3358 rsign = EVP_PKEY_DSA;
3359 default_nid = NID_dsaWithSHA1;
3360 break;
3361
3362 case SSL_PKEY_ECC:
3363 rsign = EVP_PKEY_EC;
3364 default_nid = NID_ecdsa_with_SHA1;
3365 break;
3366
3367 case SSL_PKEY_GOST01:
3368 rsign = NID_id_GostR3410_2001;
3369 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3370 break;
3371
3372 case SSL_PKEY_GOST12_256:
3373 rsign = NID_id_GostR3410_2012_256;
3374 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3375 break;
3376
3377 case SSL_PKEY_GOST12_512:
3378 rsign = NID_id_GostR3410_2012_512;
3379 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3380 break;
3381
3382 default:
3383 default_nid = -1;
3384 break;
3385 }
3386 }
3387 /*
3388 * If peer sent no signature algorithms extension and we have set
3389 * preferred signature algorithms check we support sha1.
3390 */
3391 if (default_nid > 0 && c->conf_sigalgs) {
3392 size_t j;
3393 const uint16_t *p = c->conf_sigalgs;
3394 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3395 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3396
3397 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3398 break;
3399 }
3400 if (j == c->conf_sigalgslen) {
3401 if (check_flags)
3402 goto skip_sigs;
3403 else
3404 goto end;
3405 }
3406 }
3407 /* Check signature algorithm of each cert in chain */
3408 if (SSL_CONNECTION_IS_TLS13(s)) {
3409 /*
3410 * We only get here if the application has called SSL_check_chain(),
3411 * so check_flags is always set.
3412 */
3413 if (find_sig_alg(s, x, pk) != NULL)
3414 rv |= CERT_PKEY_EE_SIGNATURE;
3415 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3416 if (!check_flags)
3417 goto end;
3418 } else
3419 rv |= CERT_PKEY_EE_SIGNATURE;
3420 rv |= CERT_PKEY_CA_SIGNATURE;
3421 for (i = 0; i < sk_X509_num(chain); i++) {
3422 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3423 if (check_flags) {
3424 rv &= ~CERT_PKEY_CA_SIGNATURE;
3425 break;
3426 } else
3427 goto end;
3428 }
3429 }
3430 }
3431 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3432 else if (check_flags)
3433 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3434 skip_sigs:
3435 /* Check cert parameters are consistent */
3436 if (tls1_check_cert_param(s, x, 1))
3437 rv |= CERT_PKEY_EE_PARAM;
3438 else if (!check_flags)
3439 goto end;
3440 if (!s->server)
3441 rv |= CERT_PKEY_CA_PARAM;
3442 /* In strict mode check rest of chain too */
3443 else if (strict_mode) {
3444 rv |= CERT_PKEY_CA_PARAM;
3445 for (i = 0; i < sk_X509_num(chain); i++) {
3446 X509 *ca = sk_X509_value(chain, i);
3447 if (!tls1_check_cert_param(s, ca, 0)) {
3448 if (check_flags) {
3449 rv &= ~CERT_PKEY_CA_PARAM;
3450 break;
3451 } else
3452 goto end;
3453 }
3454 }
3455 }
3456 if (!s->server && strict_mode) {
3457 STACK_OF(X509_NAME) *ca_dn;
3458 int check_type = 0;
3459
3460 if (EVP_PKEY_is_a(pk, "RSA"))
3461 check_type = TLS_CT_RSA_SIGN;
3462 else if (EVP_PKEY_is_a(pk, "DSA"))
3463 check_type = TLS_CT_DSS_SIGN;
3464 else if (EVP_PKEY_is_a(pk, "EC"))
3465 check_type = TLS_CT_ECDSA_SIGN;
3466
3467 if (check_type) {
3468 const uint8_t *ctypes = s->s3.tmp.ctype;
3469 size_t j;
3470
3471 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3472 if (*ctypes == check_type) {
3473 rv |= CERT_PKEY_CERT_TYPE;
3474 break;
3475 }
3476 }
3477 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3478 goto end;
3479 } else {
3480 rv |= CERT_PKEY_CERT_TYPE;
3481 }
3482
3483 ca_dn = s->s3.tmp.peer_ca_names;
3484
3485 if (ca_dn == NULL
3486 || sk_X509_NAME_num(ca_dn) == 0
3487 || ssl_check_ca_name(ca_dn, x))
3488 rv |= CERT_PKEY_ISSUER_NAME;
3489 else
3490 for (i = 0; i < sk_X509_num(chain); i++) {
3491 X509 *xtmp = sk_X509_value(chain, i);
3492
3493 if (ssl_check_ca_name(ca_dn, xtmp)) {
3494 rv |= CERT_PKEY_ISSUER_NAME;
3495 break;
3496 }
3497 }
3498
3499 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3500 goto end;
3501 } else
3502 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3503
3504 if (!check_flags || (rv & check_flags) == check_flags)
3505 rv |= CERT_PKEY_VALID;
3506
3507 end:
3508
3509 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3510 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3511 else
3512 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3513
3514 /*
3515 * When checking a CERT_PKEY structure all flags are irrelevant if the
3516 * chain is invalid.
3517 */
3518 if (!check_flags) {
3519 if (rv & CERT_PKEY_VALID) {
3520 *pvalid = rv;
3521 } else {
3522 /* Preserve sign and explicit sign flag, clear rest */
3523 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3524 return 0;
3525 }
3526 }
3527 return rv;
3528 }
3529
3530 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL_CONNECTION * s)3531 void tls1_set_cert_validity(SSL_CONNECTION *s)
3532 {
3533 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3534 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3535 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3536 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3537 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3538 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3539 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3540 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3541 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3542 }
3543
3544 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)3545 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3546 {
3547 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3548
3549 if (sc == NULL)
3550 return 0;
3551
3552 return tls1_check_chain(sc, x, pk, chain, -1);
3553 }
3554
ssl_get_auto_dh(SSL_CONNECTION * s)3555 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3556 {
3557 EVP_PKEY *dhp = NULL;
3558 BIGNUM *p;
3559 int dh_secbits = 80, sec_level_bits;
3560 EVP_PKEY_CTX *pctx = NULL;
3561 OSSL_PARAM_BLD *tmpl = NULL;
3562 OSSL_PARAM *params = NULL;
3563 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3564
3565 if (s->cert->dh_tmp_auto != 2) {
3566 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3567 if (s->s3.tmp.new_cipher->strength_bits == 256)
3568 dh_secbits = 128;
3569 else
3570 dh_secbits = 80;
3571 } else {
3572 if (s->s3.tmp.cert == NULL)
3573 return NULL;
3574 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3575 }
3576 }
3577
3578 /* Do not pick a prime that is too weak for the current security level */
3579 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3580 NULL, NULL);
3581 if (dh_secbits < sec_level_bits)
3582 dh_secbits = sec_level_bits;
3583
3584 if (dh_secbits >= 192)
3585 p = BN_get_rfc3526_prime_8192(NULL);
3586 else if (dh_secbits >= 152)
3587 p = BN_get_rfc3526_prime_4096(NULL);
3588 else if (dh_secbits >= 128)
3589 p = BN_get_rfc3526_prime_3072(NULL);
3590 else if (dh_secbits >= 112)
3591 p = BN_get_rfc3526_prime_2048(NULL);
3592 else
3593 p = BN_get_rfc2409_prime_1024(NULL);
3594 if (p == NULL)
3595 goto err;
3596
3597 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3598 if (pctx == NULL
3599 || EVP_PKEY_fromdata_init(pctx) != 1)
3600 goto err;
3601
3602 tmpl = OSSL_PARAM_BLD_new();
3603 if (tmpl == NULL
3604 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3605 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3606 goto err;
3607
3608 params = OSSL_PARAM_BLD_to_param(tmpl);
3609 if (params == NULL
3610 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3611 goto err;
3612
3613 err:
3614 OSSL_PARAM_free(params);
3615 OSSL_PARAM_BLD_free(tmpl);
3616 EVP_PKEY_CTX_free(pctx);
3617 BN_free(p);
3618 return dhp;
3619 }
3620
ssl_security_cert_key(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)3621 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3622 int op)
3623 {
3624 int secbits = -1;
3625 EVP_PKEY *pkey = X509_get0_pubkey(x);
3626
3627 if (pkey) {
3628 /*
3629 * If no parameters this will return -1 and fail using the default
3630 * security callback for any non-zero security level. This will
3631 * reject keys which omit parameters but this only affects DSA and
3632 * omission of parameters is never (?) done in practice.
3633 */
3634 secbits = EVP_PKEY_get_security_bits(pkey);
3635 }
3636 if (s != NULL)
3637 return ssl_security(s, op, secbits, 0, x);
3638 else
3639 return ssl_ctx_security(ctx, op, secbits, 0, x);
3640 }
3641
ssl_security_cert_sig(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)3642 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3643 int op)
3644 {
3645 /* Lookup signature algorithm digest */
3646 int secbits, nid, pknid;
3647
3648 /* Don't check signature if self signed */
3649 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3650 return 1;
3651 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3652 secbits = -1;
3653 /* If digest NID not defined use signature NID */
3654 if (nid == NID_undef)
3655 nid = pknid;
3656 if (s != NULL)
3657 return ssl_security(s, op, secbits, nid, x);
3658 else
3659 return ssl_ctx_security(ctx, op, secbits, nid, x);
3660 }
3661
ssl_security_cert(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)3662 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3663 int is_ee)
3664 {
3665 if (vfy)
3666 vfy = SSL_SECOP_PEER;
3667 if (is_ee) {
3668 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3669 return SSL_R_EE_KEY_TOO_SMALL;
3670 } else {
3671 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3672 return SSL_R_CA_KEY_TOO_SMALL;
3673 }
3674 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3675 return SSL_R_CA_MD_TOO_WEAK;
3676 return 1;
3677 }
3678
3679 /*
3680 * Check security of a chain, if |sk| includes the end entity certificate then
3681 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3682 * one to the peer. Return values: 1 if ok otherwise error code to use
3683 */
3684
ssl_security_cert_chain(SSL_CONNECTION * s,STACK_OF (X509)* sk,X509 * x,int vfy)3685 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3686 X509 *x, int vfy)
3687 {
3688 int rv, start_idx, i;
3689
3690 if (x == NULL) {
3691 x = sk_X509_value(sk, 0);
3692 if (x == NULL)
3693 return ERR_R_INTERNAL_ERROR;
3694 start_idx = 1;
3695 } else
3696 start_idx = 0;
3697
3698 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3699 if (rv != 1)
3700 return rv;
3701
3702 for (i = start_idx; i < sk_X509_num(sk); i++) {
3703 x = sk_X509_value(sk, i);
3704 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3705 if (rv != 1)
3706 return rv;
3707 }
3708 return 1;
3709 }
3710
3711 /*
3712 * For TLS 1.2 servers check if we have a certificate which can be used
3713 * with the signature algorithm "lu" and return index of certificate.
3714 */
3715
tls12_get_cert_sigalg_idx(const SSL_CONNECTION * s,const SIGALG_LOOKUP * lu)3716 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3717 const SIGALG_LOOKUP *lu)
3718 {
3719 int sig_idx = lu->sig_idx;
3720 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3721 SSL_CONNECTION_GET_CTX(s));
3722
3723 /* If not recognised or not supported by cipher mask it is not suitable */
3724 if (clu == NULL
3725 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3726 || (clu->nid == EVP_PKEY_RSA_PSS
3727 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3728 return -1;
3729
3730 /* If doing RPK, the CERT_PKEY won't be "valid" */
3731 if (tls12_rpk_and_privkey(s, sig_idx))
3732 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3733
3734 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3735 }
3736
3737 /*
3738 * Checks the given cert against signature_algorithm_cert restrictions sent by
3739 * the peer (if any) as well as whether the hash from the sigalg is usable with
3740 * the key.
3741 * Returns true if the cert is usable and false otherwise.
3742 */
check_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)3743 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3744 X509 *x, EVP_PKEY *pkey)
3745 {
3746 const SIGALG_LOOKUP *lu;
3747 int mdnid, pknid, supported;
3748 size_t i;
3749 const char *mdname = NULL;
3750 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3751
3752 /*
3753 * If the given EVP_PKEY cannot support signing with this digest,
3754 * the answer is simply 'no'.
3755 */
3756 if (sig->hash != NID_undef)
3757 mdname = OBJ_nid2sn(sig->hash);
3758 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3759 mdname,
3760 sctx->propq);
3761 if (supported <= 0)
3762 return 0;
3763
3764 /*
3765 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3766 * on the sigalg with which the certificate was signed (by its issuer).
3767 */
3768 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3769 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3770 return 0;
3771 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3772 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3773 if (lu == NULL)
3774 continue;
3775
3776 /*
3777 * This does not differentiate between the
3778 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3779 * have a chain here that lets us look at the key OID in the
3780 * signing certificate.
3781 */
3782 if (mdnid == lu->hash && pknid == lu->sig)
3783 return 1;
3784 }
3785 return 0;
3786 }
3787
3788 /*
3789 * Without signat_algorithms_cert, any certificate for which we have
3790 * a viable public key is permitted.
3791 */
3792 return 1;
3793 }
3794
3795 /*
3796 * Returns true if |s| has a usable certificate configured for use
3797 * with signature scheme |sig|.
3798 * "Usable" includes a check for presence as well as applying
3799 * the signature_algorithm_cert restrictions sent by the peer (if any).
3800 * Returns false if no usable certificate is found.
3801 */
has_usable_cert(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,int idx)3802 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3803 {
3804 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3805 if (idx == -1)
3806 idx = sig->sig_idx;
3807 if (!ssl_has_cert(s, idx))
3808 return 0;
3809
3810 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3811 s->cert->pkeys[idx].privatekey);
3812 }
3813
3814 /*
3815 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3816 * specified signature scheme |sig|, or false otherwise.
3817 */
is_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)3818 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3819 EVP_PKEY *pkey)
3820 {
3821 size_t idx;
3822
3823 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3824 return 0;
3825
3826 /* Check the key is consistent with the sig alg */
3827 if ((int)idx != sig->sig_idx)
3828 return 0;
3829
3830 return check_cert_usable(s, sig, x, pkey);
3831 }
3832
3833 /*
3834 * Find a signature scheme that works with the supplied certificate |x| and key
3835 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3836 * available certs/keys to find one that works.
3837 */
find_sig_alg(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pkey)3838 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3839 EVP_PKEY *pkey)
3840 {
3841 const SIGALG_LOOKUP *lu = NULL;
3842 size_t i;
3843 int curve = -1;
3844 EVP_PKEY *tmppkey;
3845 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3846
3847 /* Look for a shared sigalgs matching possible certificates */
3848 for (i = 0; i < s->shared_sigalgslen; i++) {
3849 lu = s->shared_sigalgs[i];
3850
3851 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3852 if (lu->hash == NID_sha1
3853 || lu->hash == NID_sha224
3854 || lu->sig == EVP_PKEY_DSA
3855 || lu->sig == EVP_PKEY_RSA)
3856 continue;
3857 /* Check that we have a cert, and signature_algorithms_cert */
3858 if (!tls1_lookup_md(sctx, lu, NULL))
3859 continue;
3860 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3861 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3862 continue;
3863
3864 tmppkey = (pkey != NULL) ? pkey
3865 : s->cert->pkeys[lu->sig_idx].privatekey;
3866
3867 if (lu->sig == EVP_PKEY_EC) {
3868 if (curve == -1)
3869 curve = ssl_get_EC_curve_nid(tmppkey);
3870 if (lu->curve != NID_undef && curve != lu->curve)
3871 continue;
3872 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3873 /* validate that key is large enough for the signature algorithm */
3874 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3875 continue;
3876 }
3877 break;
3878 }
3879
3880 if (i == s->shared_sigalgslen)
3881 return NULL;
3882
3883 return lu;
3884 }
3885
3886 /*
3887 * Choose an appropriate signature algorithm based on available certificates
3888 * Sets chosen certificate and signature algorithm.
3889 *
3890 * For servers if we fail to find a required certificate it is a fatal error,
3891 * an appropriate error code is set and a TLS alert is sent.
3892 *
3893 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3894 * a fatal error: we will either try another certificate or not present one
3895 * to the server. In this case no error is set.
3896 */
tls_choose_sigalg(SSL_CONNECTION * s,int fatalerrs)3897 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3898 {
3899 const SIGALG_LOOKUP *lu = NULL;
3900 int sig_idx = -1;
3901
3902 s->s3.tmp.cert = NULL;
3903 s->s3.tmp.sigalg = NULL;
3904
3905 if (SSL_CONNECTION_IS_TLS13(s)) {
3906 lu = find_sig_alg(s, NULL, NULL);
3907 if (lu == NULL) {
3908 if (!fatalerrs)
3909 return 1;
3910 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3911 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3912 return 0;
3913 }
3914 } else {
3915 /* If ciphersuite doesn't require a cert nothing to do */
3916 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3917 return 1;
3918 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3919 return 1;
3920
3921 if (SSL_USE_SIGALGS(s)) {
3922 size_t i;
3923 if (s->s3.tmp.peer_sigalgs != NULL) {
3924 int curve = -1;
3925 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3926
3927 /* For Suite B need to match signature algorithm to curve */
3928 if (tls1_suiteb(s))
3929 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3930 .privatekey);
3931
3932 /*
3933 * Find highest preference signature algorithm matching
3934 * cert type
3935 */
3936 for (i = 0; i < s->shared_sigalgslen; i++) {
3937 lu = s->shared_sigalgs[i];
3938
3939 if (s->server) {
3940 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3941 continue;
3942 } else {
3943 int cc_idx = s->cert->key - s->cert->pkeys;
3944
3945 sig_idx = lu->sig_idx;
3946 if (cc_idx != sig_idx)
3947 continue;
3948 }
3949 /* Check that we have a cert, and sig_algs_cert */
3950 if (!has_usable_cert(s, lu, sig_idx))
3951 continue;
3952 if (lu->sig == EVP_PKEY_RSA_PSS) {
3953 /* validate that key is large enough for the signature algorithm */
3954 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3955
3956 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3957 continue;
3958 }
3959 if (curve == -1 || lu->curve == curve)
3960 break;
3961 }
3962 #ifndef OPENSSL_NO_GOST
3963 /*
3964 * Some Windows-based implementations do not send GOST algorithms indication
3965 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3966 * we have to assume GOST support.
3967 */
3968 if (i == s->shared_sigalgslen
3969 && (s->s3.tmp.new_cipher->algorithm_auth
3970 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3971 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3972 if (!fatalerrs)
3973 return 1;
3974 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3975 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3976 return 0;
3977 } else {
3978 i = 0;
3979 sig_idx = lu->sig_idx;
3980 }
3981 }
3982 #endif
3983 if (i == s->shared_sigalgslen) {
3984 if (!fatalerrs)
3985 return 1;
3986 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3987 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3988 return 0;
3989 }
3990 } else {
3991 /*
3992 * If we have no sigalg use defaults
3993 */
3994 const uint16_t *sent_sigs;
3995 size_t sent_sigslen;
3996
3997 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3998 if (!fatalerrs)
3999 return 1;
4000 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4001 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4002 return 0;
4003 }
4004
4005 /* Check signature matches a type we sent */
4006 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4007 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4008 if (lu->sigalg == *sent_sigs
4009 && has_usable_cert(s, lu, lu->sig_idx))
4010 break;
4011 }
4012 if (i == sent_sigslen) {
4013 if (!fatalerrs)
4014 return 1;
4015 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4016 SSL_R_WRONG_SIGNATURE_TYPE);
4017 return 0;
4018 }
4019 }
4020 } else {
4021 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4022 if (!fatalerrs)
4023 return 1;
4024 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4025 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4026 return 0;
4027 }
4028 }
4029 }
4030 if (sig_idx == -1)
4031 sig_idx = lu->sig_idx;
4032 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4033 s->cert->key = s->s3.tmp.cert;
4034 s->s3.tmp.sigalg = lu;
4035 return 1;
4036 }
4037
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)4038 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4039 {
4040 if (mode != TLSEXT_max_fragment_length_DISABLED
4041 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4042 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4043 return 0;
4044 }
4045
4046 ctx->ext.max_fragment_len_mode = mode;
4047 return 1;
4048 }
4049
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)4050 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4051 {
4052 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4053
4054 if (sc == NULL
4055 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4056 return 0;
4057
4058 if (mode != TLSEXT_max_fragment_length_DISABLED
4059 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4060 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4061 return 0;
4062 }
4063
4064 sc->ext.max_fragment_len_mode = mode;
4065 return 1;
4066 }
4067
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)4068 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4069 {
4070 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4071 return TLSEXT_max_fragment_length_DISABLED;
4072 return session->ext.max_fragment_len_mode;
4073 }
4074
4075 /*
4076 * Helper functions for HMAC access with legacy support included.
4077 */
ssl_hmac_new(const SSL_CTX * ctx)4078 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4079 {
4080 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4081 EVP_MAC *mac = NULL;
4082
4083 if (ret == NULL)
4084 return NULL;
4085 #ifndef OPENSSL_NO_DEPRECATED_3_0
4086 if (ctx->ext.ticket_key_evp_cb == NULL
4087 && ctx->ext.ticket_key_cb != NULL) {
4088 if (!ssl_hmac_old_new(ret))
4089 goto err;
4090 return ret;
4091 }
4092 #endif
4093 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4094 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4095 goto err;
4096 EVP_MAC_free(mac);
4097 return ret;
4098 err:
4099 EVP_MAC_CTX_free(ret->ctx);
4100 EVP_MAC_free(mac);
4101 OPENSSL_free(ret);
4102 return NULL;
4103 }
4104
ssl_hmac_free(SSL_HMAC * ctx)4105 void ssl_hmac_free(SSL_HMAC *ctx)
4106 {
4107 if (ctx != NULL) {
4108 EVP_MAC_CTX_free(ctx->ctx);
4109 #ifndef OPENSSL_NO_DEPRECATED_3_0
4110 ssl_hmac_old_free(ctx);
4111 #endif
4112 OPENSSL_free(ctx);
4113 }
4114 }
4115
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)4116 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4117 {
4118 return ctx->ctx;
4119 }
4120
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)4121 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4122 {
4123 OSSL_PARAM params[2], *p = params;
4124
4125 if (ctx->ctx != NULL) {
4126 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4127 *p = OSSL_PARAM_construct_end();
4128 if (EVP_MAC_init(ctx->ctx, key, len, params))
4129 return 1;
4130 }
4131 #ifndef OPENSSL_NO_DEPRECATED_3_0
4132 if (ctx->old_ctx != NULL)
4133 return ssl_hmac_old_init(ctx, key, len, md);
4134 #endif
4135 return 0;
4136 }
4137
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)4138 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4139 {
4140 if (ctx->ctx != NULL)
4141 return EVP_MAC_update(ctx->ctx, data, len);
4142 #ifndef OPENSSL_NO_DEPRECATED_3_0
4143 if (ctx->old_ctx != NULL)
4144 return ssl_hmac_old_update(ctx, data, len);
4145 #endif
4146 return 0;
4147 }
4148
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)4149 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4150 size_t max_size)
4151 {
4152 if (ctx->ctx != NULL)
4153 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4154 #ifndef OPENSSL_NO_DEPRECATED_3_0
4155 if (ctx->old_ctx != NULL)
4156 return ssl_hmac_old_final(ctx, md, len);
4157 #endif
4158 return 0;
4159 }
4160
ssl_hmac_size(const SSL_HMAC * ctx)4161 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4162 {
4163 if (ctx->ctx != NULL)
4164 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4165 #ifndef OPENSSL_NO_DEPRECATED_3_0
4166 if (ctx->old_ctx != NULL)
4167 return ssl_hmac_old_size(ctx);
4168 #endif
4169 return 0;
4170 }
4171
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)4172 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4173 {
4174 char gname[OSSL_MAX_NAME_SIZE];
4175
4176 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4177 return OBJ_txt2nid(gname);
4178
4179 return NID_undef;
4180 }
4181
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)4182 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4183 const unsigned char *enckey,
4184 size_t enckeylen)
4185 {
4186 if (EVP_PKEY_is_a(pkey, "DH")) {
4187 int bits = EVP_PKEY_get_bits(pkey);
4188
4189 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4190 /* the encoded key must be padded to the length of the p */
4191 return 0;
4192 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4193 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4194 || enckey[0] != 0x04)
4195 return 0;
4196 }
4197
4198 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4199 }
4200