xref: /openssl/doc/man7/provider-base.pod (revision 37aa1143)
1=pod
2
3=head1 NAME
4
5provider-base
6- The basic OpenSSL library E<lt>-E<gt> provider functions
7
8=head1 SYNOPSIS
9
10 #include <openssl/core_dispatch.h>
11
12 /*
13  * None of these are actual functions, but are displayed like this for
14  * the function signatures for functions that are offered as function
15  * pointers in OSSL_DISPATCH arrays.
16  */
17
18 /* Functions offered by libcrypto to the providers */
19 const OSSL_ITEM *core_gettable_params(const OSSL_CORE_HANDLE *handle);
20 int core_get_params(const OSSL_CORE_HANDLE *handle, OSSL_PARAM params[]);
21
22 typedef void (*OSSL_thread_stop_handler_fn)(void *arg);
23 int core_thread_start(const OSSL_CORE_HANDLE *handle,
24                       OSSL_thread_stop_handler_fn handfn,
25                       void *arg);
26
27 OPENSSL_CORE_CTX *core_get_libctx(const OSSL_CORE_HANDLE *handle);
28 void core_new_error(const OSSL_CORE_HANDLE *handle);
29 void core_set_error_debug(const OSSL_CORE_HANDLE *handle,
30                           const char *file, int line, const char *func);
31 void core_vset_error(const OSSL_CORE_HANDLE *handle,
32                      uint32_t reason, const char *fmt, va_list args);
33
34 int core_obj_add_sigid(const OSSL_CORE_HANDLE *prov, const char  *sign_name,
35                        const char *digest_name, const char *pkey_name);
36 int core_obj_create(const OSSL_CORE_HANDLE *handle, const char *oid,
37                     const char *sn, const char *ln);
38
39 /*
40  * Some OpenSSL functionality is directly offered to providers via
41  * dispatch
42  */
43 void *CRYPTO_malloc(size_t num, const char *file, int line);
44 void *CRYPTO_zalloc(size_t num, const char *file, int line);
45 void CRYPTO_free(void *ptr, const char *file, int line);
46 void CRYPTO_clear_free(void *ptr, size_t num,
47                        const char *file, int line);
48 void *CRYPTO_realloc(void *addr, size_t num,
49                      const char *file, int line);
50 void *CRYPTO_clear_realloc(void *addr, size_t old_num, size_t num,
51                            const char *file, int line);
52 void *CRYPTO_secure_malloc(size_t num, const char *file, int line);
53 void *CRYPTO_secure_zalloc(size_t num, const char *file, int line);
54 void CRYPTO_secure_free(void *ptr, const char *file, int line);
55 void CRYPTO_secure_clear_free(void *ptr, size_t num,
56                               const char *file, int line);
57 int CRYPTO_secure_allocated(const void *ptr);
58 void OPENSSL_cleanse(void *ptr, size_t len);
59
60 unsigned char *OPENSSL_hexstr2buf(const char *str, long *buflen);
61
62 OSSL_CORE_BIO *BIO_new_file(const char *filename, const char *mode);
63 OSSL_CORE_BIO *BIO_new_membuf(const void *buf, int len);
64 int BIO_read_ex(OSSL_CORE_BIO *bio, void *data, size_t data_len,
65                 size_t *bytes_read);
66 int BIO_write_ex(OSSL_CORE_BIO *bio, const void *data, size_t data_len,
67                  size_t *written);
68 int BIO_up_ref(OSSL_CORE_BIO *bio);
69 int BIO_free(OSSL_CORE_BIO *bio);
70 int BIO_vprintf(OSSL_CORE_BIO *bio, const char *format, va_list args);
71 int BIO_vsnprintf(char *buf, size_t n, const char *fmt, va_list args);
72
73 void OSSL_SELF_TEST_set_callback(OSSL_LIB_CTX *libctx, OSSL_CALLBACK *cb,
74                                  void *cbarg);
75
76 size_t get_entropy(const OSSL_CORE_HANDLE *handle,
77                    unsigned char **pout, int entropy,
78                    size_t min_len, size_t max_len);
79 size_t get_user_entropy(const OSSL_CORE_HANDLE *handle,
80                         unsigned char **pout, int entropy,
81                         size_t min_len, size_t max_len);
82 void cleanup_entropy(const OSSL_CORE_HANDLE *handle,
83                      unsigned char *buf, size_t len);
84 void cleanup_user_entropy(const OSSL_CORE_HANDLE *handle,
85                           unsigned char *buf, size_t len);
86 size_t get_nonce(const OSSL_CORE_HANDLE *handle,
87                  unsigned char **pout, size_t min_len, size_t max_len,
88                  const void *salt, size_t salt_len);
89 size_t get_user_nonce(const OSSL_CORE_HANDLE *handle,
90                       unsigned char **pout, size_t min_len, size_t max_len,
91                       const void *salt, size_t salt_len);
92 void cleanup_nonce(const OSSL_CORE_HANDLE *handle,
93                    unsigned char *buf, size_t len);
94 void cleanup_user_nonce(const OSSL_CORE_HANDLE *handle,
95                         unsigned char *buf, size_t len);
96
97 /* Functions for querying the providers in the application library context */
98 int provider_register_child_cb(const OSSL_CORE_HANDLE *handle,
99                     int (*create_cb)(const OSSL_CORE_HANDLE *provider,
100                                      void *cbdata),
101                     int (*remove_cb)(const OSSL_CORE_HANDLE *provider,
102                                      void *cbdata),
103                     int (*global_props_cb)(const char *props, void *cbdata),
104                     void *cbdata);
105 void provider_deregister_child_cb(const OSSL_CORE_HANDLE *handle);
106 const char *provider_name(const OSSL_CORE_HANDLE *prov);
107 void *provider_get0_provider_ctx(const OSSL_CORE_HANDLE *prov);
108 const OSSL_DISPATCH *provider_get0_dispatch(const OSSL_CORE_HANDLE *prov);
109 int provider_up_ref(const OSSL_CORE_HANDLE *prov, int activate);
110 int provider_free(const OSSL_CORE_HANDLE *prov, int deactivate);
111
112 /* Functions offered by the provider to libcrypto */
113 void provider_teardown(void *provctx);
114 const OSSL_ITEM *provider_gettable_params(void *provctx);
115 int provider_get_params(void *provctx, OSSL_PARAM params[]);
116 const OSSL_ALGORITHM *provider_query_operation(void *provctx,
117                                                int operation_id,
118                                                const int *no_store);
119 void provider_unquery_operation(void *provctx, int operation_id,
120                                 const OSSL_ALGORITHM *algs);
121 const OSSL_ITEM *provider_get_reason_strings(void *provctx);
122 int provider_get_capabilities(void *provctx, const char *capability,
123                               OSSL_CALLBACK *cb, void *arg);
124 int provider_self_test(void *provctx);
125
126=head1 DESCRIPTION
127
128All "functions" mentioned here are passed as function pointers between
129F<libcrypto> and the provider in L<OSSL_DISPATCH(3)> arrays, in the call
130of the provider initialization function.  See L<provider(7)/Provider>
131for a description of the initialization function. They are known as "upcalls".
132
133All these "functions" have a corresponding function type definition
134named B<OSSL_FUNC_{name}_fn>, and a helper function to retrieve the
135function pointer from a L<OSSL_DISPATCH(3)> element named
136B<OSSL_FUNC_{name}>.
137For example, the "function" core_gettable_params() has these:
138
139 typedef OSSL_PARAM *
140     (OSSL_FUNC_core_gettable_params_fn)(const OSSL_CORE_HANDLE *handle);
141 static ossl_inline OSSL_NAME_core_gettable_params_fn
142     OSSL_FUNC_core_gettable_params(const OSSL_DISPATCH *opf);
143
144L<OSSL_DISPATCH(3)> arrays are indexed by numbers that are provided as
145macros in L<openssl-core_dispatch.h(7)>, as follows:
146
147For I<in> (the L<OSSL_DISPATCH(3)> array passed from F<libcrypto> to the
148provider):
149
150 core_gettable_params           OSSL_FUNC_CORE_GETTABLE_PARAMS
151 core_get_params                OSSL_FUNC_CORE_GET_PARAMS
152 core_thread_start              OSSL_FUNC_CORE_THREAD_START
153 core_get_libctx                OSSL_FUNC_CORE_GET_LIBCTX
154 core_new_error                 OSSL_FUNC_CORE_NEW_ERROR
155 core_set_error_debug           OSSL_FUNC_CORE_SET_ERROR_DEBUG
156 core_vset_error                OSSL_FUNC_CORE_VSET_ERROR
157 core_obj_add_sigid             OSSL_FUNC_CORE_OBJ_ADD_SIGID
158 core_obj_create                OSSL_FUNC_CORE_OBJ_CREATE
159 CRYPTO_malloc                  OSSL_FUNC_CRYPTO_MALLOC
160 CRYPTO_zalloc                  OSSL_FUNC_CRYPTO_ZALLOC
161 CRYPTO_free                    OSSL_FUNC_CRYPTO_FREE
162 CRYPTO_clear_free              OSSL_FUNC_CRYPTO_CLEAR_FREE
163 CRYPTO_realloc                 OSSL_FUNC_CRYPTO_REALLOC
164 CRYPTO_clear_realloc           OSSL_FUNC_CRYPTO_CLEAR_REALLOC
165 CRYPTO_secure_malloc           OSSL_FUNC_CRYPTO_SECURE_MALLOC
166 CRYPTO_secure_zalloc           OSSL_FUNC_CRYPTO_SECURE_ZALLOC
167 CRYPTO_secure_free             OSSL_FUNC_CRYPTO_SECURE_FREE
168 CRYPTO_secure_clear_free       OSSL_FUNC_CRYPTO_SECURE_CLEAR_FREE
169 CRYPTO_secure_allocated        OSSL_FUNC_CRYPTO_SECURE_ALLOCATED
170 BIO_new_file                   OSSL_FUNC_BIO_NEW_FILE
171 BIO_new_mem_buf                OSSL_FUNC_BIO_NEW_MEMBUF
172 BIO_read_ex                    OSSL_FUNC_BIO_READ_EX
173 BIO_write_ex                   OSSL_FUNC_BIO_WRITE_EX
174 BIO_up_ref                     OSSL_FUNC_BIO_UP_REF
175 BIO_free                       OSSL_FUNC_BIO_FREE
176 BIO_vprintf                    OSSL_FUNC_BIO_VPRINTF
177 BIO_vsnprintf                  OSSL_FUNC_BIO_VSNPRINTF
178 BIO_puts                       OSSL_FUNC_BIO_PUTS
179 BIO_gets                       OSSL_FUNC_BIO_GETS
180 BIO_ctrl                       OSSL_FUNC_BIO_CTRL
181 OPENSSL_cleanse                OSSL_FUNC_OPENSSL_CLEANSE
182 OSSL_SELF_TEST_set_callback    OSSL_FUNC_SELF_TEST_CB
183 ossl_rand_get_entropy          OSSL_FUNC_GET_ENTROPY
184 ossl_rand_get_user_entropy     OSSL_FUNC_GET_USER_ENTROPY
185 ossl_rand_cleanup_entropy      OSSL_FUNC_CLEANUP_ENTROPY
186 ossl_rand_cleanup_user_entropy OSSL_FUNC_CLEANUP_USER_ENTROPY
187 ossl_rand_get_nonce            OSSL_FUNC_GET_NONCE
188 ossl_rand_get_user_nonce       OSSL_FUNC_GET_USER_NONCE
189 ossl_rand_cleanup_nonce        OSSL_FUNC_CLEANUP_NONCE
190 ossl_rand_cleanup_user_nonce   OSSL_FUNC_CLEANUP_USER_NONCE
191 provider_register_child_cb     OSSL_FUNC_PROVIDER_REGISTER_CHILD_CB
192 provider_deregister_child_cb   OSSL_FUNC_PROVIDER_DEREGISTER_CHILD_CB
193 provider_name                  OSSL_FUNC_PROVIDER_NAME
194 provider_get0_provider_ctx     OSSL_FUNC_PROVIDER_GET0_PROVIDER_CTX
195 provider_get0_dispatch         OSSL_FUNC_PROVIDER_GET0_DISPATCH
196 provider_up_ref                OSSL_FUNC_PROVIDER_UP_REF
197 provider_free                  OSSL_FUNC_PROVIDER_FREE
198
199For I<*out> (the L<OSSL_DISPATCH(3)> array passed from the provider to
200F<libcrypto>):
201
202 provider_teardown              OSSL_FUNC_PROVIDER_TEARDOWN
203 provider_gettable_params       OSSL_FUNC_PROVIDER_GETTABLE_PARAMS
204 provider_get_params            OSSL_FUNC_PROVIDER_GET_PARAMS
205 provider_query_operation       OSSL_FUNC_PROVIDER_QUERY_OPERATION
206 provider_unquery_operation     OSSL_FUNC_PROVIDER_UNQUERY_OPERATION
207 provider_get_reason_strings    OSSL_FUNC_PROVIDER_GET_REASON_STRINGS
208 provider_get_capabilities      OSSL_FUNC_PROVIDER_GET_CAPABILITIES
209 provider_self_test             OSSL_FUNC_PROVIDER_SELF_TEST
210
211=head2 Core functions
212
213core_gettable_params() returns a constant array of descriptor
214L<OSSL_PARAM(3)>, for parameters that core_get_params() can handle.
215
216core_get_params() retrieves parameters from the core for the given I<handle>.
217See L</Core parameters> below for a description of currently known
218parameters.
219
220The core_thread_start() function informs the core that the provider has stated
221an interest in the current thread. The core will inform the provider when the
222thread eventually stops. It must be passed the I<handle> for this provider, as
223well as a callback I<handfn> which will be called when the thread stops. The
224callback will subsequently be called, with the supplied argument I<arg>, from
225the thread that is stopping and gets passed the provider context as an
226argument. This may be useful to perform thread specific clean up such as
227freeing thread local variables.
228
229core_get_libctx() retrieves the core context in which the library
230object for the current provider is stored, accessible through the I<handle>.
231This function is useful only for built-in providers such as the default
232provider. Never cast this to OSSL_LIB_CTX in a provider that is not
233built-in as the OSSL_LIB_CTX of the library loading the provider might be
234a completely different structure than the OSSL_LIB_CTX of the library the
235provider is linked to. Use  L<OSSL_LIB_CTX_new_child(3)> instead to obtain
236a proper library context that is linked to the application library context.
237
238core_new_error(), core_set_error_debug() and core_vset_error() are
239building blocks for reporting an error back to the core, with
240reference to the I<handle>.
241
242=over 4
243
244=item core_new_error()
245
246allocates a new thread specific error record.
247
248This corresponds to the OpenSSL function L<ERR_new(3)>.
249
250=item core_set_error_debug()
251
252sets debugging information in the current thread specific error
253record.
254The debugging information includes the name of the file I<file>, the
255line I<line> and the function name I<func> where the error occurred.
256
257This corresponds to the OpenSSL function L<ERR_set_debug(3)>.
258
259=item core_vset_error()
260
261sets the I<reason> for the error, along with any addition data.
262The I<reason> is a number defined by the provider and used to index
263the reason strings table that's returned by
264provider_get_reason_strings().
265The additional data is given as a format string I<fmt> and a set of
266arguments I<args>, which are treated in the same manner as with
267BIO_vsnprintf().
268I<file> and I<line> may also be passed to indicate exactly where the
269error occurred or was reported.
270
271This corresponds to the OpenSSL function L<ERR_vset_error(3)>.
272
273=back
274
275The core_obj_create() function registers a new OID and associated short name
276I<sn> and long name I<ln> for the given I<handle>. It is similar to the OpenSSL
277function L<OBJ_create(3)> except that it returns 1 on success or 0 on failure.
278It will treat as success the case where the OID already exists (even if the
279short name I<sn> or long name I<ln> provided as arguments differ from those
280associated with the existing OID, in which case the new names are not
281associated).
282
283The core_obj_add_sigid() function registers a new composite signature algorithm
284(I<sign_name>) consisting of an underlying signature algorithm (I<pkey_name>)
285and digest algorithm (I<digest_name>) for the given I<handle>. It assumes that
286the OIDs for the composite signature algorithm as well as for the underlying
287signature and digest algorithms are either already known to OpenSSL or have been
288registered via a call to core_obj_create(). It corresponds to the OpenSSL
289function L<OBJ_add_sigid(3)>, except that the objects are identified by name
290rather than a numeric NID. Any name (OID, short name or long name) can be used
291to identify the object. It will treat as success the case where the composite
292signature algorithm already exists (even if registered against a different
293underlying signature or digest algorithm). For I<digest_name>, NULL or an
294empty string is permissible for signature algorithms that do not need a digest
295to operate correctly. The function returns 1 on success or 0 on failure.
296
297CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_free(), CRYPTO_clear_free(),
298CRYPTO_realloc(), CRYPTO_clear_realloc(), CRYPTO_secure_malloc(),
299CRYPTO_secure_zalloc(), CRYPTO_secure_free(),
300CRYPTO_secure_clear_free(), CRYPTO_secure_allocated(),
301BIO_new_file(), BIO_new_mem_buf(), BIO_read_ex(), BIO_write_ex(), BIO_up_ref(),
302BIO_free(), BIO_vprintf(), BIO_vsnprintf(), BIO_gets(), BIO_puts(),
303BIO_ctrl(), OPENSSL_cleanse() and
304OPENSSL_hexstr2buf() correspond exactly to the public functions with
305the same name.  As a matter of fact, the pointers in the L<OSSL_DISPATCH(3)>
306array are typically direct pointers to those public functions. Note that the BIO
307functions take an B<OSSL_CORE_BIO> type rather than the standard B<BIO>
308type. This is to ensure that a provider does not mix BIOs from the core
309with BIOs used on the provider side (the two are not compatible).
310OSSL_SELF_TEST_set_callback() is used to set an optional callback that can be
311passed into a provider. This may be ignored by a provider.
312
313get_entropy() retrieves seeding material from the operating system.
314The seeding material will have at least I<entropy> bytes of randomness and the
315output will have at least I<min_len> and at most I<max_len> bytes.
316The buffer address is stored in I<*pout> and the buffer length is
317returned to the caller.  On error, zero is returned.
318
319get_user_entropy() is the same as get_entropy() except that it will
320attempt to gather seed material via the seed source specified by a call to
321L<RAND_set_seed_source_type(3)> or via L<config(5)/Random Configuration>.
322
323cleanup_entropy() is used to clean up and free the buffer returned by
324get_entropy().  The entropy pointer returned by get_entropy()
325is passed in B<buf> and its length in B<len>.
326
327cleanup_user_entropy() is used to clean up and free the buffer returned by
328get_user_entropy().  The entropy pointer returned by get_user_entropy()
329is passed in B<buf> and its length in B<len>.
330
331get_nonce() retrieves a nonce using the passed I<salt> parameter
332of length I<salt_len> and operating system specific information.
333The I<salt> should contain uniquely identifying information and this is
334included, in an unspecified manner, as part of the output.
335The output is stored in a buffer which contains at least I<min_len> and at
336most I<max_len> bytes.  The buffer address is stored in I<*pout> and the
337buffer length returned to the caller.  On error, zero is returned.
338
339get_user_nonce() is the same as get_nonce() except that it will attempt
340to gather seed material via the seed source specified by a call to
341L<RAND_set_seed_source_type(3)> or via L<config(5)/Random Configuration>.
342
343cleanup_nonce() is used to clean up and free the buffer returned by
344get_nonce().  The nonce pointer returned by get_nonce()
345is passed in B<buf> and its length in B<len>.
346
347cleanup_user_nonce() is used to clean up and free the buffer returned by
348get_user_nonce().  The nonce pointer returned by get_user_nonce()
349is passed in B<buf> and its length in B<len>.
350
351provider_register_child_cb() registers callbacks for being informed about the
352loading and unloading of providers in the application's library context.
353I<handle> is this provider's handle and I<cbdata> is this provider's data
354that will be passed back to the callbacks. It returns 1 on success or 0
355otherwise. These callbacks may be called while holding locks in libcrypto. In
356order to avoid deadlocks the callback implementation must not be long running
357and must not call other OpenSSL API functions or upcalls.
358
359I<create_cb> is a callback that will be called when a new provider is loaded
360into the application's library context. It is also called for any providers that
361are already loaded at the point that this callback is registered. The callback
362is passed the handle being used for the new provider being loadded and this
363provider's data in I<cbdata>. It should return 1 on success or 0 on failure.
364
365I<remove_cb> is a callback that will be called when a new provider is unloaded
366from the application's library context. It is passed the handle being used for
367the provider being unloaded and this provider's data in I<cbdata>. It should
368return 1 on success or 0 on failure.
369
370I<global_props_cb> is a callback that will be called when the global properties
371from the parent library context are changed. It should return 1 on success
372or 0 on failure.
373
374provider_deregister_child_cb() unregisters callbacks previously registered via
375provider_register_child_cb(). If provider_register_child_cb() has been called
376then provider_deregister_child_cb() should be called at or before the point that
377this provider's teardown function is called.
378
379provider_name() returns a string giving the name of the provider identified by
380I<handle>.
381
382provider_get0_provider_ctx() returns the provider context that is associated
383with the provider identified by I<prov>.
384
385provider_get0_dispatch() gets the dispatch table registered by the provider
386identified by I<prov> when it initialised.
387
388provider_up_ref() increments the reference count on the provider I<prov>. If
389I<activate> is nonzero then the provider is also loaded if it is not already
390loaded. It returns 1 on success or 0 on failure.
391
392provider_free() decrements the reference count on the provider I<prov>. If
393I<deactivate> is nonzero then the provider is also unloaded if it is not
394already loaded. It returns 1 on success or 0 on failure.
395
396=head2 Provider functions
397
398provider_teardown() is called when a provider is shut down and removed
399from the core's provider store.
400It must free the passed I<provctx>.
401
402provider_gettable_params() should return a constant array of
403descriptor L<OSSL_PARAM(3)>, for parameters that provider_get_params()
404can handle.
405
406provider_get_params() should process the L<OSSL_PARAM(3)> array
407I<params>, setting the values of the parameters it understands.
408
409provider_query_operation() should return a constant L<OSSL_ALGORITHM(3)>
410that corresponds to the given I<operation_id>.
411It should indicate if the core may store a reference to this array by
412setting I<*no_store> to 0 (core may store a reference) or 1 (core may
413not store a reference).
414
415provider_unquery_operation() informs the provider that the result of a
416provider_query_operation() is no longer directly required and that the function
417pointers have been copied.  The I<operation_id> should match that passed to
418provider_query_operation() and I<algs> should be its return value.
419
420provider_get_reason_strings() should return a constant L<OSSL_ITEM(3)>
421array that provides reason strings for reason codes the provider may
422use when reporting errors using core_put_error().
423
424The provider_get_capabilities() function should call the callback I<cb> passing
425it a set of L<OSSL_PARAM(3)>s and the caller supplied argument I<arg>. The
426L<OSSL_PARAM(3)>s should provide details about the capability with the name given
427in the I<capability> argument relevant for the provider context I<provctx>. If a
428provider supports multiple capabilities with the given name then it may call the
429callback multiple times (one for each capability). Capabilities can be useful for
430describing the services that a provider can offer. For further details see the
431L</CAPABILITIES> section below. It should return 1 on success or 0 on error.
432
433The provider_self_test() function should perform known answer tests on a subset
434of the algorithms that it uses, and may also verify the integrity of the
435provider module. It should return 1 on success or 0 on error. It will return 1
436if this function is not used.
437
438None of these functions are mandatory, but a provider is fairly
439useless without at least provider_query_operation(), and
440provider_gettable_params() is fairly useless if not accompanied by
441provider_get_params().
442
443=head2 Provider parameters
444
445provider_get_params() can return the following provider parameters to the core:
446
447=over 4
448
449=item "name" (B<OSSL_PROV_PARAM_NAME>) <UTF8 ptr>
450
451This points to a string that should give a unique name for the provider.
452
453=item "version" (B<OSSL_PROV_PARAM_VERSION>) <UTF8 ptr>
454
455This points to a string that is a version number associated with this provider.
456OpenSSL in-built providers use OPENSSL_VERSION_STR, but this may be different
457for any third party provider. This string is for informational purposes only.
458
459=item "buildinfo" (B<OSSL_PROV_PARAM_BUILDINFO>) <UTF8 ptr>
460
461This points to a string that is a build information associated with this provider.
462OpenSSL in-built providers use OPENSSL_FULL_VERSION_STR, but this may be
463different for any third party provider.
464
465=item "status" (B<OSSL_PROV_PARAM_STATUS>) <unsigned integer>
466
467This returns 0 if the provider has entered an error state, otherwise it returns
4681.
469
470=back
471
472provider_gettable_params() should return the above parameters.
473
474
475=head2 Core parameters
476
477core_get_params() can retrieve the following core parameters for each provider:
478
479=over 4
480
481=item "openssl-version" (B<OSSL_PROV_PARAM_CORE_VERSION>) <UTF8 string ptr>
482
483This points to the OpenSSL libraries' full version string, i.e. the string
484expanded from the macro B<OPENSSL_VERSION_STR>.
485
486=item "provider-name" (B<OSSL_PROV_PARAM_CORE_PROV_NAME>) <UTF8 string ptr>
487
488This points to the OpenSSL libraries' idea of what the calling provider is named.
489
490=item "module-filename" (B<OSSL_PROV_PARAM_CORE_MODULE_FILENAME>) <UTF8 string ptr>
491
492This points to a string containing the full filename of the providers
493module file.
494
495=back
496
497Additionally, provider specific configuration parameters from the
498config file are available, in dotted name form.
499The dotted name form is a concatenation of section names and final
500config command name separated by periods.
501
502For example, let's say we have the following config example:
503
504 config_diagnostics = 1
505 openssl_conf = openssl_init
506
507 [openssl_init]
508 providers = providers_sect
509
510 [providers_sect]
511 foo = foo_sect
512
513 [foo_sect]
514 activate = 1
515 data1 = 2
516 data2 = str
517 more = foo_more
518
519 [foo_more]
520 data3 = foo,bar
521
522The provider will have these additional parameters available:
523
524=over 4
525
526=item "activate"
527
528pointing at the string "1"
529
530=item "data1"
531
532pointing at the string "2"
533
534=item "data2"
535
536pointing at the string "str"
537
538=item "more.data3"
539
540pointing at the string "foo,bar"
541
542=back
543
544For more information on handling parameters, see L<OSSL_PARAM(3)> as
545L<OSSL_PARAM_int(3)>.
546
547=head1 CAPABILITIES
548
549Capabilities describe some of the services that a provider can offer.
550Applications can query the capabilities to discover those services.
551
552=head3 "TLS-GROUP" Capability
553
554The "TLS-GROUP" capability can be queried by libssl to discover the list of
555TLS groups that a provider can support. Each group supported can be used for
556I<key exchange> (KEX) or I<key encapsulation method> (KEM) during a TLS
557handshake.
558TLS clients can advertise the list of TLS groups they support in the
559supported_groups extension, and TLS servers can select a group from the offered
560list that they also support. In this way a provider can add to the list of
561groups that libssl already supports with additional ones.
562
563Each TLS group that a provider supports should be described via the callback
564passed in through the provider_get_capabilities function. Each group should have
565the following details supplied (all are mandatory, except
566B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM>):
567
568=over 4
569
570=item "tls-group-name" (B<OSSL_CAPABILITY_TLS_GROUP_NAME>) <UTF8 string>
571
572The name of the group as given in the IANA TLS Supported Groups registry
573L<https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8>.
574
575=item "tls-group-name-internal" (B<OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL>) <UTF8 string>
576
577The name of the group as known by the provider. This could be the same as the
578"tls-group-name", but does not have to be.
579
580=item "tls-group-id" (B<OSSL_CAPABILITY_TLS_GROUP_ID>) <unsigned integer>
581
582The TLS group id value as given in the IANA TLS Supported Groups registry.
583
584It is possible to register the same group id from within different
585providers. Users should note that if no property query is specified, or
586more than one implementation matches the property query then it is
587unspecified which implementation for a particular group id will be used.
588
589=item "tls-group-alg" (B<OSSL_CAPABILITY_TLS_GROUP_ALG>) <UTF8 string>
590
591The name of a Key Management algorithm that the provider offers and that should
592be used with this group. Keys created should be able to support I<key exchange>
593or I<key encapsulation method> (KEM), as implied by the optional
594B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM> flag.
595The algorithm must support key and parameter generation as well as the
596key/parameter generation parameter, B<OSSL_PKEY_PARAM_GROUP_NAME>. The group
597name given via "tls-group-name-internal" above will be passed via
598B<OSSL_PKEY_PARAM_GROUP_NAME> when libssl wishes to generate keys/parameters.
599
600=item "tls-group-sec-bits" (B<OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS>) <unsigned integer>
601
602The number of bits of security offered by keys in this group. The number of bits
603should be comparable with the ones given in table 2 and 3 of the NIST SP800-57
604document.
605
606=item "tls-group-is-kem" (B<OSSL_CAPABILITY_TLS_GROUP_IS_KEM>) <unsigned integer>
607
608Boolean flag to describe if the group should be used in I<key exchange> (KEX)
609mode (0, default) or in I<key encapsulation method> (KEM) mode (1).
610
611This parameter is optional: if not specified, KEX mode is assumed as the default
612mode for the group.
613
614In KEX mode, in a typical Diffie-Hellman fashion, both sides execute I<keygen>
615then I<derive> against the peer public key. To operate in KEX mode, the group
616implementation must support the provider functions as described in
617L<provider-keyexch(7)>.
618
619In KEM mode, the client executes I<keygen> and sends its public key, the server
620executes I<encapsulate> using the client's public key and sends back the
621resulting I<ciphertext>, finally the client executes I<decapsulate> to retrieve
622the same I<shared secret> generated by the server's I<encapsulate>. To operate
623in KEM mode, the group implementation must support the provider functions as
624described in L<provider-kem(7)>.
625
626Both in KEX and KEM mode, the resulting I<shared secret> is then used according
627to the protocol specification.
628
629=item "tls-min-tls" (B<OSSL_CAPABILITY_TLS_GROUP_MIN_TLS>) <integer>
630
631=item "tls-max-tls" (B<OSSL_CAPABILITY_TLS_GROUP_MAX_TLS>) <integer>
632
633=item "tls-min-dtls" (B<OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS>) <integer>
634
635=item "tls-max-dtls" (B<OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS>) <integer>
636
637These parameters can be used to describe the minimum and maximum TLS and DTLS
638versions supported by the group. The values equate to the on-the-wire encoding
639of the various TLS versions. For example TLSv1.3 is 0x0304 (772 decimal), and
640TLSv1.2 is 0x0303 (771 decimal). A 0 indicates that there is no defined minimum
641or maximum. A -1 indicates that the group should not be used in that protocol.
642
643=back
644
645=head3 "TLS-SIGALG" Capability
646
647The "TLS-SIGALG" capability can be queried by libssl to discover the list of
648TLS signature algorithms that a provider can support. Each signature supported
649can be used for client- or server-authentication in addition to the built-in
650signature algorithms.
651TLS1.3 clients can advertise the list of TLS signature algorithms they support
652in the signature_algorithms extension, and TLS servers can select an algorithm
653from the offered list that they also support. In this way a provider can add
654to the list of signature algorithms that libssl already supports with
655additional ones.
656
657Each TLS signature algorithm that a provider supports should be described via
658the callback passed in through the provider_get_capabilities function. Each
659algorithm can have the following details supplied:
660
661=over 4
662
663=item "iana-name" (B<OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME>) <UTF8 string>
664
665The name of the signature algorithm as given in the IANA TLS Signature Scheme
666registry as "Description":
667L<https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme>.
668This value must be supplied.
669
670=item "iana-code-point" (B<OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT>) <unsigned integer>
671
672The TLS algorithm ID value as given in the IANA TLS SignatureScheme registry.
673This value must be supplied.
674
675It is possible to register the same code point from within different
676providers. Users should note that if no property query is specified, or
677more than one implementation matches the property query then it is
678unspecified which implementation for a particular code point will be used.
679
680=item "sigalg-name" (B<OSSL_CAPABILITY_TLS_SIGALG_NAME>) <UTF8 string>
681
682A name for the full (possibly composite hash-and-signature) signature
683algorithm.
684The provider may, but is not obligated to, provide a signature implementation
685with this name; if it doesn't, this is assumed to be a composite of a pure
686signature algorithm and a hash algorithm, which must be given with the
687parameters "sig-name" and "hash-name".
688This value must be supplied.
689
690=item "sigalg-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_OID>) <UTF8 string>
691
692The OID of the "sigalg-name" algorithm in canonical numeric text form. If
693this parameter is given, OBJ_create() will be used to create an OBJ and
694a NID for this OID, using the "sigalg-name" parameter for its (short) name.
695Otherwise, it's assumed to already exist in the object database, possibly
696done by the provider with the core_obj_create() upcall.
697This value is optional.
698
699=item "sig-name" (B<OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME>) <UTF8 string>
700
701The name of the pure signature algorithm that is part of a composite
702"sigalg-name". If "sigalg-name" is implemented by the provider, this
703parameter is redundant and must not be given.
704This value is optional.
705
706=item "sig-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_SIG_OID>) <UTF8 string>
707
708The OID of the "sig-name" algorithm in canonical numeric text form. If
709this parameter is given, OBJ_create() will be used to create an OBJ and
710a NID for this OID, using the "sig-name" parameter for its (short) name.
711Otherwise, it is assumed to already exist in the object database. This
712can be done by the provider using the core_obj_create() upcall.
713This value is optional.
714
715=item "hash-name" (B<OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME>) <UTF8 string>
716
717The name of the hash algorithm that is part of a composite "sigalg-name".
718If "sigalg-name" is implemented by the provider, this parameter is redundant
719and must not be given.
720This value is optional.
721
722=item "hash-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_HASH_OID>) <UTF8 string>
723
724The OID of the "hash-name" algorithm in canonical numeric text form. If
725this parameter is given, OBJ_create() will be used to create an OBJ and
726a NID for this OID, using the "hash-name" parameter for its (short) name.
727Otherwise, it's assumed to already exist in the object database, possibly
728done by the provider with the core_obj_create() upcall.
729This value is optional.
730
731=item "key-type" (B<OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE>) <UTF8 string>
732
733The key type of the public key of applicable certificates. If this parameter
734isn't present, it's assumed to be the same as "sig-name" if that's present,
735otherwise "sigalg-name".
736This value is optional.
737
738=item "key-type-oid" (B<OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID>) <UTF8 string>
739
740The OID of the "key-type" in canonical numeric text form. If
741this parameter is given, OBJ_create() will be used to create an OBJ and
742a NID for this OID, using the "key-type" parameter for its (short) name.
743Otherwise, it's assumed to already exist in the object database, possibly
744done by the provider with the core_obj_create() upcall.
745This value is optional.
746
747=item "sec-bits" (B<OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS>) <unsigned integer>
748
749The number of bits of security offered by keys of this algorithm. The number
750of bits should be comparable with the ones given in table 2 and 3 of the NIST
751SP800-57 document. This number is used to determine the security strength of
752the algorithm if no digest algorithm has been registered that otherwise
753defines the security strength. If the signature algorithm implements its own
754digest internally, this value needs to be set to properly reflect the overall
755security strength.
756This value must be supplied.
757
758=item "tls-min-tls" (B<OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS>) <integer>
759
760=item "tls-max-tls" (B<OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS>) <integer>
761
762These parameters can be used to describe the minimum and maximum TLS
763versions supported by the signature algorithm. The values equate to the
764on-the-wire encoding of the various TLS versions. For example TLSv1.3 is
7650x0304 (772 decimal), and TLSv1.2 is 0x0303 (771 decimal). A 0 indicates that
766there is no defined minimum or maximum. A -1 indicates that the signature
767algorithm should not be used in that protocol.
768Presently values representing anything other than TLS1.3 mean that the
769complete algorithm is ignored.
770
771=back
772
773=head1 NOTES
774
775The core_obj_create() and core_obj_add_sigid() functions were not thread safe
776in OpenSSL 3.0.
777
778=head1 EXAMPLES
779
780This is an example of a simple provider made available as a
781dynamically loadable module.
782It implements the fictitious algorithm C<FOO> for the fictitious
783operation C<BAR>.
784
785 #include <malloc.h>
786 #include <openssl/core.h>
787 #include <openssl/core_dispatch.h>
788
789 /* Errors used in this provider */
790 #define E_MALLOC       1
791
792 static const OSSL_ITEM reasons[] = {
793     { E_MALLOC, "memory allocation failure" }.
794     OSSL_DISPATCH_END
795 };
796
797 /*
798  * To ensure we get the function signature right, forward declare
799  * them using function types provided by openssl/core_dispatch.h
800  */
801 OSSL_FUNC_bar_newctx_fn foo_newctx;
802 OSSL_FUNC_bar_freectx_fn foo_freectx;
803 OSSL_FUNC_bar_init_fn foo_init;
804 OSSL_FUNC_bar_update_fn foo_update;
805 OSSL_FUNC_bar_final_fn foo_final;
806
807 OSSL_FUNC_provider_query_operation_fn p_query;
808 OSSL_FUNC_provider_get_reason_strings_fn p_reasons;
809 OSSL_FUNC_provider_teardown_fn p_teardown;
810
811 OSSL_provider_init_fn OSSL_provider_init;
812
813 OSSL_FUNC_core_put_error *c_put_error = NULL;
814
815 /* Provider context */
816 struct prov_ctx_st {
817     OSSL_CORE_HANDLE *handle;
818 }
819
820 /* operation context for the algorithm FOO */
821 struct foo_ctx_st {
822     struct prov_ctx_st *provctx;
823     int b;
824 };
825
826 static void *foo_newctx(void *provctx)
827 {
828     struct foo_ctx_st *fooctx = malloc(sizeof(*fooctx));
829
830     if (fooctx != NULL)
831         fooctx->provctx = provctx;
832     else
833         c_put_error(provctx->handle, E_MALLOC, __FILE__, __LINE__);
834     return fooctx;
835 }
836
837 static void foo_freectx(void *fooctx)
838 {
839     free(fooctx);
840 }
841
842 static int foo_init(void *vfooctx)
843 {
844     struct foo_ctx_st *fooctx = vfooctx;
845
846     fooctx->b = 0x33;
847 }
848
849 static int foo_update(void *vfooctx, unsigned char *in, size_t inl)
850 {
851     struct foo_ctx_st *fooctx = vfooctx;
852
853     /* did you expect something serious? */
854     if (inl == 0)
855         return 1;
856     for (; inl-- > 0; in++)
857         *in ^= fooctx->b;
858     return 1;
859 }
860
861 static int foo_final(void *vfooctx)
862 {
863     struct foo_ctx_st *fooctx = vfooctx;
864
865     fooctx->b = 0x66;
866 }
867
868 static const OSSL_DISPATCH foo_fns[] = {
869     { OSSL_FUNC_BAR_NEWCTX, (void (*)(void))foo_newctx },
870     { OSSL_FUNC_BAR_FREECTX, (void (*)(void))foo_freectx },
871     { OSSL_FUNC_BAR_INIT, (void (*)(void))foo_init },
872     { OSSL_FUNC_BAR_UPDATE, (void (*)(void))foo_update },
873     { OSSL_FUNC_BAR_FINAL, (void (*)(void))foo_final },
874     OSSL_DISPATCH_END
875 };
876
877 static const OSSL_ALGORITHM bars[] = {
878     { "FOO", "provider=chumbawamba", foo_fns },
879     { NULL, NULL, NULL }
880 };
881
882 static const OSSL_ALGORITHM *p_query(void *provctx, int operation_id,
883                                      int *no_store)
884 {
885     switch (operation_id) {
886     case OSSL_OP_BAR:
887         return bars;
888     }
889     return NULL;
890 }
891
892 static const OSSL_ITEM *p_reasons(void *provctx)
893 {
894     return reasons;
895 }
896
897 static void p_teardown(void *provctx)
898 {
899     free(provctx);
900 }
901
902 static const OSSL_DISPATCH prov_fns[] = {
903     { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))p_teardown },
904     { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))p_query },
905     { OSSL_FUNC_PROVIDER_GET_REASON_STRINGS, (void (*)(void))p_reasons },
906     OSSL_DISPATCH_END
907 };
908
909 int OSSL_provider_init(const OSSL_CORE_HANDLE *handle,
910                        const OSSL_DISPATCH *in,
911                        const OSSL_DISPATCH **out,
912                        void **provctx)
913 {
914     struct prov_ctx_st *pctx = NULL;
915
916     for (; in->function_id != 0; in++)
917         switch (in->function_id) {
918         case OSSL_FUNC_CORE_PUT_ERROR:
919             c_put_error = OSSL_FUNC_core_put_error(in);
920             break;
921         }
922
923     *out = prov_fns;
924
925     if ((pctx = malloc(sizeof(*pctx))) == NULL) {
926         /*
927          * ALEA IACTA EST, if the core retrieves the reason table
928          * regardless, that string will be displayed, otherwise not.
929          */
930         c_put_error(handle, E_MALLOC, __FILE__, __LINE__);
931         return 0;
932     }
933     pctx->handle = handle;
934     return 1;
935 }
936
937This relies on a few things existing in F<openssl/core_dispatch.h>:
938
939 #define OSSL_OP_BAR            4711
940
941 #define OSSL_FUNC_BAR_NEWCTX      1
942 typedef void *(OSSL_FUNC_bar_newctx_fn)(void *provctx);
943 static ossl_inline OSSL_FUNC_bar_newctx(const OSSL_DISPATCH *opf)
944 { return (OSSL_FUNC_bar_newctx_fn *)opf->function; }
945
946 #define OSSL_FUNC_BAR_FREECTX     2
947 typedef void (OSSL_FUNC_bar_freectx_fn)(void *ctx);
948 static ossl_inline OSSL_FUNC_bar_freectx(const OSSL_DISPATCH *opf)
949 { return (OSSL_FUNC_bar_freectx_fn *)opf->function; }
950
951 #define OSSL_FUNC_BAR_INIT        3
952 typedef void *(OSSL_FUNC_bar_init_fn)(void *ctx);
953 static ossl_inline OSSL_FUNC_bar_init(const OSSL_DISPATCH *opf)
954 { return (OSSL_FUNC_bar_init_fn *)opf->function; }
955
956 #define OSSL_FUNC_BAR_UPDATE      4
957 typedef void *(OSSL_FUNC_bar_update_fn)(void *ctx,
958                                       unsigned char *in, size_t inl);
959 static ossl_inline OSSL_FUNC_bar_update(const OSSL_DISPATCH *opf)
960 { return (OSSL_FUNC_bar_update_fn *)opf->function; }
961
962 #define OSSL_FUNC_BAR_FINAL       5
963 typedef void *(OSSL_FUNC_bar_final_fn)(void *ctx);
964 static ossl_inline OSSL_FUNC_bar_final(const OSSL_DISPATCH *opf)
965 { return (OSSL_FUNC_bar_final_fn *)opf->function; }
966
967=head1 SEE ALSO
968
969L<provider(7)>
970
971=head1 HISTORY
972
973The concept of providers and everything surrounding them was
974introduced in OpenSSL 3.0.
975
976=head1 COPYRIGHT
977
978Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved.
979
980Licensed under the Apache License 2.0 (the "License").  You may not use
981this file except in compliance with the License.  You can obtain a copy
982in the file LICENSE in the source distribution or at
983L<https://www.openssl.org/source/license.html>.
984
985=cut
986