1 /*
2 * Copyright 2015-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdlib.h>
11 #include <string.h>
12 #include <openssl/crypto.h>
13
14 #include "crypto/poly1305.h"
15
Poly1305_ctx_size(void)16 size_t Poly1305_ctx_size(void)
17 {
18 return sizeof(struct poly1305_context);
19 }
20
21 /* pick 32-bit unsigned integer in little endian order */
U8TOU32(const unsigned char * p)22 static unsigned int U8TOU32(const unsigned char *p)
23 {
24 return (((unsigned int)(p[0] & 0xff)) |
25 ((unsigned int)(p[1] & 0xff) << 8) |
26 ((unsigned int)(p[2] & 0xff) << 16) |
27 ((unsigned int)(p[3] & 0xff) << 24));
28 }
29
30 /*
31 * Implementations can be classified by amount of significant bits in
32 * words making up the multi-precision value, or in other words radix
33 * or base of numerical representation, e.g. base 2^64, base 2^32,
34 * base 2^26. Complementary characteristic is how wide is the result of
35 * multiplication of pair of digits, e.g. it would take 128 bits to
36 * accommodate multiplication result in base 2^64 case. These are used
37 * interchangeably. To describe implementation that is. But interface
38 * is designed to isolate this so that low-level primitives implemented
39 * in assembly can be self-contained/self-coherent.
40 */
41 #ifndef POLY1305_ASM
42 /*
43 * Even though there is __int128 reference implementation targeting
44 * 64-bit platforms provided below, it's not obvious that it's optimal
45 * choice for every one of them. Depending on instruction set overall
46 * amount of instructions can be comparable to one in __int64
47 * implementation. Amount of multiplication instructions would be lower,
48 * but not necessarily overall. And in out-of-order execution context,
49 * it is the latter that can be crucial...
50 *
51 * On related note. Poly1305 author, D. J. Bernstein, discusses and
52 * provides floating-point implementations of the algorithm in question.
53 * It made a lot of sense by the time of introduction, because most
54 * then-modern processors didn't have pipelined integer multiplier.
55 * [Not to mention that some had non-constant timing for integer
56 * multiplications.] Floating-point instructions on the other hand could
57 * be issued every cycle, which allowed to achieve better performance.
58 * Nowadays, with SIMD and/or out-or-order execution, shared or
59 * even emulated FPU, it's more complicated, and floating-point
60 * implementation is not necessarily optimal choice in every situation,
61 * rather contrary...
62 *
63 * <appro@openssl.org>
64 */
65
66 typedef unsigned int u32;
67
68 /*
69 * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks
70 * of |inp| no longer than |len|. Behaviour for |len| not divisible by
71 * block size is unspecified in general case, even though in reference
72 * implementation the trailing chunk is simply ignored. Per algorithm
73 * specification, every input block, complete or last partial, is to be
74 * padded with a bit past most significant byte. The latter kind is then
75 * padded with zeros till block size. This last partial block padding
76 * is caller(*)'s responsibility, and because of this the last partial
77 * block is always processed with separate call with |len| set to
78 * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit|
79 * should be set to 1 to perform implicit padding with 128th bit.
80 * poly1305_blocks does not actually check for this constraint though,
81 * it's caller(*)'s responsibility to comply.
82 *
83 * (*) In the context "caller" is not application code, but higher
84 * level Poly1305_* from this very module, so that quirks are
85 * handled locally.
86 */
87 static void
88 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit);
89
90 /*
91 * Type-agnostic "rip-off" from constant_time.h
92 */
93 # define CONSTANT_TIME_CARRY(a,b) ( \
94 (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \
95 )
96
97 # if defined(INT64_MAX) && defined(INT128_MAX)
98
99 typedef unsigned long u64;
100 typedef uint128_t u128;
101
102 typedef struct {
103 u64 h[3];
104 u64 r[2];
105 } poly1305_internal;
106
107 /* pick 32-bit unsigned integer in little endian order */
U8TOU64(const unsigned char * p)108 static u64 U8TOU64(const unsigned char *p)
109 {
110 return (((u64)(p[0] & 0xff)) |
111 ((u64)(p[1] & 0xff) << 8) |
112 ((u64)(p[2] & 0xff) << 16) |
113 ((u64)(p[3] & 0xff) << 24) |
114 ((u64)(p[4] & 0xff) << 32) |
115 ((u64)(p[5] & 0xff) << 40) |
116 ((u64)(p[6] & 0xff) << 48) |
117 ((u64)(p[7] & 0xff) << 56));
118 }
119
120 /* store a 32-bit unsigned integer in little endian */
U64TO8(unsigned char * p,u64 v)121 static void U64TO8(unsigned char *p, u64 v)
122 {
123 p[0] = (unsigned char)((v) & 0xff);
124 p[1] = (unsigned char)((v >> 8) & 0xff);
125 p[2] = (unsigned char)((v >> 16) & 0xff);
126 p[3] = (unsigned char)((v >> 24) & 0xff);
127 p[4] = (unsigned char)((v >> 32) & 0xff);
128 p[5] = (unsigned char)((v >> 40) & 0xff);
129 p[6] = (unsigned char)((v >> 48) & 0xff);
130 p[7] = (unsigned char)((v >> 56) & 0xff);
131 }
132
poly1305_init(void * ctx,const unsigned char key[16])133 static void poly1305_init(void *ctx, const unsigned char key[16])
134 {
135 poly1305_internal *st = (poly1305_internal *) ctx;
136
137 /* h = 0 */
138 st->h[0] = 0;
139 st->h[1] = 0;
140 st->h[2] = 0;
141
142 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
143 st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff;
144 st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc;
145 }
146
147 static void
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,u32 padbit)148 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
149 {
150 poly1305_internal *st = (poly1305_internal *)ctx;
151 u64 r0, r1;
152 u64 s1;
153 u64 h0, h1, h2, c;
154 u128 d0, d1;
155
156 r0 = st->r[0];
157 r1 = st->r[1];
158
159 s1 = r1 + (r1 >> 2);
160
161 h0 = st->h[0];
162 h1 = st->h[1];
163 h2 = st->h[2];
164
165 while (len >= POLY1305_BLOCK_SIZE) {
166 /* h += m[i] */
167 h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0));
168 h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8));
169 /*
170 * padbit can be zero only when original len was
171 * POLY1305_BLOCK_SIZE, but we don't check
172 */
173 h2 += (u64)(d1 >> 64) + padbit;
174
175 /* h *= r "%" p, where "%" stands for "partial remainder" */
176 d0 = ((u128)h0 * r0) +
177 ((u128)h1 * s1);
178 d1 = ((u128)h0 * r1) +
179 ((u128)h1 * r0) +
180 (h2 * s1);
181 h2 = (h2 * r0);
182
183 /* last reduction step: */
184 /* a) h2:h0 = h2<<128 + d1<<64 + d0 */
185 h0 = (u64)d0;
186 h1 = (u64)(d1 += d0 >> 64);
187 h2 += (u64)(d1 >> 64);
188 /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */
189 c = (h2 >> 2) + (h2 & ~3UL);
190 h2 &= 3;
191 h0 += c;
192 h1 += (c = CONSTANT_TIME_CARRY(h0,c));
193 h2 += CONSTANT_TIME_CARRY(h1,c);
194 /*
195 * Occasional overflows to 3rd bit of h2 are taken care of
196 * "naturally". If after this point we end up at the top of
197 * this loop, then the overflow bit will be accounted for
198 * in next iteration. If we end up in poly1305_emit, then
199 * comparison to modulus below will still count as "carry
200 * into 131st bit", so that properly reduced value will be
201 * picked in conditional move.
202 */
203
204 inp += POLY1305_BLOCK_SIZE;
205 len -= POLY1305_BLOCK_SIZE;
206 }
207
208 st->h[0] = h0;
209 st->h[1] = h1;
210 st->h[2] = h2;
211 }
212
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])213 static void poly1305_emit(void *ctx, unsigned char mac[16],
214 const u32 nonce[4])
215 {
216 poly1305_internal *st = (poly1305_internal *) ctx;
217 u64 h0, h1, h2;
218 u64 g0, g1, g2;
219 u128 t;
220 u64 mask;
221
222 h0 = st->h[0];
223 h1 = st->h[1];
224 h2 = st->h[2];
225
226 /* compare to modulus by computing h + -p */
227 g0 = (u64)(t = (u128)h0 + 5);
228 g1 = (u64)(t = (u128)h1 + (t >> 64));
229 g2 = h2 + (u64)(t >> 64);
230
231 /* if there was carry into 131st bit, h1:h0 = g1:g0 */
232 mask = 0 - (g2 >> 2);
233 g0 &= mask;
234 g1 &= mask;
235 mask = ~mask;
236 h0 = (h0 & mask) | g0;
237 h1 = (h1 & mask) | g1;
238
239 /* mac = (h + nonce) % (2^128) */
240 h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32));
241 h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64));
242
243 U64TO8(mac + 0, h0);
244 U64TO8(mac + 8, h1);
245 }
246
247 # else
248
249 # if defined(_WIN32) && !defined(__MINGW32__)
250 typedef unsigned __int64 u64;
251 # elif defined(__arch64__)
252 typedef unsigned long u64;
253 # else
254 typedef unsigned long long u64;
255 # endif
256
257 typedef struct {
258 u32 h[5];
259 u32 r[4];
260 } poly1305_internal;
261
262 /* store a 32-bit unsigned integer in little endian */
U32TO8(unsigned char * p,unsigned int v)263 static void U32TO8(unsigned char *p, unsigned int v)
264 {
265 p[0] = (unsigned char)((v) & 0xff);
266 p[1] = (unsigned char)((v >> 8) & 0xff);
267 p[2] = (unsigned char)((v >> 16) & 0xff);
268 p[3] = (unsigned char)((v >> 24) & 0xff);
269 }
270
poly1305_init(void * ctx,const unsigned char key[16])271 static void poly1305_init(void *ctx, const unsigned char key[16])
272 {
273 poly1305_internal *st = (poly1305_internal *) ctx;
274
275 /* h = 0 */
276 st->h[0] = 0;
277 st->h[1] = 0;
278 st->h[2] = 0;
279 st->h[3] = 0;
280 st->h[4] = 0;
281
282 /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
283 st->r[0] = U8TOU32(&key[0]) & 0x0fffffff;
284 st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc;
285 st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc;
286 st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc;
287 }
288
289 static void
poly1305_blocks(void * ctx,const unsigned char * inp,size_t len,u32 padbit)290 poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit)
291 {
292 poly1305_internal *st = (poly1305_internal *)ctx;
293 u32 r0, r1, r2, r3;
294 u32 s1, s2, s3;
295 u32 h0, h1, h2, h3, h4, c;
296 u64 d0, d1, d2, d3;
297
298 r0 = st->r[0];
299 r1 = st->r[1];
300 r2 = st->r[2];
301 r3 = st->r[3];
302
303 s1 = r1 + (r1 >> 2);
304 s2 = r2 + (r2 >> 2);
305 s3 = r3 + (r3 >> 2);
306
307 h0 = st->h[0];
308 h1 = st->h[1];
309 h2 = st->h[2];
310 h3 = st->h[3];
311 h4 = st->h[4];
312
313 while (len >= POLY1305_BLOCK_SIZE) {
314 /* h += m[i] */
315 h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0));
316 h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4));
317 h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8));
318 h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12));
319 h4 += (u32)(d3 >> 32) + padbit;
320
321 /* h *= r "%" p, where "%" stands for "partial remainder" */
322 d0 = ((u64)h0 * r0) +
323 ((u64)h1 * s3) +
324 ((u64)h2 * s2) +
325 ((u64)h3 * s1);
326 d1 = ((u64)h0 * r1) +
327 ((u64)h1 * r0) +
328 ((u64)h2 * s3) +
329 ((u64)h3 * s2) +
330 (h4 * s1);
331 d2 = ((u64)h0 * r2) +
332 ((u64)h1 * r1) +
333 ((u64)h2 * r0) +
334 ((u64)h3 * s3) +
335 (h4 * s2);
336 d3 = ((u64)h0 * r3) +
337 ((u64)h1 * r2) +
338 ((u64)h2 * r1) +
339 ((u64)h3 * r0) +
340 (h4 * s3);
341 h4 = (h4 * r0);
342
343 /* last reduction step: */
344 /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */
345 h0 = (u32)d0;
346 h1 = (u32)(d1 += d0 >> 32);
347 h2 = (u32)(d2 += d1 >> 32);
348 h3 = (u32)(d3 += d2 >> 32);
349 h4 += (u32)(d3 >> 32);
350 /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */
351 c = (h4 >> 2) + (h4 & ~3U);
352 h4 &= 3;
353 h0 += c;
354 h1 += (c = CONSTANT_TIME_CARRY(h0,c));
355 h2 += (c = CONSTANT_TIME_CARRY(h1,c));
356 h3 += (c = CONSTANT_TIME_CARRY(h2,c));
357 h4 += CONSTANT_TIME_CARRY(h3,c);
358 /*
359 * Occasional overflows to 3rd bit of h4 are taken care of
360 * "naturally". If after this point we end up at the top of
361 * this loop, then the overflow bit will be accounted for
362 * in next iteration. If we end up in poly1305_emit, then
363 * comparison to modulus below will still count as "carry
364 * into 131st bit", so that properly reduced value will be
365 * picked in conditional move.
366 */
367
368 inp += POLY1305_BLOCK_SIZE;
369 len -= POLY1305_BLOCK_SIZE;
370 }
371
372 st->h[0] = h0;
373 st->h[1] = h1;
374 st->h[2] = h2;
375 st->h[3] = h3;
376 st->h[4] = h4;
377 }
378
poly1305_emit(void * ctx,unsigned char mac[16],const u32 nonce[4])379 static void poly1305_emit(void *ctx, unsigned char mac[16],
380 const u32 nonce[4])
381 {
382 poly1305_internal *st = (poly1305_internal *) ctx;
383 u32 h0, h1, h2, h3, h4;
384 u32 g0, g1, g2, g3, g4;
385 u64 t;
386 u32 mask;
387
388 h0 = st->h[0];
389 h1 = st->h[1];
390 h2 = st->h[2];
391 h3 = st->h[3];
392 h4 = st->h[4];
393
394 /* compare to modulus by computing h + -p */
395 g0 = (u32)(t = (u64)h0 + 5);
396 g1 = (u32)(t = (u64)h1 + (t >> 32));
397 g2 = (u32)(t = (u64)h2 + (t >> 32));
398 g3 = (u32)(t = (u64)h3 + (t >> 32));
399 g4 = h4 + (u32)(t >> 32);
400
401 /* if there was carry into 131st bit, h3:h0 = g3:g0 */
402 mask = 0 - (g4 >> 2);
403 g0 &= mask;
404 g1 &= mask;
405 g2 &= mask;
406 g3 &= mask;
407 mask = ~mask;
408 h0 = (h0 & mask) | g0;
409 h1 = (h1 & mask) | g1;
410 h2 = (h2 & mask) | g2;
411 h3 = (h3 & mask) | g3;
412
413 /* mac = (h + nonce) % (2^128) */
414 h0 = (u32)(t = (u64)h0 + nonce[0]);
415 h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]);
416 h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]);
417 h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]);
418
419 U32TO8(mac + 0, h0);
420 U32TO8(mac + 4, h1);
421 U32TO8(mac + 8, h2);
422 U32TO8(mac + 12, h3);
423 }
424 # endif
425 #else
426 int poly1305_init(void *ctx, const unsigned char key[16], void *func);
427 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
428 unsigned int padbit);
429 void poly1305_emit(void *ctx, unsigned char mac[16],
430 const unsigned int nonce[4]);
431 #endif
432
Poly1305_Init(POLY1305 * ctx,const unsigned char key[32])433 void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
434 {
435 ctx->nonce[0] = U8TOU32(&key[16]);
436 ctx->nonce[1] = U8TOU32(&key[20]);
437 ctx->nonce[2] = U8TOU32(&key[24]);
438 ctx->nonce[3] = U8TOU32(&key[28]);
439
440 #ifndef POLY1305_ASM
441 poly1305_init(ctx->opaque, key);
442 #else
443 /*
444 * Unlike reference poly1305_init assembly counterpart is expected
445 * to return a value: non-zero if it initializes ctx->func, and zero
446 * otherwise. Latter is to simplify assembly in cases when there no
447 * multiple code paths to switch between.
448 */
449 if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
450 ctx->func.blocks = poly1305_blocks;
451 ctx->func.emit = poly1305_emit;
452 }
453 #endif
454
455 ctx->num = 0;
456
457 }
458
459 #ifdef POLY1305_ASM
460 /*
461 * This "eclipses" poly1305_blocks and poly1305_emit, but it's
462 * conscious choice imposed by -Wshadow compiler warnings.
463 */
464 # define poly1305_blocks (*poly1305_blocks_p)
465 # define poly1305_emit (*poly1305_emit_p)
466 #endif
467
Poly1305_Update(POLY1305 * ctx,const unsigned char * inp,size_t len)468 void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
469 {
470 #ifdef POLY1305_ASM
471 /*
472 * As documented, poly1305_blocks is never called with input
473 * longer than single block and padbit argument set to 0. This
474 * property is fluently used in assembly modules to optimize
475 * padbit handling on loop boundary.
476 */
477 poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
478 #endif
479 size_t rem, num;
480
481 if ((num = ctx->num)) {
482 rem = POLY1305_BLOCK_SIZE - num;
483 if (len >= rem) {
484 memcpy(ctx->data + num, inp, rem);
485 poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
486 inp += rem;
487 len -= rem;
488 } else {
489 /* Still not enough data to process a block. */
490 memcpy(ctx->data + num, inp, len);
491 ctx->num = num + len;
492 return;
493 }
494 }
495
496 rem = len % POLY1305_BLOCK_SIZE;
497 len -= rem;
498
499 if (len >= POLY1305_BLOCK_SIZE) {
500 poly1305_blocks(ctx->opaque, inp, len, 1);
501 inp += len;
502 }
503
504 if (rem)
505 memcpy(ctx->data, inp, rem);
506
507 ctx->num = rem;
508 }
509
Poly1305_Final(POLY1305 * ctx,unsigned char mac[16])510 void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
511 {
512 #ifdef POLY1305_ASM
513 poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
514 poly1305_emit_f poly1305_emit_p = ctx->func.emit;
515 #endif
516 size_t num;
517
518 if ((num = ctx->num)) {
519 ctx->data[num++] = 1; /* pad bit */
520 while (num < POLY1305_BLOCK_SIZE)
521 ctx->data[num++] = 0;
522 poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
523 }
524
525 poly1305_emit(ctx->opaque, mac, ctx->nonce);
526
527 /* zero out the state */
528 OPENSSL_cleanse(ctx, sizeof(*ctx));
529 }
530