1 /*
2  * Copyright 2013-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /*
11  * AES low level APIs are deprecated for public use, but still ok for internal
12  * use where we're using them to implement the higher level EVP interface, as is
13  * the case here.
14  */
15 #include "internal/deprecated.h"
16 
17 #include <stdio.h>
18 #include <string.h>
19 #include <openssl/opensslconf.h>
20 #include <openssl/evp.h>
21 #include <openssl/objects.h>
22 #include <openssl/aes.h>
23 #include <openssl/sha.h>
24 #include <openssl/rand.h>
25 #include "internal/cryptlib.h"
26 #include "crypto/modes.h"
27 #include "internal/constant_time.h"
28 #include "crypto/evp.h"
29 #include "evp_local.h"
30 
31 typedef struct {
32     AES_KEY ks;
33     SHA256_CTX head, tail, md;
34     size_t payload_length;      /* AAD length in decrypt case */
35     union {
36         unsigned int tls_ver;
37         unsigned char tls_aad[16]; /* 13 used */
38     } aux;
39 } EVP_AES_HMAC_SHA256;
40 
41 # define NO_PAYLOAD_LENGTH       ((size_t)-1)
42 
43 #if     defined(AES_ASM) &&     ( \
44         defined(__x86_64)       || defined(__x86_64__)  || \
45         defined(_M_AMD64)       || defined(_M_X64)      )
46 
47 # define AESNI_CAPABLE   (1<<(57-32))
48 
49 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
50                           AES_KEY *key);
51 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
52                           AES_KEY *key);
53 
54 void aesni_cbc_encrypt(const unsigned char *in,
55                        unsigned char *out,
56                        size_t length,
57                        const AES_KEY *key, unsigned char *ivec, int enc);
58 
59 int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
60                          const AES_KEY *key, unsigned char iv[16],
61                          SHA256_CTX *ctx, const void *in0);
62 
63 # define data(ctx) ((EVP_AES_HMAC_SHA256 *)EVP_CIPHER_CTX_get_cipher_data(ctx))
64 
aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX * ctx,const unsigned char * inkey,const unsigned char * iv,int enc)65 static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
66                                           const unsigned char *inkey,
67                                           const unsigned char *iv, int enc)
68 {
69     EVP_AES_HMAC_SHA256 *key = data(ctx);
70     int ret;
71 
72     if (enc)
73         ret = aesni_set_encrypt_key(inkey,
74                                     EVP_CIPHER_CTX_get_key_length(ctx) * 8,
75                                     &key->ks);
76     else
77         ret = aesni_set_decrypt_key(inkey,
78                                     EVP_CIPHER_CTX_get_key_length(ctx) * 8,
79                                     &key->ks);
80 
81     SHA256_Init(&key->head);    /* handy when benchmarking */
82     key->tail = key->head;
83     key->md = key->head;
84 
85     key->payload_length = NO_PAYLOAD_LENGTH;
86 
87     return ret < 0 ? 0 : 1;
88 }
89 
90 # define STITCHED_CALL
91 
92 # if !defined(STITCHED_CALL)
93 #  define aes_off 0
94 # endif
95 
96 void sha256_block_data_order(void *c, const void *p, size_t len);
97 
sha256_update(SHA256_CTX * c,const void * data,size_t len)98 static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
99 {
100     const unsigned char *ptr = data;
101     size_t res;
102 
103     if ((res = c->num)) {
104         res = SHA256_CBLOCK - res;
105         if (len < res)
106             res = len;
107         SHA256_Update(c, ptr, res);
108         ptr += res;
109         len -= res;
110     }
111 
112     res = len % SHA256_CBLOCK;
113     len -= res;
114 
115     if (len) {
116         sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
117 
118         ptr += len;
119         c->Nh += len >> 29;
120         c->Nl += len <<= 3;
121         if (c->Nl < (unsigned int)len)
122             c->Nh++;
123     }
124 
125     if (res)
126         SHA256_Update(c, ptr, res);
127 }
128 
129 # ifdef SHA256_Update
130 #  undef SHA256_Update
131 # endif
132 # define SHA256_Update sha256_update
133 
134 # if !defined(OPENSSL_NO_MULTIBLOCK)
135 
136 typedef struct {
137     unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
138 } SHA256_MB_CTX;
139 typedef struct {
140     const unsigned char *ptr;
141     int blocks;
142 } HASH_DESC;
143 
144 void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
145 
146 typedef struct {
147     const unsigned char *inp;
148     unsigned char *out;
149     int blocks;
150     u64 iv[2];
151 } CIPH_DESC;
152 
153 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
154 
tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 * key,unsigned char * out,const unsigned char * inp,size_t inp_len,int n4x)155 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
156                                          unsigned char *out,
157                                          const unsigned char *inp,
158                                          size_t inp_len, int n4x)
159 {                               /* n4x is 1 or 2 */
160     HASH_DESC hash_d[8], edges[8];
161     CIPH_DESC ciph_d[8];
162     unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
163     union {
164         u64 q[16];
165         u32 d[32];
166         u8 c[128];
167     } blocks[8];
168     SHA256_MB_CTX *ctx;
169     unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
170         0;
171     size_t ret = 0;
172     u8 *IVs;
173 #  if defined(BSWAP8)
174     u64 seqnum;
175 #  endif
176 
177     /* ask for IVs in bulk */
178     if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
179         return 0;
180 
181     /* align */
182     ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));
183 
184     frag = (unsigned int)inp_len >> (1 + n4x);
185     last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
186     if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
187         frag++;
188         last -= x4 - 1;
189     }
190 
191     packlen = 5 + 16 + ((frag + 32 + 16) & -16);
192 
193     /* populate descriptors with pointers and IVs */
194     hash_d[0].ptr = inp;
195     ciph_d[0].inp = inp;
196     /* 5+16 is place for header and explicit IV */
197     ciph_d[0].out = out + 5 + 16;
198     memcpy(ciph_d[0].out - 16, IVs, 16);
199     memcpy(ciph_d[0].iv, IVs, 16);
200     IVs += 16;
201 
202     for (i = 1; i < x4; i++) {
203         ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
204         ciph_d[i].out = ciph_d[i - 1].out + packlen;
205         memcpy(ciph_d[i].out - 16, IVs, 16);
206         memcpy(ciph_d[i].iv, IVs, 16);
207         IVs += 16;
208     }
209 
210 #  if defined(BSWAP8)
211     memcpy(blocks[0].c, key->md.data, 8);
212     seqnum = BSWAP8(blocks[0].q[0]);
213 #  endif
214     for (i = 0; i < x4; i++) {
215         unsigned int len = (i == (x4 - 1) ? last : frag);
216 #  if !defined(BSWAP8)
217         unsigned int carry, j;
218 #  endif
219 
220         ctx->A[i] = key->md.h[0];
221         ctx->B[i] = key->md.h[1];
222         ctx->C[i] = key->md.h[2];
223         ctx->D[i] = key->md.h[3];
224         ctx->E[i] = key->md.h[4];
225         ctx->F[i] = key->md.h[5];
226         ctx->G[i] = key->md.h[6];
227         ctx->H[i] = key->md.h[7];
228 
229         /* fix seqnum */
230 #  if defined(BSWAP8)
231         blocks[i].q[0] = BSWAP8(seqnum + i);
232 #  else
233         for (carry = i, j = 8; j--;) {
234             blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
235             carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
236         }
237 #  endif
238         blocks[i].c[8] = ((u8 *)key->md.data)[8];
239         blocks[i].c[9] = ((u8 *)key->md.data)[9];
240         blocks[i].c[10] = ((u8 *)key->md.data)[10];
241         /* fix length */
242         blocks[i].c[11] = (u8)(len >> 8);
243         blocks[i].c[12] = (u8)(len);
244 
245         memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
246         hash_d[i].ptr += 64 - 13;
247         hash_d[i].blocks = (len - (64 - 13)) / 64;
248 
249         edges[i].ptr = blocks[i].c;
250         edges[i].blocks = 1;
251     }
252 
253     /* hash 13-byte headers and first 64-13 bytes of inputs */
254     sha256_multi_block(ctx, edges, n4x);
255     /* hash bulk inputs */
256 #  define MAXCHUNKSIZE    2048
257 #  if     MAXCHUNKSIZE%64
258 #   error  "MAXCHUNKSIZE is not divisible by 64"
259 #  elif   MAXCHUNKSIZE
260     /*
261      * goal is to minimize pressure on L1 cache by moving in shorter steps,
262      * so that hashed data is still in the cache by the time we encrypt it
263      */
264     minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
265     if (minblocks > MAXCHUNKSIZE / 64) {
266         for (i = 0; i < x4; i++) {
267             edges[i].ptr = hash_d[i].ptr;
268             edges[i].blocks = MAXCHUNKSIZE / 64;
269             ciph_d[i].blocks = MAXCHUNKSIZE / 16;
270         }
271         do {
272             sha256_multi_block(ctx, edges, n4x);
273             aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
274 
275             for (i = 0; i < x4; i++) {
276                 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
277                 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
278                 edges[i].blocks = MAXCHUNKSIZE / 64;
279                 ciph_d[i].inp += MAXCHUNKSIZE;
280                 ciph_d[i].out += MAXCHUNKSIZE;
281                 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
282                 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
283             }
284             processed += MAXCHUNKSIZE;
285             minblocks -= MAXCHUNKSIZE / 64;
286         } while (minblocks > MAXCHUNKSIZE / 64);
287     }
288 #  endif
289 #  undef  MAXCHUNKSIZE
290     sha256_multi_block(ctx, hash_d, n4x);
291 
292     memset(blocks, 0, sizeof(blocks));
293     for (i = 0; i < x4; i++) {
294         unsigned int len = (i == (x4 - 1) ? last : frag),
295             off = hash_d[i].blocks * 64;
296         const unsigned char *ptr = hash_d[i].ptr + off;
297 
298         off = (len - processed) - (64 - 13) - off; /* remainder actually */
299         memcpy(blocks[i].c, ptr, off);
300         blocks[i].c[off] = 0x80;
301         len += 64 + 13;         /* 64 is HMAC header */
302         len *= 8;               /* convert to bits */
303         if (off < (64 - 8)) {
304 #  ifdef BSWAP4
305             blocks[i].d[15] = BSWAP4(len);
306 #  else
307             PUTU32(blocks[i].c + 60, len);
308 #  endif
309             edges[i].blocks = 1;
310         } else {
311 #  ifdef BSWAP4
312             blocks[i].d[31] = BSWAP4(len);
313 #  else
314             PUTU32(blocks[i].c + 124, len);
315 #  endif
316             edges[i].blocks = 2;
317         }
318         edges[i].ptr = blocks[i].c;
319     }
320 
321     /* hash input tails and finalize */
322     sha256_multi_block(ctx, edges, n4x);
323 
324     memset(blocks, 0, sizeof(blocks));
325     for (i = 0; i < x4; i++) {
326 #  ifdef BSWAP4
327         blocks[i].d[0] = BSWAP4(ctx->A[i]);
328         ctx->A[i] = key->tail.h[0];
329         blocks[i].d[1] = BSWAP4(ctx->B[i]);
330         ctx->B[i] = key->tail.h[1];
331         blocks[i].d[2] = BSWAP4(ctx->C[i]);
332         ctx->C[i] = key->tail.h[2];
333         blocks[i].d[3] = BSWAP4(ctx->D[i]);
334         ctx->D[i] = key->tail.h[3];
335         blocks[i].d[4] = BSWAP4(ctx->E[i]);
336         ctx->E[i] = key->tail.h[4];
337         blocks[i].d[5] = BSWAP4(ctx->F[i]);
338         ctx->F[i] = key->tail.h[5];
339         blocks[i].d[6] = BSWAP4(ctx->G[i]);
340         ctx->G[i] = key->tail.h[6];
341         blocks[i].d[7] = BSWAP4(ctx->H[i]);
342         ctx->H[i] = key->tail.h[7];
343         blocks[i].c[32] = 0x80;
344         blocks[i].d[15] = BSWAP4((64 + 32) * 8);
345 #  else
346         PUTU32(blocks[i].c + 0, ctx->A[i]);
347         ctx->A[i] = key->tail.h[0];
348         PUTU32(blocks[i].c + 4, ctx->B[i]);
349         ctx->B[i] = key->tail.h[1];
350         PUTU32(blocks[i].c + 8, ctx->C[i]);
351         ctx->C[i] = key->tail.h[2];
352         PUTU32(blocks[i].c + 12, ctx->D[i]);
353         ctx->D[i] = key->tail.h[3];
354         PUTU32(blocks[i].c + 16, ctx->E[i]);
355         ctx->E[i] = key->tail.h[4];
356         PUTU32(blocks[i].c + 20, ctx->F[i]);
357         ctx->F[i] = key->tail.h[5];
358         PUTU32(blocks[i].c + 24, ctx->G[i]);
359         ctx->G[i] = key->tail.h[6];
360         PUTU32(blocks[i].c + 28, ctx->H[i]);
361         ctx->H[i] = key->tail.h[7];
362         blocks[i].c[32] = 0x80;
363         PUTU32(blocks[i].c + 60, (64 + 32) * 8);
364 #  endif
365         edges[i].ptr = blocks[i].c;
366         edges[i].blocks = 1;
367     }
368 
369     /* finalize MACs */
370     sha256_multi_block(ctx, edges, n4x);
371 
372     for (i = 0; i < x4; i++) {
373         unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
374         unsigned char *out0 = out;
375 
376         memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
377         ciph_d[i].inp = ciph_d[i].out;
378 
379         out += 5 + 16 + len;
380 
381         /* write MAC */
382         PUTU32(out + 0, ctx->A[i]);
383         PUTU32(out + 4, ctx->B[i]);
384         PUTU32(out + 8, ctx->C[i]);
385         PUTU32(out + 12, ctx->D[i]);
386         PUTU32(out + 16, ctx->E[i]);
387         PUTU32(out + 20, ctx->F[i]);
388         PUTU32(out + 24, ctx->G[i]);
389         PUTU32(out + 28, ctx->H[i]);
390         out += 32;
391         len += 32;
392 
393         /* pad */
394         pad = 15 - len % 16;
395         for (j = 0; j <= pad; j++)
396             *(out++) = pad;
397         len += pad + 1;
398 
399         ciph_d[i].blocks = (len - processed) / 16;
400         len += 16;              /* account for explicit iv */
401 
402         /* arrange header */
403         out0[0] = ((u8 *)key->md.data)[8];
404         out0[1] = ((u8 *)key->md.data)[9];
405         out0[2] = ((u8 *)key->md.data)[10];
406         out0[3] = (u8)(len >> 8);
407         out0[4] = (u8)(len);
408 
409         ret += len + 5;
410         inp += frag;
411     }
412 
413     aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
414 
415     OPENSSL_cleanse(blocks, sizeof(blocks));
416     OPENSSL_cleanse(ctx, sizeof(*ctx));
417 
418     return ret;
419 }
420 # endif
421 
aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,size_t len)422 static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
423                                         unsigned char *out,
424                                         const unsigned char *in, size_t len)
425 {
426     EVP_AES_HMAC_SHA256 *key = data(ctx);
427     unsigned int l;
428     size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
429                                                 * later */
430         sha_off = 0;
431 # if defined(STITCHED_CALL)
432     size_t aes_off = 0, blocks;
433 
434     sha_off = SHA256_CBLOCK - key->md.num;
435 # endif
436 
437     key->payload_length = NO_PAYLOAD_LENGTH;
438 
439     if (len % AES_BLOCK_SIZE)
440         return 0;
441 
442     if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
443         if (plen == NO_PAYLOAD_LENGTH)
444             plen = len;
445         else if (len !=
446                  ((plen + SHA256_DIGEST_LENGTH +
447                    AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
448             return 0;
449         else if (key->aux.tls_ver >= TLS1_1_VERSION)
450             iv = AES_BLOCK_SIZE;
451 
452 # if defined(STITCHED_CALL)
453         /*
454          * Assembly stitch handles AVX-capable processors, but its
455          * performance is not optimal on AMD Jaguar, ~40% worse, for
456          * unknown reasons. Incidentally processor in question supports
457          * AVX, but not AMD-specific XOP extension, which can be used
458          * to identify it and avoid stitch invocation. So that after we
459          * establish that current CPU supports AVX, we even see if it's
460          * either even XOP-capable Bulldozer-based or GenuineIntel one.
461          * But SHAEXT-capable go ahead...
462          */
463         if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
464              ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
465               ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
466                | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
467             plen > (sha_off + iv) &&
468             (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
469             SHA256_Update(&key->md, in + iv, sha_off);
470 
471             (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
472                                        ctx->iv, &key->md, in + iv + sha_off);
473             blocks *= SHA256_CBLOCK;
474             aes_off += blocks;
475             sha_off += blocks;
476             key->md.Nh += blocks >> 29;
477             key->md.Nl += blocks <<= 3;
478             if (key->md.Nl < (unsigned int)blocks)
479                 key->md.Nh++;
480         } else {
481             sha_off = 0;
482         }
483 # endif
484         sha_off += iv;
485         SHA256_Update(&key->md, in + sha_off, plen - sha_off);
486 
487         if (plen != len) {      /* "TLS" mode of operation */
488             if (in != out)
489                 memcpy(out + aes_off, in + aes_off, plen - aes_off);
490 
491             /* calculate HMAC and append it to payload */
492             SHA256_Final(out + plen, &key->md);
493             key->md = key->tail;
494             SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
495             SHA256_Final(out + plen, &key->md);
496 
497             /* pad the payload|hmac */
498             plen += SHA256_DIGEST_LENGTH;
499             for (l = len - plen - 1; plen < len; plen++)
500                 out[plen] = l;
501             /* encrypt HMAC|padding at once */
502             aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
503                               &key->ks, ctx->iv, 1);
504         } else {
505             aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
506                               &key->ks, ctx->iv, 1);
507         }
508     } else {
509         union {
510             unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
511             unsigned char c[64 + SHA256_DIGEST_LENGTH];
512         } mac, *pmac;
513 
514         /* arrange cache line alignment */
515         pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
516 
517         /* decrypt HMAC|padding at once */
518         aesni_cbc_encrypt(in, out, len, &key->ks,
519                           ctx->iv, 0);
520 
521         if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
522             size_t inp_len, mask, j, i;
523             unsigned int res, maxpad, pad, bitlen;
524             int ret = 1;
525             union {
526                 unsigned int u[SHA_LBLOCK];
527                 unsigned char c[SHA256_CBLOCK];
528             } *data = (void *)key->md.data;
529 
530             if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
531                 >= TLS1_1_VERSION)
532                 iv = AES_BLOCK_SIZE;
533 
534             if (len < (iv + SHA256_DIGEST_LENGTH + 1))
535                 return 0;
536 
537             /* omit explicit iv */
538             out += iv;
539             len -= iv;
540 
541             /* figure out payload length */
542             pad = out[len - 1];
543             maxpad = len - (SHA256_DIGEST_LENGTH + 1);
544             maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
545             maxpad &= 255;
546 
547             mask = constant_time_ge(maxpad, pad);
548             ret &= mask;
549             /*
550              * If pad is invalid then we will fail the above test but we must
551              * continue anyway because we are in constant time code. However,
552              * we'll use the maxpad value instead of the supplied pad to make
553              * sure we perform well defined pointer arithmetic.
554              */
555             pad = constant_time_select(mask, pad, maxpad);
556 
557             inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
558 
559             key->aux.tls_aad[plen - 2] = inp_len >> 8;
560             key->aux.tls_aad[plen - 1] = inp_len;
561 
562             /* calculate HMAC */
563             key->md = key->head;
564             SHA256_Update(&key->md, key->aux.tls_aad, plen);
565 
566 # if 1      /* see original reference version in #else */
567             len -= SHA256_DIGEST_LENGTH; /* amend mac */
568             if (len >= (256 + SHA256_CBLOCK)) {
569                 j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
570                 j += SHA256_CBLOCK - key->md.num;
571                 SHA256_Update(&key->md, out, j);
572                 out += j;
573                 len -= j;
574                 inp_len -= j;
575             }
576 
577             /* but pretend as if we hashed padded payload */
578             bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
579 #  ifdef BSWAP4
580             bitlen = BSWAP4(bitlen);
581 #  else
582             mac.c[0] = 0;
583             mac.c[1] = (unsigned char)(bitlen >> 16);
584             mac.c[2] = (unsigned char)(bitlen >> 8);
585             mac.c[3] = (unsigned char)bitlen;
586             bitlen = mac.u[0];
587 #  endif
588 
589             pmac->u[0] = 0;
590             pmac->u[1] = 0;
591             pmac->u[2] = 0;
592             pmac->u[3] = 0;
593             pmac->u[4] = 0;
594             pmac->u[5] = 0;
595             pmac->u[6] = 0;
596             pmac->u[7] = 0;
597 
598             for (res = key->md.num, j = 0; j < len; j++) {
599                 size_t c = out[j];
600                 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
601                 c &= mask;
602                 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
603                 data->c[res++] = (unsigned char)c;
604 
605                 if (res != SHA256_CBLOCK)
606                     continue;
607 
608                 /* j is not incremented yet */
609                 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
610                 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
611                 sha256_block_data_order(&key->md, data, 1);
612                 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
613                 pmac->u[0] |= key->md.h[0] & mask;
614                 pmac->u[1] |= key->md.h[1] & mask;
615                 pmac->u[2] |= key->md.h[2] & mask;
616                 pmac->u[3] |= key->md.h[3] & mask;
617                 pmac->u[4] |= key->md.h[4] & mask;
618                 pmac->u[5] |= key->md.h[5] & mask;
619                 pmac->u[6] |= key->md.h[6] & mask;
620                 pmac->u[7] |= key->md.h[7] & mask;
621                 res = 0;
622             }
623 
624             for (i = res; i < SHA256_CBLOCK; i++, j++)
625                 data->c[i] = 0;
626 
627             if (res > SHA256_CBLOCK - 8) {
628                 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
629                 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
630                 sha256_block_data_order(&key->md, data, 1);
631                 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
632                 pmac->u[0] |= key->md.h[0] & mask;
633                 pmac->u[1] |= key->md.h[1] & mask;
634                 pmac->u[2] |= key->md.h[2] & mask;
635                 pmac->u[3] |= key->md.h[3] & mask;
636                 pmac->u[4] |= key->md.h[4] & mask;
637                 pmac->u[5] |= key->md.h[5] & mask;
638                 pmac->u[6] |= key->md.h[6] & mask;
639                 pmac->u[7] |= key->md.h[7] & mask;
640 
641                 memset(data, 0, SHA256_CBLOCK);
642                 j += 64;
643             }
644             data->u[SHA_LBLOCK - 1] = bitlen;
645             sha256_block_data_order(&key->md, data, 1);
646             mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
647             pmac->u[0] |= key->md.h[0] & mask;
648             pmac->u[1] |= key->md.h[1] & mask;
649             pmac->u[2] |= key->md.h[2] & mask;
650             pmac->u[3] |= key->md.h[3] & mask;
651             pmac->u[4] |= key->md.h[4] & mask;
652             pmac->u[5] |= key->md.h[5] & mask;
653             pmac->u[6] |= key->md.h[6] & mask;
654             pmac->u[7] |= key->md.h[7] & mask;
655 
656 #  ifdef BSWAP4
657             pmac->u[0] = BSWAP4(pmac->u[0]);
658             pmac->u[1] = BSWAP4(pmac->u[1]);
659             pmac->u[2] = BSWAP4(pmac->u[2]);
660             pmac->u[3] = BSWAP4(pmac->u[3]);
661             pmac->u[4] = BSWAP4(pmac->u[4]);
662             pmac->u[5] = BSWAP4(pmac->u[5]);
663             pmac->u[6] = BSWAP4(pmac->u[6]);
664             pmac->u[7] = BSWAP4(pmac->u[7]);
665 #  else
666             for (i = 0; i < 8; i++) {
667                 res = pmac->u[i];
668                 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
669                 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
670                 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
671                 pmac->c[4 * i + 3] = (unsigned char)res;
672             }
673 #  endif
674             len += SHA256_DIGEST_LENGTH;
675 # else
676             SHA256_Update(&key->md, out, inp_len);
677             res = key->md.num;
678             SHA256_Final(pmac->c, &key->md);
679 
680             {
681                 unsigned int inp_blocks, pad_blocks;
682 
683                 /* but pretend as if we hashed padded payload */
684                 inp_blocks =
685                     1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
686                 res += (unsigned int)(len - inp_len);
687                 pad_blocks = res / SHA256_CBLOCK;
688                 res %= SHA256_CBLOCK;
689                 pad_blocks +=
690                     1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
691                 for (; inp_blocks < pad_blocks; inp_blocks++)
692                     sha1_block_data_order(&key->md, data, 1);
693             }
694 # endif      /* pre-lucky-13 reference version of above */
695             key->md = key->tail;
696             SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
697             SHA256_Final(pmac->c, &key->md);
698 
699             /* verify HMAC */
700             out += inp_len;
701             len -= inp_len;
702 # if 1      /* see original reference version in #else */
703             {
704                 unsigned char *p =
705                     out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
706                 size_t off = out - p;
707                 unsigned int c, cmask;
708 
709                 for (res = 0, i = 0, j = 0; j < maxpad + SHA256_DIGEST_LENGTH;
710                      j++) {
711                     c = p[j];
712                     cmask =
713                         ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
714                         (sizeof(int) * 8 - 1);
715                     res |= (c ^ pad) & ~cmask; /* ... and padding */
716                     cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
717                     res |= (c ^ pmac->c[i]) & cmask;
718                     i += 1 & cmask;
719                 }
720 
721                 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
722                 ret &= (int)~res;
723             }
724 # else      /* pre-lucky-13 reference version of above */
725             for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
726                 res |= out[i] ^ pmac->c[i];
727             res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
728             ret &= (int)~res;
729 
730             /* verify padding */
731             pad = (pad & ~res) | (maxpad & res);
732             out = out + len - 1 - pad;
733             for (res = 0, i = 0; i < pad; i++)
734                 res |= out[i] ^ pad;
735 
736             res = (0 - res) >> (sizeof(res) * 8 - 1);
737             ret &= (int)~res;
738 # endif
739             return ret;
740         } else {
741             SHA256_Update(&key->md, out, len);
742         }
743     }
744 
745     return 1;
746 }
747 
aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * ptr)748 static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
749                                       void *ptr)
750 {
751     EVP_AES_HMAC_SHA256 *key = data(ctx);
752     unsigned int u_arg = (unsigned int)arg;
753 
754     switch (type) {
755     case EVP_CTRL_AEAD_SET_MAC_KEY:
756         {
757             unsigned int i;
758             unsigned char hmac_key[64];
759 
760             memset(hmac_key, 0, sizeof(hmac_key));
761 
762             if (arg < 0)
763                 return -1;
764 
765             if (u_arg > sizeof(hmac_key)) {
766                 SHA256_Init(&key->head);
767                 SHA256_Update(&key->head, ptr, arg);
768                 SHA256_Final(hmac_key, &key->head);
769             } else {
770                 memcpy(hmac_key, ptr, arg);
771             }
772 
773             for (i = 0; i < sizeof(hmac_key); i++)
774                 hmac_key[i] ^= 0x36; /* ipad */
775             SHA256_Init(&key->head);
776             SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));
777 
778             for (i = 0; i < sizeof(hmac_key); i++)
779                 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
780             SHA256_Init(&key->tail);
781             SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));
782 
783             OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
784 
785             return 1;
786         }
787     case EVP_CTRL_AEAD_TLS1_AAD:
788         {
789             unsigned char *p = ptr;
790             unsigned int len;
791 
792             if (arg != EVP_AEAD_TLS1_AAD_LEN)
793                 return -1;
794 
795             len = p[arg - 2] << 8 | p[arg - 1];
796 
797             if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
798                 key->payload_length = len;
799                 if ((key->aux.tls_ver =
800                      p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
801                     if (len < AES_BLOCK_SIZE)
802                         return 0;
803                     len -= AES_BLOCK_SIZE;
804                     p[arg - 2] = len >> 8;
805                     p[arg - 1] = len;
806                 }
807                 key->md = key->head;
808                 SHA256_Update(&key->md, p, arg);
809 
810                 return (int)(((len + SHA256_DIGEST_LENGTH +
811                                AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
812                              - len);
813             } else {
814                 memcpy(key->aux.tls_aad, ptr, arg);
815                 key->payload_length = arg;
816 
817                 return SHA256_DIGEST_LENGTH;
818             }
819         }
820 # if !defined(OPENSSL_NO_MULTIBLOCK)
821     case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
822         return (int)(5 + 16 + ((arg + 32 + 16) & -16));
823     case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
824         {
825             EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
826                 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
827             unsigned int n4x = 1, x4;
828             unsigned int frag, last, packlen, inp_len;
829 
830             if (arg < 0)
831                 return -1;
832 
833             if (u_arg < sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
834                 return -1;
835 
836             inp_len = param->inp[11] << 8 | param->inp[12];
837 
838             if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
839                 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
840                     return -1;
841 
842                 if (inp_len) {
843                     if (inp_len < 4096)
844                         return 0; /* too short */
845 
846                     if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
847                         n4x = 2; /* AVX2 */
848                 } else if ((n4x = param->interleave / 4) && n4x <= 2)
849                     inp_len = param->len;
850                 else
851                     return -1;
852 
853                 key->md = key->head;
854                 SHA256_Update(&key->md, param->inp, 13);
855 
856                 x4 = 4 * n4x;
857                 n4x += 1;
858 
859                 frag = inp_len >> n4x;
860                 last = inp_len + frag - (frag << n4x);
861                 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
862                     frag++;
863                     last -= x4 - 1;
864                 }
865 
866                 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
867                 packlen = (packlen << n4x) - packlen;
868                 packlen += 5 + 16 + ((last + 32 + 16) & -16);
869 
870                 param->interleave = x4;
871 
872                 return (int)packlen;
873             } else
874                 return -1;      /* not yet */
875         }
876     case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
877         {
878             EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
879                 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
880 
881             return (int)tls1_1_multi_block_encrypt(key, param->out,
882                                                    param->inp, param->len,
883                                                    param->interleave / 4);
884         }
885     case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
886 # endif
887     default:
888         return -1;
889     }
890 }
891 
892 static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
893 # ifdef NID_aes_128_cbc_hmac_sha256
894     NID_aes_128_cbc_hmac_sha256,
895 # else
896     NID_undef,
897 # endif
898     AES_BLOCK_SIZE, 16, AES_BLOCK_SIZE,
899     EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
900         EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
901     EVP_ORIG_GLOBAL,
902     aesni_cbc_hmac_sha256_init_key,
903     aesni_cbc_hmac_sha256_cipher,
904     NULL,
905     sizeof(EVP_AES_HMAC_SHA256),
906     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
907     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
908     aesni_cbc_hmac_sha256_ctrl,
909     NULL
910 };
911 
912 static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
913 # ifdef NID_aes_256_cbc_hmac_sha256
914     NID_aes_256_cbc_hmac_sha256,
915 # else
916     NID_undef,
917 # endif
918     AES_BLOCK_SIZE, 32, AES_BLOCK_SIZE,
919     EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
920         EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
921     EVP_ORIG_GLOBAL,
922     aesni_cbc_hmac_sha256_init_key,
923     aesni_cbc_hmac_sha256_cipher,
924     NULL,
925     sizeof(EVP_AES_HMAC_SHA256),
926     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
927     EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
928     aesni_cbc_hmac_sha256_ctrl,
929     NULL
930 };
931 
EVP_aes_128_cbc_hmac_sha256(void)932 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
933 {
934     return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
935             aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
936             &aesni_128_cbc_hmac_sha256_cipher : NULL);
937 }
938 
EVP_aes_256_cbc_hmac_sha256(void)939 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
940 {
941     return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
942             aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
943             &aesni_256_cbc_hmac_sha256_cipher : NULL);
944 }
945 #else
EVP_aes_128_cbc_hmac_sha256(void)946 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
947 {
948     return NULL;
949 }
950 
EVP_aes_256_cbc_hmac_sha256(void)951 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
952 {
953     return NULL;
954 }
955 #endif
956