1 /*
2 * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <stdio.h>
14 #include "internal/cryptlib.h"
15 #include "bn_local.h"
16
17 #ifndef OPENSSL_NO_EC2M
18 # include <openssl/ec.h>
19
20 /*
21 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
22 * fail.
23 */
24 # define MAX_ITERATIONS 50
25
26 # define SQR_nibble(w) ((((w) & 8) << 3) \
27 | (((w) & 4) << 2) \
28 | (((w) & 2) << 1) \
29 | ((w) & 1))
30
31
32 /* Platform-specific macros to accelerate squaring. */
33 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
34 # define SQR1(w) \
35 SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
36 SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
37 SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
38 SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
39 # define SQR0(w) \
40 SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
41 SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
42 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
43 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
44 # endif
45 # ifdef THIRTY_TWO_BIT
46 # define SQR1(w) \
47 SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
48 SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
49 # define SQR0(w) \
50 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
51 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
52 # endif
53
54 # if !defined(OPENSSL_BN_ASM_GF2m)
55 /*
56 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
57 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
58 * the variables have the right amount of space allocated.
59 */
60 # ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)61 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
62 const BN_ULONG b)
63 {
64 register BN_ULONG h, l, s;
65 BN_ULONG tab[8], top2b = a >> 30;
66 register BN_ULONG a1, a2, a4;
67
68 a1 = a & (0x3FFFFFFF);
69 a2 = a1 << 1;
70 a4 = a2 << 1;
71
72 tab[0] = 0;
73 tab[1] = a1;
74 tab[2] = a2;
75 tab[3] = a1 ^ a2;
76 tab[4] = a4;
77 tab[5] = a1 ^ a4;
78 tab[6] = a2 ^ a4;
79 tab[7] = a1 ^ a2 ^ a4;
80
81 s = tab[b & 0x7];
82 l = s;
83 s = tab[b >> 3 & 0x7];
84 l ^= s << 3;
85 h = s >> 29;
86 s = tab[b >> 6 & 0x7];
87 l ^= s << 6;
88 h ^= s >> 26;
89 s = tab[b >> 9 & 0x7];
90 l ^= s << 9;
91 h ^= s >> 23;
92 s = tab[b >> 12 & 0x7];
93 l ^= s << 12;
94 h ^= s >> 20;
95 s = tab[b >> 15 & 0x7];
96 l ^= s << 15;
97 h ^= s >> 17;
98 s = tab[b >> 18 & 0x7];
99 l ^= s << 18;
100 h ^= s >> 14;
101 s = tab[b >> 21 & 0x7];
102 l ^= s << 21;
103 h ^= s >> 11;
104 s = tab[b >> 24 & 0x7];
105 l ^= s << 24;
106 h ^= s >> 8;
107 s = tab[b >> 27 & 0x7];
108 l ^= s << 27;
109 h ^= s >> 5;
110 s = tab[b >> 30];
111 l ^= s << 30;
112 h ^= s >> 2;
113
114 /* compensate for the top two bits of a */
115
116 if (top2b & 01) {
117 l ^= b << 30;
118 h ^= b >> 2;
119 }
120 if (top2b & 02) {
121 l ^= b << 31;
122 h ^= b >> 1;
123 }
124
125 *r1 = h;
126 *r0 = l;
127 }
128 # endif
129 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)130 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
131 const BN_ULONG b)
132 {
133 register BN_ULONG h, l, s;
134 BN_ULONG tab[16], top3b = a >> 61;
135 register BN_ULONG a1, a2, a4, a8;
136
137 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
138 a2 = a1 << 1;
139 a4 = a2 << 1;
140 a8 = a4 << 1;
141
142 tab[0] = 0;
143 tab[1] = a1;
144 tab[2] = a2;
145 tab[3] = a1 ^ a2;
146 tab[4] = a4;
147 tab[5] = a1 ^ a4;
148 tab[6] = a2 ^ a4;
149 tab[7] = a1 ^ a2 ^ a4;
150 tab[8] = a8;
151 tab[9] = a1 ^ a8;
152 tab[10] = a2 ^ a8;
153 tab[11] = a1 ^ a2 ^ a8;
154 tab[12] = a4 ^ a8;
155 tab[13] = a1 ^ a4 ^ a8;
156 tab[14] = a2 ^ a4 ^ a8;
157 tab[15] = a1 ^ a2 ^ a4 ^ a8;
158
159 s = tab[b & 0xF];
160 l = s;
161 s = tab[b >> 4 & 0xF];
162 l ^= s << 4;
163 h = s >> 60;
164 s = tab[b >> 8 & 0xF];
165 l ^= s << 8;
166 h ^= s >> 56;
167 s = tab[b >> 12 & 0xF];
168 l ^= s << 12;
169 h ^= s >> 52;
170 s = tab[b >> 16 & 0xF];
171 l ^= s << 16;
172 h ^= s >> 48;
173 s = tab[b >> 20 & 0xF];
174 l ^= s << 20;
175 h ^= s >> 44;
176 s = tab[b >> 24 & 0xF];
177 l ^= s << 24;
178 h ^= s >> 40;
179 s = tab[b >> 28 & 0xF];
180 l ^= s << 28;
181 h ^= s >> 36;
182 s = tab[b >> 32 & 0xF];
183 l ^= s << 32;
184 h ^= s >> 32;
185 s = tab[b >> 36 & 0xF];
186 l ^= s << 36;
187 h ^= s >> 28;
188 s = tab[b >> 40 & 0xF];
189 l ^= s << 40;
190 h ^= s >> 24;
191 s = tab[b >> 44 & 0xF];
192 l ^= s << 44;
193 h ^= s >> 20;
194 s = tab[b >> 48 & 0xF];
195 l ^= s << 48;
196 h ^= s >> 16;
197 s = tab[b >> 52 & 0xF];
198 l ^= s << 52;
199 h ^= s >> 12;
200 s = tab[b >> 56 & 0xF];
201 l ^= s << 56;
202 h ^= s >> 8;
203 s = tab[b >> 60];
204 l ^= s << 60;
205 h ^= s >> 4;
206
207 /* compensate for the top three bits of a */
208
209 if (top3b & 01) {
210 l ^= b << 61;
211 h ^= b >> 3;
212 }
213 if (top3b & 02) {
214 l ^= b << 62;
215 h ^= b >> 2;
216 }
217 if (top3b & 04) {
218 l ^= b << 63;
219 h ^= b >> 1;
220 }
221
222 *r1 = h;
223 *r0 = l;
224 }
225 # endif
226
227 /*
228 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
229 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
230 * ensure that the variables have the right amount of space allocated.
231 */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)232 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
233 const BN_ULONG b1, const BN_ULONG b0)
234 {
235 BN_ULONG m1, m0;
236 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
237 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
238 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
239 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
240 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
241 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
242 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
243 }
244 # else
245 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
246 BN_ULONG b0);
247 # endif
248
249 /*
250 * Add polynomials a and b and store result in r; r could be a or b, a and b
251 * could be equal; r is the bitwise XOR of a and b.
252 */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)253 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
254 {
255 int i;
256 const BIGNUM *at, *bt;
257
258 bn_check_top(a);
259 bn_check_top(b);
260
261 if (a->top < b->top) {
262 at = b;
263 bt = a;
264 } else {
265 at = a;
266 bt = b;
267 }
268
269 if (bn_wexpand(r, at->top) == NULL)
270 return 0;
271
272 for (i = 0; i < bt->top; i++) {
273 r->d[i] = at->d[i] ^ bt->d[i];
274 }
275 for (; i < at->top; i++) {
276 r->d[i] = at->d[i];
277 }
278
279 r->top = at->top;
280 bn_correct_top(r);
281
282 return 1;
283 }
284
285 /*-
286 * Some functions allow for representation of the irreducible polynomials
287 * as an int[], say p. The irreducible f(t) is then of the form:
288 * t^p[0] + t^p[1] + ... + t^p[k]
289 * where m = p[0] > p[1] > ... > p[k] = 0.
290 */
291
292 /* Performs modular reduction of a and store result in r. r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const int p[])293 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
294 {
295 int j, k;
296 int n, dN, d0, d1;
297 BN_ULONG zz, *z;
298
299 bn_check_top(a);
300
301 if (p[0] == 0) {
302 /* reduction mod 1 => return 0 */
303 BN_zero(r);
304 return 1;
305 }
306
307 /*
308 * Since the algorithm does reduction in the r value, if a != r, copy the
309 * contents of a into r so we can do reduction in r.
310 */
311 if (a != r) {
312 if (!bn_wexpand(r, a->top))
313 return 0;
314 for (j = 0; j < a->top; j++) {
315 r->d[j] = a->d[j];
316 }
317 r->top = a->top;
318 }
319 z = r->d;
320
321 /* start reduction */
322 dN = p[0] / BN_BITS2;
323 for (j = r->top - 1; j > dN;) {
324 zz = z[j];
325 if (z[j] == 0) {
326 j--;
327 continue;
328 }
329 z[j] = 0;
330
331 for (k = 1; p[k] != 0; k++) {
332 /* reducing component t^p[k] */
333 n = p[0] - p[k];
334 d0 = n % BN_BITS2;
335 d1 = BN_BITS2 - d0;
336 n /= BN_BITS2;
337 z[j - n] ^= (zz >> d0);
338 if (d0)
339 z[j - n - 1] ^= (zz << d1);
340 }
341
342 /* reducing component t^0 */
343 n = dN;
344 d0 = p[0] % BN_BITS2;
345 d1 = BN_BITS2 - d0;
346 z[j - n] ^= (zz >> d0);
347 if (d0)
348 z[j - n - 1] ^= (zz << d1);
349 }
350
351 /* final round of reduction */
352 while (j == dN) {
353
354 d0 = p[0] % BN_BITS2;
355 zz = z[dN] >> d0;
356 if (zz == 0)
357 break;
358 d1 = BN_BITS2 - d0;
359
360 /* clear up the top d1 bits */
361 if (d0)
362 z[dN] = (z[dN] << d1) >> d1;
363 else
364 z[dN] = 0;
365 z[0] ^= zz; /* reduction t^0 component */
366
367 for (k = 1; p[k] != 0; k++) {
368 BN_ULONG tmp_ulong;
369
370 /* reducing component t^p[k] */
371 n = p[k] / BN_BITS2;
372 d0 = p[k] % BN_BITS2;
373 d1 = BN_BITS2 - d0;
374 z[n] ^= (zz << d0);
375 if (d0 && (tmp_ulong = zz >> d1))
376 z[n + 1] ^= tmp_ulong;
377 }
378
379 }
380
381 bn_correct_top(r);
382 return 1;
383 }
384
385 /*
386 * Performs modular reduction of a by p and store result in r. r could be a.
387 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
388 * function is only provided for convenience; for best performance, use the
389 * BN_GF2m_mod_arr function.
390 */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)391 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
392 {
393 int ret = 0;
394 int arr[6];
395 bn_check_top(a);
396 bn_check_top(p);
397 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
398 if (!ret || ret > (int)OSSL_NELEM(arr)) {
399 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
400 return 0;
401 }
402 ret = BN_GF2m_mod_arr(r, a, arr);
403 bn_check_top(r);
404 return ret;
405 }
406
407 /*
408 * Compute the product of two polynomials a and b, reduce modulo p, and store
409 * the result in r. r could be a or b; a could be b.
410 */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)411 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
412 const int p[], BN_CTX *ctx)
413 {
414 int zlen, i, j, k, ret = 0;
415 BIGNUM *s;
416 BN_ULONG x1, x0, y1, y0, zz[4];
417
418 bn_check_top(a);
419 bn_check_top(b);
420
421 if (a == b) {
422 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
423 }
424
425 BN_CTX_start(ctx);
426 if ((s = BN_CTX_get(ctx)) == NULL)
427 goto err;
428
429 zlen = a->top + b->top + 4;
430 if (!bn_wexpand(s, zlen))
431 goto err;
432 s->top = zlen;
433
434 for (i = 0; i < zlen; i++)
435 s->d[i] = 0;
436
437 for (j = 0; j < b->top; j += 2) {
438 y0 = b->d[j];
439 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
440 for (i = 0; i < a->top; i += 2) {
441 x0 = a->d[i];
442 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
443 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
444 for (k = 0; k < 4; k++)
445 s->d[i + j + k] ^= zz[k];
446 }
447 }
448
449 bn_correct_top(s);
450 if (BN_GF2m_mod_arr(r, s, p))
451 ret = 1;
452 bn_check_top(r);
453
454 err:
455 BN_CTX_end(ctx);
456 return ret;
457 }
458
459 /*
460 * Compute the product of two polynomials a and b, reduce modulo p, and store
461 * the result in r. r could be a or b; a could equal b. This function calls
462 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
463 * only provided for convenience; for best performance, use the
464 * BN_GF2m_mod_mul_arr function.
465 */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)466 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
467 const BIGNUM *p, BN_CTX *ctx)
468 {
469 int ret = 0;
470 const int max = BN_num_bits(p) + 1;
471 int *arr;
472
473 bn_check_top(a);
474 bn_check_top(b);
475 bn_check_top(p);
476
477 arr = OPENSSL_malloc(sizeof(*arr) * max);
478 if (arr == NULL)
479 return 0;
480 ret = BN_GF2m_poly2arr(p, arr, max);
481 if (!ret || ret > max) {
482 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
483 goto err;
484 }
485 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
486 bn_check_top(r);
487 err:
488 OPENSSL_free(arr);
489 return ret;
490 }
491
492 /* Square a, reduce the result mod p, and store it in a. r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)493 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
494 BN_CTX *ctx)
495 {
496 int i, ret = 0;
497 BIGNUM *s;
498
499 bn_check_top(a);
500 BN_CTX_start(ctx);
501 if ((s = BN_CTX_get(ctx)) == NULL)
502 goto err;
503 if (!bn_wexpand(s, 2 * a->top))
504 goto err;
505
506 for (i = a->top - 1; i >= 0; i--) {
507 s->d[2 * i + 1] = SQR1(a->d[i]);
508 s->d[2 * i] = SQR0(a->d[i]);
509 }
510
511 s->top = 2 * a->top;
512 bn_correct_top(s);
513 if (!BN_GF2m_mod_arr(r, s, p))
514 goto err;
515 bn_check_top(r);
516 ret = 1;
517 err:
518 BN_CTX_end(ctx);
519 return ret;
520 }
521
522 /*
523 * Square a, reduce the result mod p, and store it in a. r could be a. This
524 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
525 * wrapper function is only provided for convenience; for best performance,
526 * use the BN_GF2m_mod_sqr_arr function.
527 */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)528 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
529 {
530 int ret = 0;
531 const int max = BN_num_bits(p) + 1;
532 int *arr;
533
534 bn_check_top(a);
535 bn_check_top(p);
536
537 arr = OPENSSL_malloc(sizeof(*arr) * max);
538 if (arr == NULL)
539 return 0;
540 ret = BN_GF2m_poly2arr(p, arr, max);
541 if (!ret || ret > max) {
542 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
543 goto err;
544 }
545 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
546 bn_check_top(r);
547 err:
548 OPENSSL_free(arr);
549 return ret;
550 }
551
552 /*
553 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
554 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
555 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
556 * Curve Cryptography Over Binary Fields".
557 */
BN_GF2m_mod_inv_vartime(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)558 static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
559 const BIGNUM *p, BN_CTX *ctx)
560 {
561 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
562 int ret = 0;
563
564 bn_check_top(a);
565 bn_check_top(p);
566
567 BN_CTX_start(ctx);
568
569 b = BN_CTX_get(ctx);
570 c = BN_CTX_get(ctx);
571 u = BN_CTX_get(ctx);
572 v = BN_CTX_get(ctx);
573 if (v == NULL)
574 goto err;
575
576 if (!BN_GF2m_mod(u, a, p))
577 goto err;
578 if (BN_is_zero(u))
579 goto err;
580
581 if (!BN_copy(v, p))
582 goto err;
583 # if 0
584 if (!BN_one(b))
585 goto err;
586
587 while (1) {
588 while (!BN_is_odd(u)) {
589 if (BN_is_zero(u))
590 goto err;
591 if (!BN_rshift1(u, u))
592 goto err;
593 if (BN_is_odd(b)) {
594 if (!BN_GF2m_add(b, b, p))
595 goto err;
596 }
597 if (!BN_rshift1(b, b))
598 goto err;
599 }
600
601 if (BN_abs_is_word(u, 1))
602 break;
603
604 if (BN_num_bits(u) < BN_num_bits(v)) {
605 tmp = u;
606 u = v;
607 v = tmp;
608 tmp = b;
609 b = c;
610 c = tmp;
611 }
612
613 if (!BN_GF2m_add(u, u, v))
614 goto err;
615 if (!BN_GF2m_add(b, b, c))
616 goto err;
617 }
618 # else
619 {
620 int i;
621 int ubits = BN_num_bits(u);
622 int vbits = BN_num_bits(v); /* v is copy of p */
623 int top = p->top;
624 BN_ULONG *udp, *bdp, *vdp, *cdp;
625
626 if (!bn_wexpand(u, top))
627 goto err;
628 udp = u->d;
629 for (i = u->top; i < top; i++)
630 udp[i] = 0;
631 u->top = top;
632 if (!bn_wexpand(b, top))
633 goto err;
634 bdp = b->d;
635 bdp[0] = 1;
636 for (i = 1; i < top; i++)
637 bdp[i] = 0;
638 b->top = top;
639 if (!bn_wexpand(c, top))
640 goto err;
641 cdp = c->d;
642 for (i = 0; i < top; i++)
643 cdp[i] = 0;
644 c->top = top;
645 vdp = v->d; /* It pays off to "cache" *->d pointers,
646 * because it allows optimizer to be more
647 * aggressive. But we don't have to "cache"
648 * p->d, because *p is declared 'const'... */
649 while (1) {
650 while (ubits && !(udp[0] & 1)) {
651 BN_ULONG u0, u1, b0, b1, mask;
652
653 u0 = udp[0];
654 b0 = bdp[0];
655 mask = (BN_ULONG)0 - (b0 & 1);
656 b0 ^= p->d[0] & mask;
657 for (i = 0; i < top - 1; i++) {
658 u1 = udp[i + 1];
659 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
660 u0 = u1;
661 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
662 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
663 b0 = b1;
664 }
665 udp[i] = u0 >> 1;
666 bdp[i] = b0 >> 1;
667 ubits--;
668 }
669
670 if (ubits <= BN_BITS2) {
671 if (udp[0] == 0) /* poly was reducible */
672 goto err;
673 if (udp[0] == 1)
674 break;
675 }
676
677 if (ubits < vbits) {
678 i = ubits;
679 ubits = vbits;
680 vbits = i;
681 tmp = u;
682 u = v;
683 v = tmp;
684 tmp = b;
685 b = c;
686 c = tmp;
687 udp = vdp;
688 vdp = v->d;
689 bdp = cdp;
690 cdp = c->d;
691 }
692 for (i = 0; i < top; i++) {
693 udp[i] ^= vdp[i];
694 bdp[i] ^= cdp[i];
695 }
696 if (ubits == vbits) {
697 BN_ULONG ul;
698 int utop = (ubits - 1) / BN_BITS2;
699
700 while ((ul = udp[utop]) == 0 && utop)
701 utop--;
702 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
703 }
704 }
705 bn_correct_top(b);
706 }
707 # endif
708
709 if (!BN_copy(r, b))
710 goto err;
711 bn_check_top(r);
712 ret = 1;
713
714 err:
715 # ifdef BN_DEBUG
716 /* BN_CTX_end would complain about the expanded form */
717 bn_correct_top(c);
718 bn_correct_top(u);
719 bn_correct_top(v);
720 # endif
721 BN_CTX_end(ctx);
722 return ret;
723 }
724
725 /*-
726 * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
727 * This is not constant time.
728 * But it does eliminate first order deduction on the input.
729 */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)730 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
731 {
732 BIGNUM *b = NULL;
733 int ret = 0;
734 int numbits;
735
736 BN_CTX_start(ctx);
737 if ((b = BN_CTX_get(ctx)) == NULL)
738 goto err;
739
740 /* Fail on a non-sensical input p value */
741 numbits = BN_num_bits(p);
742 if (numbits <= 1)
743 goto err;
744
745 /* generate blinding value */
746 do {
747 if (!BN_priv_rand_ex(b, numbits - 1,
748 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
749 goto err;
750 } while (BN_is_zero(b));
751
752 /* r := a * b */
753 if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
754 goto err;
755
756 /* r := 1/(a * b) */
757 if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
758 goto err;
759
760 /* r := b/(a * b) = 1/a */
761 if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
762 goto err;
763
764 ret = 1;
765
766 err:
767 BN_CTX_end(ctx);
768 return ret;
769 }
770
771 /*
772 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
773 * This function calls down to the BN_GF2m_mod_inv implementation; this
774 * wrapper function is only provided for convenience; for best performance,
775 * use the BN_GF2m_mod_inv function.
776 */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const int p[],BN_CTX * ctx)777 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
778 BN_CTX *ctx)
779 {
780 BIGNUM *field;
781 int ret = 0;
782
783 bn_check_top(xx);
784 BN_CTX_start(ctx);
785 if ((field = BN_CTX_get(ctx)) == NULL)
786 goto err;
787 if (!BN_GF2m_arr2poly(p, field))
788 goto err;
789
790 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
791 bn_check_top(r);
792
793 err:
794 BN_CTX_end(ctx);
795 return ret;
796 }
797
798 /*
799 * Divide y by x, reduce modulo p, and store the result in r. r could be x
800 * or y, x could equal y.
801 */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)802 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
803 const BIGNUM *p, BN_CTX *ctx)
804 {
805 BIGNUM *xinv = NULL;
806 int ret = 0;
807
808 bn_check_top(y);
809 bn_check_top(x);
810 bn_check_top(p);
811
812 BN_CTX_start(ctx);
813 xinv = BN_CTX_get(ctx);
814 if (xinv == NULL)
815 goto err;
816
817 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
818 goto err;
819 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
820 goto err;
821 bn_check_top(r);
822 ret = 1;
823
824 err:
825 BN_CTX_end(ctx);
826 return ret;
827 }
828
829 /*
830 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
831 * * or yy, xx could equal yy. This function calls down to the
832 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
833 * convenience; for best performance, use the BN_GF2m_mod_div function.
834 */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const int p[],BN_CTX * ctx)835 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
836 const int p[], BN_CTX *ctx)
837 {
838 BIGNUM *field;
839 int ret = 0;
840
841 bn_check_top(yy);
842 bn_check_top(xx);
843
844 BN_CTX_start(ctx);
845 if ((field = BN_CTX_get(ctx)) == NULL)
846 goto err;
847 if (!BN_GF2m_arr2poly(p, field))
848 goto err;
849
850 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
851 bn_check_top(r);
852
853 err:
854 BN_CTX_end(ctx);
855 return ret;
856 }
857
858 /*
859 * Compute the bth power of a, reduce modulo p, and store the result in r. r
860 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
861 * P1363.
862 */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)863 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
864 const int p[], BN_CTX *ctx)
865 {
866 int ret = 0, i, n;
867 BIGNUM *u;
868
869 bn_check_top(a);
870 bn_check_top(b);
871
872 if (BN_is_zero(b))
873 return BN_one(r);
874
875 if (BN_abs_is_word(b, 1))
876 return (BN_copy(r, a) != NULL);
877
878 BN_CTX_start(ctx);
879 if ((u = BN_CTX_get(ctx)) == NULL)
880 goto err;
881
882 if (!BN_GF2m_mod_arr(u, a, p))
883 goto err;
884
885 n = BN_num_bits(b) - 1;
886 for (i = n - 1; i >= 0; i--) {
887 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
888 goto err;
889 if (BN_is_bit_set(b, i)) {
890 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
891 goto err;
892 }
893 }
894 if (!BN_copy(r, u))
895 goto err;
896 bn_check_top(r);
897 ret = 1;
898 err:
899 BN_CTX_end(ctx);
900 return ret;
901 }
902
903 /*
904 * Compute the bth power of a, reduce modulo p, and store the result in r. r
905 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
906 * implementation; this wrapper function is only provided for convenience;
907 * for best performance, use the BN_GF2m_mod_exp_arr function.
908 */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)909 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
910 const BIGNUM *p, BN_CTX *ctx)
911 {
912 int ret = 0;
913 const int max = BN_num_bits(p) + 1;
914 int *arr;
915
916 bn_check_top(a);
917 bn_check_top(b);
918 bn_check_top(p);
919
920 arr = OPENSSL_malloc(sizeof(*arr) * max);
921 if (arr == NULL)
922 return 0;
923 ret = BN_GF2m_poly2arr(p, arr, max);
924 if (!ret || ret > max) {
925 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
926 goto err;
927 }
928 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
929 bn_check_top(r);
930 err:
931 OPENSSL_free(arr);
932 return ret;
933 }
934
935 /*
936 * Compute the square root of a, reduce modulo p, and store the result in r.
937 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
938 */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)939 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
940 BN_CTX *ctx)
941 {
942 int ret = 0;
943 BIGNUM *u;
944
945 bn_check_top(a);
946
947 if (p[0] == 0) {
948 /* reduction mod 1 => return 0 */
949 BN_zero(r);
950 return 1;
951 }
952
953 BN_CTX_start(ctx);
954 if ((u = BN_CTX_get(ctx)) == NULL)
955 goto err;
956
957 if (!BN_set_bit(u, p[0] - 1))
958 goto err;
959 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
960 bn_check_top(r);
961
962 err:
963 BN_CTX_end(ctx);
964 return ret;
965 }
966
967 /*
968 * Compute the square root of a, reduce modulo p, and store the result in r.
969 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
970 * implementation; this wrapper function is only provided for convenience;
971 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
972 */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)973 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
974 {
975 int ret = 0;
976 const int max = BN_num_bits(p) + 1;
977 int *arr;
978
979 bn_check_top(a);
980 bn_check_top(p);
981
982 arr = OPENSSL_malloc(sizeof(*arr) * max);
983 if (arr == NULL)
984 return 0;
985 ret = BN_GF2m_poly2arr(p, arr, max);
986 if (!ret || ret > max) {
987 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
988 goto err;
989 }
990 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
991 bn_check_top(r);
992 err:
993 OPENSSL_free(arr);
994 return ret;
995 }
996
997 /*
998 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
999 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1000 */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const int p[],BN_CTX * ctx)1001 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1002 BN_CTX *ctx)
1003 {
1004 int ret = 0, count = 0, j;
1005 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1006
1007 bn_check_top(a_);
1008
1009 if (p[0] == 0) {
1010 /* reduction mod 1 => return 0 */
1011 BN_zero(r);
1012 return 1;
1013 }
1014
1015 BN_CTX_start(ctx);
1016 a = BN_CTX_get(ctx);
1017 z = BN_CTX_get(ctx);
1018 w = BN_CTX_get(ctx);
1019 if (w == NULL)
1020 goto err;
1021
1022 if (!BN_GF2m_mod_arr(a, a_, p))
1023 goto err;
1024
1025 if (BN_is_zero(a)) {
1026 BN_zero(r);
1027 ret = 1;
1028 goto err;
1029 }
1030
1031 if (p[0] & 0x1) { /* m is odd */
1032 /* compute half-trace of a */
1033 if (!BN_copy(z, a))
1034 goto err;
1035 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1036 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1037 goto err;
1038 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1039 goto err;
1040 if (!BN_GF2m_add(z, z, a))
1041 goto err;
1042 }
1043
1044 } else { /* m is even */
1045
1046 rho = BN_CTX_get(ctx);
1047 w2 = BN_CTX_get(ctx);
1048 tmp = BN_CTX_get(ctx);
1049 if (tmp == NULL)
1050 goto err;
1051 do {
1052 if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1053 0, ctx))
1054 goto err;
1055 if (!BN_GF2m_mod_arr(rho, rho, p))
1056 goto err;
1057 BN_zero(z);
1058 if (!BN_copy(w, rho))
1059 goto err;
1060 for (j = 1; j <= p[0] - 1; j++) {
1061 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1062 goto err;
1063 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1064 goto err;
1065 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1066 goto err;
1067 if (!BN_GF2m_add(z, z, tmp))
1068 goto err;
1069 if (!BN_GF2m_add(w, w2, rho))
1070 goto err;
1071 }
1072 count++;
1073 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1074 if (BN_is_zero(w)) {
1075 ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1076 goto err;
1077 }
1078 }
1079
1080 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1081 goto err;
1082 if (!BN_GF2m_add(w, z, w))
1083 goto err;
1084 if (BN_GF2m_cmp(w, a)) {
1085 ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1086 goto err;
1087 }
1088
1089 if (!BN_copy(r, z))
1090 goto err;
1091 bn_check_top(r);
1092
1093 ret = 1;
1094
1095 err:
1096 BN_CTX_end(ctx);
1097 return ret;
1098 }
1099
1100 /*
1101 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1102 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1103 * implementation; this wrapper function is only provided for convenience;
1104 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1105 */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1106 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1107 BN_CTX *ctx)
1108 {
1109 int ret = 0;
1110 const int max = BN_num_bits(p) + 1;
1111 int *arr;
1112
1113 bn_check_top(a);
1114 bn_check_top(p);
1115
1116 arr = OPENSSL_malloc(sizeof(*arr) * max);
1117 if (arr == NULL)
1118 goto err;
1119 ret = BN_GF2m_poly2arr(p, arr, max);
1120 if (!ret || ret > max) {
1121 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1122 goto err;
1123 }
1124 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1125 bn_check_top(r);
1126 err:
1127 OPENSSL_free(arr);
1128 return ret;
1129 }
1130
1131 /*
1132 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1133 * x^i) into an array of integers corresponding to the bits with non-zero
1134 * coefficient. The array is intended to be suitable for use with
1135 * `BN_GF2m_mod_arr()`, and so the constant term of the polynomial must not be
1136 * zero. This translates to a requirement that the input BIGNUM `a` is odd.
1137 *
1138 * Given sufficient room, the array is terminated with -1. Up to max elements
1139 * of the array will be filled.
1140 *
1141 * The return value is total number of array elements that would be filled if
1142 * array was large enough, including the terminating `-1`. It is `0` when `a`
1143 * is not odd or the constant term is zero contrary to requirement.
1144 *
1145 * The return value is also `0` when the leading exponent exceeds
1146 * `OPENSSL_ECC_MAX_FIELD_BITS`, this guards against CPU exhaustion attacks,
1147 */
BN_GF2m_poly2arr(const BIGNUM * a,int p[],int max)1148 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1149 {
1150 int i, j, k = 0;
1151 BN_ULONG mask;
1152
1153 if (!BN_is_odd(a))
1154 return 0;
1155
1156 for (i = a->top - 1; i >= 0; i--) {
1157 if (!a->d[i])
1158 /* skip word if a->d[i] == 0 */
1159 continue;
1160 mask = BN_TBIT;
1161 for (j = BN_BITS2 - 1; j >= 0; j--) {
1162 if (a->d[i] & mask) {
1163 if (k < max)
1164 p[k] = BN_BITS2 * i + j;
1165 k++;
1166 }
1167 mask >>= 1;
1168 }
1169 }
1170
1171 if (k > 0 && p[0] > OPENSSL_ECC_MAX_FIELD_BITS)
1172 return 0;
1173
1174 if (k < max)
1175 p[k] = -1;
1176
1177 return k + 1;
1178 }
1179
1180 /*
1181 * Convert the coefficient array representation of a polynomial to a
1182 * bit-string. The array must be terminated by -1.
1183 */
BN_GF2m_arr2poly(const int p[],BIGNUM * a)1184 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1185 {
1186 int i;
1187
1188 bn_check_top(a);
1189 BN_zero(a);
1190 for (i = 0; p[i] != -1; i++) {
1191 if (BN_set_bit(a, p[i]) == 0)
1192 return 0;
1193 }
1194 bn_check_top(a);
1195
1196 return 1;
1197 }
1198
1199 #endif
1200