1 /*
2 * Copyright 2002-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /**
11 * rijndael-alg-fst.c
12 *
13 * @version 3.0 (December 2000)
14 *
15 * Optimised ANSI C code for the Rijndael cipher (now AES)
16 *
17 * @author Vincent Rijmen
18 * @author Antoon Bosselaers
19 * @author Paulo Barreto
20 *
21 * This code is hereby placed in the public domain.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
24 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
33 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /* Note: rewritten a little bit to provide error control and an OpenSSL-
37 compatible API */
38
39 /*
40 * AES low level APIs are deprecated for public use, but still ok for internal
41 * use where we're using them to implement the higher level EVP interface, as is
42 * the case here.
43 */
44 #include "internal/deprecated.h"
45
46 #include <assert.h>
47
48 #include <stdlib.h>
49 #include <openssl/crypto.h>
50 #include <openssl/aes.h>
51 #include "aes_local.h"
52
53 #if defined(OPENSSL_AES_CONST_TIME) && !defined(AES_ASM)
54
55 # if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
56 # define U64(C) C##UI64
57 # elif defined(__arch64__)
58 # define U64(C) C##UL
59 # else
60 # define U64(C) C##ULL
61 # endif
62
63 typedef union {
64 unsigned char b[8];
65 u32 w[2];
66 u64 d;
67 } uni;
68
69 /*
70 * Compute w := (w * x) mod (x^8 + x^4 + x^3 + x^1 + 1)
71 * Therefore the name "xtime".
72 */
XtimeWord(u32 * w)73 static void XtimeWord(u32 *w)
74 {
75 u32 a, b;
76
77 a = *w;
78 b = a & 0x80808080u;
79 a ^= b;
80 b -= b >> 7;
81 b &= 0x1B1B1B1Bu;
82 b ^= a << 1;
83 *w = b;
84 }
85
XtimeLong(u64 * w)86 static void XtimeLong(u64 *w)
87 {
88 u64 a, b;
89
90 a = *w;
91 b = a & U64(0x8080808080808080);
92 a ^= b;
93 b -= b >> 7;
94 b &= U64(0x1B1B1B1B1B1B1B1B);
95 b ^= a << 1;
96 *w = b;
97 }
98
99 /*
100 * This computes w := S * w ^ -1 + c, where c = {01100011}.
101 * Instead of using GF(2^8) mod (x^8+x^4+x^3+x+1} we do the inversion
102 * in GF(GF(GF(2^2)^2)^2) mod (X^2+X+8)
103 * and GF(GF(2^2)^2) mod (X^2+X+2)
104 * and GF(2^2) mod (X^2+X+1)
105 * The first part of the algorithm below transfers the coordinates
106 * {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80} =>
107 * {1,Y,Y^2,Y^3,Y^4,Y^5,Y^6,Y^7} with Y=0x41:
108 * {0x01,0x41,0x66,0x6c,0x56,0x9a,0x58,0xc4}
109 * The last part undoes the coordinate transfer and the final affine
110 * transformation S:
111 * b[i] = b[i] + b[(i+4)%8] + b[(i+5)%8] + b[(i+6)%8] + b[(i+7)%8] + c[i]
112 * in one step.
113 * The multiplication in GF(2^2^2^2) is done in ordinary coords:
114 * A = (a0*1 + a1*x^4)
115 * B = (b0*1 + b1*x^4)
116 * AB = ((a0*b0 + 8*a1*b1)*1 + (a1*b0 + (a0+a1)*b1)*x^4)
117 * When A = (a0,a1) is given we want to solve AB = 1:
118 * (a) 1 = a0*b0 + 8*a1*b1
119 * (b) 0 = a1*b0 + (a0+a1)*b1
120 * => multiply (a) by a1 and (b) by a0
121 * (c) a1 = a1*a0*b0 + (8*a1*a1)*b1
122 * (d) 0 = a1*a0*b0 + (a0*a0+a1*a0)*b1
123 * => add (c) + (d)
124 * (e) a1 = (a0*a0 + a1*a0 + 8*a1*a1)*b1
125 * => therefore
126 * b1 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * a1
127 * => and adding (a1*b0) to (b) we get
128 * (f) a1*b0 = (a0+a1)*b1
129 * => therefore
130 * b0 = (a0*a0 + a1*a0 + 8*a1*a1)^-1 * (a0+a1)
131 * Note this formula also works for the case
132 * (a0+a1)*a0 + 8*a1*a1 = 0
133 * if the inverse element for 0^-1 is mapped to 0.
134 * Repeat the same for GF(2^2^2) and GF(2^2).
135 * We get the following algorithm:
136 * inv8(a0,a1):
137 * x0 = a0^a1
138 * [y0,y1] = mul4([x0,a1],[a0,a1]); (*)
139 * y1 = mul4(8,y1);
140 * t = inv4(y0^y1);
141 * [b0,b1] = mul4([x0,a1],[t,t]); (*)
142 * return [b0,b1];
143 * The non-linear multiplies (*) can be done in parallel at no extra cost.
144 */
SubWord(u32 * w)145 static void SubWord(u32 *w)
146 {
147 u32 x, y, a1, a2, a3, a4, a5, a6;
148
149 x = *w;
150 y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7);
151 x &= 0xDDDDDDDDu;
152 x ^= y & 0x57575757u;
153 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
154 x ^= y & 0x1C1C1C1Cu;
155 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
156 x ^= y & 0x4A4A4A4Au;
157 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
158 x ^= y & 0x42424242u;
159 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
160 x ^= y & 0x64646464u;
161 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
162 x ^= y & 0xE0E0E0E0u;
163 a1 = x;
164 a1 ^= (x & 0xF0F0F0F0u) >> 4;
165 a2 = ((x & 0xCCCCCCCCu) >> 2) | ((x & 0x33333333u) << 2);
166 a3 = x & a1;
167 a3 ^= (a3 & 0xAAAAAAAAu) >> 1;
168 a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & 0xAAAAAAAAu;
169 a4 = a2 & a1;
170 a4 ^= (a4 & 0xAAAAAAAAu) >> 1;
171 a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & 0xAAAAAAAAu;
172 a5 = (a3 & 0xCCCCCCCCu) >> 2;
173 a3 ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu;
174 a4 = a5 & 0x22222222u;
175 a4 |= a4 >> 1;
176 a4 ^= (a5 << 1) & 0x22222222u;
177 a3 ^= a4;
178 a5 = a3 & 0xA0A0A0A0u;
179 a5 |= a5 >> 1;
180 a5 ^= (a3 << 1) & 0xA0A0A0A0u;
181 a4 = a5 & 0xC0C0C0C0u;
182 a6 = a4 >> 2;
183 a4 ^= (a5 << 2) & 0xC0C0C0C0u;
184 a5 = a6 & 0x20202020u;
185 a5 |= a5 >> 1;
186 a5 ^= (a6 << 1) & 0x20202020u;
187 a4 |= a5;
188 a3 ^= a4 >> 4;
189 a3 &= 0x0F0F0F0Fu;
190 a2 = a3;
191 a2 ^= (a3 & 0x0C0C0C0Cu) >> 2;
192 a4 = a3 & a2;
193 a4 ^= (a4 & 0x0A0A0A0A0Au) >> 1;
194 a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & 0x0A0A0A0Au;
195 a5 = a4 & 0x08080808u;
196 a5 |= a5 >> 1;
197 a5 ^= (a4 << 1) & 0x08080808u;
198 a4 ^= a5 >> 2;
199 a4 &= 0x03030303u;
200 a4 ^= (a4 & 0x02020202u) >> 1;
201 a4 |= a4 << 2;
202 a3 = a2 & a4;
203 a3 ^= (a3 & 0x0A0A0A0Au) >> 1;
204 a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & 0x0A0A0A0Au;
205 a3 |= a3 << 4;
206 a2 = ((a1 & 0xCCCCCCCCu) >> 2) | ((a1 & 0x33333333u) << 2);
207 x = a1 & a3;
208 x ^= (x & 0xAAAAAAAAu) >> 1;
209 x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & 0xAAAAAAAAu;
210 a4 = a2 & a3;
211 a4 ^= (a4 & 0xAAAAAAAAu) >> 1;
212 a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & 0xAAAAAAAAu;
213 a5 = (x & 0xCCCCCCCCu) >> 2;
214 x ^= ((a4 << 2) ^ a4) & 0xCCCCCCCCu;
215 a4 = a5 & 0x22222222u;
216 a4 |= a4 >> 1;
217 a4 ^= (a5 << 1) & 0x22222222u;
218 x ^= a4;
219 y = ((x & 0xFEFEFEFEu) >> 1) | ((x & 0x01010101u) << 7);
220 x &= 0x39393939u;
221 x ^= y & 0x3F3F3F3Fu;
222 y = ((y & 0xFCFCFCFCu) >> 2) | ((y & 0x03030303u) << 6);
223 x ^= y & 0x97979797u;
224 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
225 x ^= y & 0x9B9B9B9Bu;
226 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
227 x ^= y & 0x3C3C3C3Cu;
228 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
229 x ^= y & 0xDDDDDDDDu;
230 y = ((y & 0xFEFEFEFEu) >> 1) | ((y & 0x01010101u) << 7);
231 x ^= y & 0x72727272u;
232 x ^= 0x63636363u;
233 *w = x;
234 }
235
SubLong(u64 * w)236 static void SubLong(u64 *w)
237 {
238 u64 x, y, a1, a2, a3, a4, a5, a6;
239
240 x = *w;
241 y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7);
242 x &= U64(0xDDDDDDDDDDDDDDDD);
243 x ^= y & U64(0x5757575757575757);
244 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
245 x ^= y & U64(0x1C1C1C1C1C1C1C1C);
246 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
247 x ^= y & U64(0x4A4A4A4A4A4A4A4A);
248 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
249 x ^= y & U64(0x4242424242424242);
250 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
251 x ^= y & U64(0x6464646464646464);
252 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
253 x ^= y & U64(0xE0E0E0E0E0E0E0E0);
254 a1 = x;
255 a1 ^= (x & U64(0xF0F0F0F0F0F0F0F0)) >> 4;
256 a2 = ((x & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((x & U64(0x3333333333333333)) << 2);
257 a3 = x & a1;
258 a3 ^= (a3 & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
259 a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & U64(0xAAAAAAAAAAAAAAAA);
260 a4 = a2 & a1;
261 a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
262 a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA);
263 a5 = (a3 & U64(0xCCCCCCCCCCCCCCCC)) >> 2;
264 a3 ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC);
265 a4 = a5 & U64(0x2222222222222222);
266 a4 |= a4 >> 1;
267 a4 ^= (a5 << 1) & U64(0x2222222222222222);
268 a3 ^= a4;
269 a5 = a3 & U64(0xA0A0A0A0A0A0A0A0);
270 a5 |= a5 >> 1;
271 a5 ^= (a3 << 1) & U64(0xA0A0A0A0A0A0A0A0);
272 a4 = a5 & U64(0xC0C0C0C0C0C0C0C0);
273 a6 = a4 >> 2;
274 a4 ^= (a5 << 2) & U64(0xC0C0C0C0C0C0C0C0);
275 a5 = a6 & U64(0x2020202020202020);
276 a5 |= a5 >> 1;
277 a5 ^= (a6 << 1) & U64(0x2020202020202020);
278 a4 |= a5;
279 a3 ^= a4 >> 4;
280 a3 &= U64(0x0F0F0F0F0F0F0F0F);
281 a2 = a3;
282 a2 ^= (a3 & U64(0x0C0C0C0C0C0C0C0C)) >> 2;
283 a4 = a3 & a2;
284 a4 ^= (a4 & U64(0x0A0A0A0A0A0A0A0A)) >> 1;
285 a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & U64(0x0A0A0A0A0A0A0A0A);
286 a5 = a4 & U64(0x0808080808080808);
287 a5 |= a5 >> 1;
288 a5 ^= (a4 << 1) & U64(0x0808080808080808);
289 a4 ^= a5 >> 2;
290 a4 &= U64(0x0303030303030303);
291 a4 ^= (a4 & U64(0x0202020202020202)) >> 1;
292 a4 |= a4 << 2;
293 a3 = a2 & a4;
294 a3 ^= (a3 & U64(0x0A0A0A0A0A0A0A0A)) >> 1;
295 a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & U64(0x0A0A0A0A0A0A0A0A);
296 a3 |= a3 << 4;
297 a2 = ((a1 & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((a1 & U64(0x3333333333333333)) << 2);
298 x = a1 & a3;
299 x ^= (x & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
300 x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & U64(0xAAAAAAAAAAAAAAAA);
301 a4 = a2 & a3;
302 a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
303 a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA);
304 a5 = (x & U64(0xCCCCCCCCCCCCCCCC)) >> 2;
305 x ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC);
306 a4 = a5 & U64(0x2222222222222222);
307 a4 |= a4 >> 1;
308 a4 ^= (a5 << 1) & U64(0x2222222222222222);
309 x ^= a4;
310 y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7);
311 x &= U64(0x3939393939393939);
312 x ^= y & U64(0x3F3F3F3F3F3F3F3F);
313 y = ((y & U64(0xFCFCFCFCFCFCFCFC)) >> 2) | ((y & U64(0x0303030303030303)) << 6);
314 x ^= y & U64(0x9797979797979797);
315 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
316 x ^= y & U64(0x9B9B9B9B9B9B9B9B);
317 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
318 x ^= y & U64(0x3C3C3C3C3C3C3C3C);
319 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
320 x ^= y & U64(0xDDDDDDDDDDDDDDDD);
321 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
322 x ^= y & U64(0x7272727272727272);
323 x ^= U64(0x6363636363636363);
324 *w = x;
325 }
326
327 /*
328 * This computes w := (S^-1 * (w + c))^-1
329 */
InvSubLong(u64 * w)330 static void InvSubLong(u64 *w)
331 {
332 u64 x, y, a1, a2, a3, a4, a5, a6;
333
334 x = *w;
335 x ^= U64(0x6363636363636363);
336 y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7);
337 x &= U64(0xFDFDFDFDFDFDFDFD);
338 x ^= y & U64(0x5E5E5E5E5E5E5E5E);
339 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
340 x ^= y & U64(0xF3F3F3F3F3F3F3F3);
341 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
342 x ^= y & U64(0xF5F5F5F5F5F5F5F5);
343 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
344 x ^= y & U64(0x7878787878787878);
345 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
346 x ^= y & U64(0x7777777777777777);
347 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
348 x ^= y & U64(0x1515151515151515);
349 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
350 x ^= y & U64(0xA5A5A5A5A5A5A5A5);
351 a1 = x;
352 a1 ^= (x & U64(0xF0F0F0F0F0F0F0F0)) >> 4;
353 a2 = ((x & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((x & U64(0x3333333333333333)) << 2);
354 a3 = x & a1;
355 a3 ^= (a3 & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
356 a3 ^= (((x << 1) & a1) ^ ((a1 << 1) & x)) & U64(0xAAAAAAAAAAAAAAAA);
357 a4 = a2 & a1;
358 a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
359 a4 ^= (((a2 << 1) & a1) ^ ((a1 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA);
360 a5 = (a3 & U64(0xCCCCCCCCCCCCCCCC)) >> 2;
361 a3 ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC);
362 a4 = a5 & U64(0x2222222222222222);
363 a4 |= a4 >> 1;
364 a4 ^= (a5 << 1) & U64(0x2222222222222222);
365 a3 ^= a4;
366 a5 = a3 & U64(0xA0A0A0A0A0A0A0A0);
367 a5 |= a5 >> 1;
368 a5 ^= (a3 << 1) & U64(0xA0A0A0A0A0A0A0A0);
369 a4 = a5 & U64(0xC0C0C0C0C0C0C0C0);
370 a6 = a4 >> 2;
371 a4 ^= (a5 << 2) & U64(0xC0C0C0C0C0C0C0C0);
372 a5 = a6 & U64(0x2020202020202020);
373 a5 |= a5 >> 1;
374 a5 ^= (a6 << 1) & U64(0x2020202020202020);
375 a4 |= a5;
376 a3 ^= a4 >> 4;
377 a3 &= U64(0x0F0F0F0F0F0F0F0F);
378 a2 = a3;
379 a2 ^= (a3 & U64(0x0C0C0C0C0C0C0C0C)) >> 2;
380 a4 = a3 & a2;
381 a4 ^= (a4 & U64(0x0A0A0A0A0A0A0A0A)) >> 1;
382 a4 ^= (((a3 << 1) & a2) ^ ((a2 << 1) & a3)) & U64(0x0A0A0A0A0A0A0A0A);
383 a5 = a4 & U64(0x0808080808080808);
384 a5 |= a5 >> 1;
385 a5 ^= (a4 << 1) & U64(0x0808080808080808);
386 a4 ^= a5 >> 2;
387 a4 &= U64(0x0303030303030303);
388 a4 ^= (a4 & U64(0x0202020202020202)) >> 1;
389 a4 |= a4 << 2;
390 a3 = a2 & a4;
391 a3 ^= (a3 & U64(0x0A0A0A0A0A0A0A0A)) >> 1;
392 a3 ^= (((a2 << 1) & a4) ^ ((a4 << 1) & a2)) & U64(0x0A0A0A0A0A0A0A0A);
393 a3 |= a3 << 4;
394 a2 = ((a1 & U64(0xCCCCCCCCCCCCCCCC)) >> 2) | ((a1 & U64(0x3333333333333333)) << 2);
395 x = a1 & a3;
396 x ^= (x & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
397 x ^= (((a1 << 1) & a3) ^ ((a3 << 1) & a1)) & U64(0xAAAAAAAAAAAAAAAA);
398 a4 = a2 & a3;
399 a4 ^= (a4 & U64(0xAAAAAAAAAAAAAAAA)) >> 1;
400 a4 ^= (((a2 << 1) & a3) ^ ((a3 << 1) & a2)) & U64(0xAAAAAAAAAAAAAAAA);
401 a5 = (x & U64(0xCCCCCCCCCCCCCCCC)) >> 2;
402 x ^= ((a4 << 2) ^ a4) & U64(0xCCCCCCCCCCCCCCCC);
403 a4 = a5 & U64(0x2222222222222222);
404 a4 |= a4 >> 1;
405 a4 ^= (a5 << 1) & U64(0x2222222222222222);
406 x ^= a4;
407 y = ((x & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((x & U64(0x0101010101010101)) << 7);
408 x &= U64(0xB5B5B5B5B5B5B5B5);
409 x ^= y & U64(0x4040404040404040);
410 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
411 x ^= y & U64(0x8080808080808080);
412 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
413 x ^= y & U64(0x1616161616161616);
414 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
415 x ^= y & U64(0xEBEBEBEBEBEBEBEB);
416 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
417 x ^= y & U64(0x9797979797979797);
418 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
419 x ^= y & U64(0xFBFBFBFBFBFBFBFB);
420 y = ((y & U64(0xFEFEFEFEFEFEFEFE)) >> 1) | ((y & U64(0x0101010101010101)) << 7);
421 x ^= y & U64(0x7D7D7D7D7D7D7D7D);
422 *w = x;
423 }
424
ShiftRows(u64 * state)425 static void ShiftRows(u64 *state)
426 {
427 unsigned char s[4];
428 unsigned char *s0;
429 int r;
430
431 s0 = (unsigned char *)state;
432 for (r = 0; r < 4; r++) {
433 s[0] = s0[0*4 + r];
434 s[1] = s0[1*4 + r];
435 s[2] = s0[2*4 + r];
436 s[3] = s0[3*4 + r];
437 s0[0*4 + r] = s[(r+0) % 4];
438 s0[1*4 + r] = s[(r+1) % 4];
439 s0[2*4 + r] = s[(r+2) % 4];
440 s0[3*4 + r] = s[(r+3) % 4];
441 }
442 }
443
InvShiftRows(u64 * state)444 static void InvShiftRows(u64 *state)
445 {
446 unsigned char s[4];
447 unsigned char *s0;
448 int r;
449
450 s0 = (unsigned char *)state;
451 for (r = 0; r < 4; r++) {
452 s[0] = s0[0*4 + r];
453 s[1] = s0[1*4 + r];
454 s[2] = s0[2*4 + r];
455 s[3] = s0[3*4 + r];
456 s0[0*4 + r] = s[(4-r) % 4];
457 s0[1*4 + r] = s[(5-r) % 4];
458 s0[2*4 + r] = s[(6-r) % 4];
459 s0[3*4 + r] = s[(7-r) % 4];
460 }
461 }
462
MixColumns(u64 * state)463 static void MixColumns(u64 *state)
464 {
465 uni s1;
466 uni s;
467 int c;
468
469 for (c = 0; c < 2; c++) {
470 s1.d = state[c];
471 s.d = s1.d;
472 s.d ^= ((s.d & U64(0xFFFF0000FFFF0000)) >> 16)
473 | ((s.d & U64(0x0000FFFF0000FFFF)) << 16);
474 s.d ^= ((s.d & U64(0xFF00FF00FF00FF00)) >> 8)
475 | ((s.d & U64(0x00FF00FF00FF00FF)) << 8);
476 s.d ^= s1.d;
477 XtimeLong(&s1.d);
478 s.d ^= s1.d;
479 s.b[0] ^= s1.b[1];
480 s.b[1] ^= s1.b[2];
481 s.b[2] ^= s1.b[3];
482 s.b[3] ^= s1.b[0];
483 s.b[4] ^= s1.b[5];
484 s.b[5] ^= s1.b[6];
485 s.b[6] ^= s1.b[7];
486 s.b[7] ^= s1.b[4];
487 state[c] = s.d;
488 }
489 }
490
InvMixColumns(u64 * state)491 static void InvMixColumns(u64 *state)
492 {
493 uni s1;
494 uni s;
495 int c;
496
497 for (c = 0; c < 2; c++) {
498 s1.d = state[c];
499 s.d = s1.d;
500 s.d ^= ((s.d & U64(0xFFFF0000FFFF0000)) >> 16)
501 | ((s.d & U64(0x0000FFFF0000FFFF)) << 16);
502 s.d ^= ((s.d & U64(0xFF00FF00FF00FF00)) >> 8)
503 | ((s.d & U64(0x00FF00FF00FF00FF)) << 8);
504 s.d ^= s1.d;
505 XtimeLong(&s1.d);
506 s.d ^= s1.d;
507 s.b[0] ^= s1.b[1];
508 s.b[1] ^= s1.b[2];
509 s.b[2] ^= s1.b[3];
510 s.b[3] ^= s1.b[0];
511 s.b[4] ^= s1.b[5];
512 s.b[5] ^= s1.b[6];
513 s.b[6] ^= s1.b[7];
514 s.b[7] ^= s1.b[4];
515 XtimeLong(&s1.d);
516 s1.d ^= ((s1.d & U64(0xFFFF0000FFFF0000)) >> 16)
517 | ((s1.d & U64(0x0000FFFF0000FFFF)) << 16);
518 s.d ^= s1.d;
519 XtimeLong(&s1.d);
520 s1.d ^= ((s1.d & U64(0xFF00FF00FF00FF00)) >> 8)
521 | ((s1.d & U64(0x00FF00FF00FF00FF)) << 8);
522 s.d ^= s1.d;
523 state[c] = s.d;
524 }
525 }
526
AddRoundKey(u64 * state,const u64 * w)527 static void AddRoundKey(u64 *state, const u64 *w)
528 {
529 state[0] ^= w[0];
530 state[1] ^= w[1];
531 }
532
Cipher(const unsigned char * in,unsigned char * out,const u64 * w,int nr)533 static void Cipher(const unsigned char *in, unsigned char *out,
534 const u64 *w, int nr)
535 {
536 u64 state[2];
537 int i;
538
539 memcpy(state, in, 16);
540
541 AddRoundKey(state, w);
542
543 for (i = 1; i < nr; i++) {
544 SubLong(&state[0]);
545 SubLong(&state[1]);
546 ShiftRows(state);
547 MixColumns(state);
548 AddRoundKey(state, w + i*2);
549 }
550
551 SubLong(&state[0]);
552 SubLong(&state[1]);
553 ShiftRows(state);
554 AddRoundKey(state, w + nr*2);
555
556 memcpy(out, state, 16);
557 }
558
InvCipher(const unsigned char * in,unsigned char * out,const u64 * w,int nr)559 static void InvCipher(const unsigned char *in, unsigned char *out,
560 const u64 *w, int nr)
561
562 {
563 u64 state[2];
564 int i;
565
566 memcpy(state, in, 16);
567
568 AddRoundKey(state, w + nr*2);
569
570 for (i = nr - 1; i > 0; i--) {
571 InvShiftRows(state);
572 InvSubLong(&state[0]);
573 InvSubLong(&state[1]);
574 AddRoundKey(state, w + i*2);
575 InvMixColumns(state);
576 }
577
578 InvShiftRows(state);
579 InvSubLong(&state[0]);
580 InvSubLong(&state[1]);
581 AddRoundKey(state, w);
582
583 memcpy(out, state, 16);
584 }
585
RotWord(u32 * x)586 static void RotWord(u32 *x)
587 {
588 unsigned char *w0;
589 unsigned char tmp;
590
591 w0 = (unsigned char *)x;
592 tmp = w0[0];
593 w0[0] = w0[1];
594 w0[1] = w0[2];
595 w0[2] = w0[3];
596 w0[3] = tmp;
597 }
598
KeyExpansion(const unsigned char * key,u64 * w,int nr,int nk)599 static void KeyExpansion(const unsigned char *key, u64 *w,
600 int nr, int nk)
601 {
602 u32 rcon;
603 uni prev;
604 u32 temp;
605 int i, n;
606
607 memcpy(w, key, nk*4);
608 memcpy(&rcon, "\1\0\0\0", 4);
609 n = nk/2;
610 prev.d = w[n-1];
611 for (i = n; i < (nr+1)*2; i++) {
612 temp = prev.w[1];
613 if (i % n == 0) {
614 RotWord(&temp);
615 SubWord(&temp);
616 temp ^= rcon;
617 XtimeWord(&rcon);
618 } else if (nk > 6 && i % n == 2) {
619 SubWord(&temp);
620 }
621 prev.d = w[i-n];
622 prev.w[0] ^= temp;
623 prev.w[1] ^= prev.w[0];
624 w[i] = prev.d;
625 }
626 }
627
628 /**
629 * Expand the cipher key into the encryption key schedule.
630 */
AES_set_encrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)631 int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
632 AES_KEY *key)
633 {
634 u64 *rk;
635
636 if (!userKey || !key)
637 return -1;
638 if (bits != 128 && bits != 192 && bits != 256)
639 return -2;
640
641 rk = (u64*)key->rd_key;
642
643 if (bits == 128)
644 key->rounds = 10;
645 else if (bits == 192)
646 key->rounds = 12;
647 else
648 key->rounds = 14;
649
650 KeyExpansion(userKey, rk, key->rounds, bits/32);
651 return 0;
652 }
653
654 /**
655 * Expand the cipher key into the decryption key schedule.
656 */
AES_set_decrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)657 int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
658 AES_KEY *key)
659 {
660 return AES_set_encrypt_key(userKey, bits, key);
661 }
662
663 /*
664 * Encrypt a single block
665 * in and out can overlap
666 */
AES_encrypt(const unsigned char * in,unsigned char * out,const AES_KEY * key)667 void AES_encrypt(const unsigned char *in, unsigned char *out,
668 const AES_KEY *key)
669 {
670 const u64 *rk;
671
672 assert(in && out && key);
673 rk = (u64*)key->rd_key;
674
675 Cipher(in, out, rk, key->rounds);
676 }
677
678 /*
679 * Decrypt a single block
680 * in and out can overlap
681 */
AES_decrypt(const unsigned char * in,unsigned char * out,const AES_KEY * key)682 void AES_decrypt(const unsigned char *in, unsigned char *out,
683 const AES_KEY *key)
684 {
685 const u64 *rk;
686
687 assert(in && out && key);
688 rk = (u64*)key->rd_key;
689
690 InvCipher(in, out, rk, key->rounds);
691 }
692 #elif !defined(AES_ASM)
693 /*-
694 Te0[x] = S [x].[02, 01, 01, 03];
695 Te1[x] = S [x].[03, 02, 01, 01];
696 Te2[x] = S [x].[01, 03, 02, 01];
697 Te3[x] = S [x].[01, 01, 03, 02];
698
699 Td0[x] = Si[x].[0e, 09, 0d, 0b];
700 Td1[x] = Si[x].[0b, 0e, 09, 0d];
701 Td2[x] = Si[x].[0d, 0b, 0e, 09];
702 Td3[x] = Si[x].[09, 0d, 0b, 0e];
703 Td4[x] = Si[x].[01];
704 */
705
706 static const u32 Te0[256] = {
707 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,
708 0xfff2f20dU, 0xd66b6bbdU, 0xde6f6fb1U, 0x91c5c554U,
709 0x60303050U, 0x02010103U, 0xce6767a9U, 0x562b2b7dU,
710 0xe7fefe19U, 0xb5d7d762U, 0x4dababe6U, 0xec76769aU,
711 0x8fcaca45U, 0x1f82829dU, 0x89c9c940U, 0xfa7d7d87U,
712 0xeffafa15U, 0xb25959ebU, 0x8e4747c9U, 0xfbf0f00bU,
713 0x41adadecU, 0xb3d4d467U, 0x5fa2a2fdU, 0x45afafeaU,
714 0x239c9cbfU, 0x53a4a4f7U, 0xe4727296U, 0x9bc0c05bU,
715 0x75b7b7c2U, 0xe1fdfd1cU, 0x3d9393aeU, 0x4c26266aU,
716 0x6c36365aU, 0x7e3f3f41U, 0xf5f7f702U, 0x83cccc4fU,
717 0x6834345cU, 0x51a5a5f4U, 0xd1e5e534U, 0xf9f1f108U,
718 0xe2717193U, 0xabd8d873U, 0x62313153U, 0x2a15153fU,
719 0x0804040cU, 0x95c7c752U, 0x46232365U, 0x9dc3c35eU,
720 0x30181828U, 0x379696a1U, 0x0a05050fU, 0x2f9a9ab5U,
721 0x0e070709U, 0x24121236U, 0x1b80809bU, 0xdfe2e23dU,
722 0xcdebeb26U, 0x4e272769U, 0x7fb2b2cdU, 0xea75759fU,
723 0x1209091bU, 0x1d83839eU, 0x582c2c74U, 0x341a1a2eU,
724 0x361b1b2dU, 0xdc6e6eb2U, 0xb45a5aeeU, 0x5ba0a0fbU,
725 0xa45252f6U, 0x763b3b4dU, 0xb7d6d661U, 0x7db3b3ceU,
726 0x5229297bU, 0xdde3e33eU, 0x5e2f2f71U, 0x13848497U,
727 0xa65353f5U, 0xb9d1d168U, 0x00000000U, 0xc1eded2cU,
728 0x40202060U, 0xe3fcfc1fU, 0x79b1b1c8U, 0xb65b5bedU,
729 0xd46a6abeU, 0x8dcbcb46U, 0x67bebed9U, 0x7239394bU,
730 0x944a4adeU, 0x984c4cd4U, 0xb05858e8U, 0x85cfcf4aU,
731 0xbbd0d06bU, 0xc5efef2aU, 0x4faaaae5U, 0xedfbfb16U,
732 0x864343c5U, 0x9a4d4dd7U, 0x66333355U, 0x11858594U,
733 0x8a4545cfU, 0xe9f9f910U, 0x04020206U, 0xfe7f7f81U,
734 0xa05050f0U, 0x783c3c44U, 0x259f9fbaU, 0x4ba8a8e3U,
735 0xa25151f3U, 0x5da3a3feU, 0x804040c0U, 0x058f8f8aU,
736 0x3f9292adU, 0x219d9dbcU, 0x70383848U, 0xf1f5f504U,
737 0x63bcbcdfU, 0x77b6b6c1U, 0xafdada75U, 0x42212163U,
738 0x20101030U, 0xe5ffff1aU, 0xfdf3f30eU, 0xbfd2d26dU,
739 0x81cdcd4cU, 0x180c0c14U, 0x26131335U, 0xc3ecec2fU,
740 0xbe5f5fe1U, 0x359797a2U, 0x884444ccU, 0x2e171739U,
741 0x93c4c457U, 0x55a7a7f2U, 0xfc7e7e82U, 0x7a3d3d47U,
742 0xc86464acU, 0xba5d5de7U, 0x3219192bU, 0xe6737395U,
743 0xc06060a0U, 0x19818198U, 0x9e4f4fd1U, 0xa3dcdc7fU,
744 0x44222266U, 0x542a2a7eU, 0x3b9090abU, 0x0b888883U,
745 0x8c4646caU, 0xc7eeee29U, 0x6bb8b8d3U, 0x2814143cU,
746 0xa7dede79U, 0xbc5e5ee2U, 0x160b0b1dU, 0xaddbdb76U,
747 0xdbe0e03bU, 0x64323256U, 0x743a3a4eU, 0x140a0a1eU,
748 0x924949dbU, 0x0c06060aU, 0x4824246cU, 0xb85c5ce4U,
749 0x9fc2c25dU, 0xbdd3d36eU, 0x43acacefU, 0xc46262a6U,
750 0x399191a8U, 0x319595a4U, 0xd3e4e437U, 0xf279798bU,
751 0xd5e7e732U, 0x8bc8c843U, 0x6e373759U, 0xda6d6db7U,
752 0x018d8d8cU, 0xb1d5d564U, 0x9c4e4ed2U, 0x49a9a9e0U,
753 0xd86c6cb4U, 0xac5656faU, 0xf3f4f407U, 0xcfeaea25U,
754 0xca6565afU, 0xf47a7a8eU, 0x47aeaee9U, 0x10080818U,
755 0x6fbabad5U, 0xf0787888U, 0x4a25256fU, 0x5c2e2e72U,
756 0x381c1c24U, 0x57a6a6f1U, 0x73b4b4c7U, 0x97c6c651U,
757 0xcbe8e823U, 0xa1dddd7cU, 0xe874749cU, 0x3e1f1f21U,
758 0x964b4bddU, 0x61bdbddcU, 0x0d8b8b86U, 0x0f8a8a85U,
759 0xe0707090U, 0x7c3e3e42U, 0x71b5b5c4U, 0xcc6666aaU,
760 0x904848d8U, 0x06030305U, 0xf7f6f601U, 0x1c0e0e12U,
761 0xc26161a3U, 0x6a35355fU, 0xae5757f9U, 0x69b9b9d0U,
762 0x17868691U, 0x99c1c158U, 0x3a1d1d27U, 0x279e9eb9U,
763 0xd9e1e138U, 0xebf8f813U, 0x2b9898b3U, 0x22111133U,
764 0xd26969bbU, 0xa9d9d970U, 0x078e8e89U, 0x339494a7U,
765 0x2d9b9bb6U, 0x3c1e1e22U, 0x15878792U, 0xc9e9e920U,
766 0x87cece49U, 0xaa5555ffU, 0x50282878U, 0xa5dfdf7aU,
767 0x038c8c8fU, 0x59a1a1f8U, 0x09898980U, 0x1a0d0d17U,
768 0x65bfbfdaU, 0xd7e6e631U, 0x844242c6U, 0xd06868b8U,
769 0x824141c3U, 0x299999b0U, 0x5a2d2d77U, 0x1e0f0f11U,
770 0x7bb0b0cbU, 0xa85454fcU, 0x6dbbbbd6U, 0x2c16163aU,
771 };
772 static const u32 Te1[256] = {
773 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU,
774 0x0dfff2f2U, 0xbdd66b6bU, 0xb1de6f6fU, 0x5491c5c5U,
775 0x50603030U, 0x03020101U, 0xa9ce6767U, 0x7d562b2bU,
776 0x19e7fefeU, 0x62b5d7d7U, 0xe64dababU, 0x9aec7676U,
777 0x458fcacaU, 0x9d1f8282U, 0x4089c9c9U, 0x87fa7d7dU,
778 0x15effafaU, 0xebb25959U, 0xc98e4747U, 0x0bfbf0f0U,
779 0xec41adadU, 0x67b3d4d4U, 0xfd5fa2a2U, 0xea45afafU,
780 0xbf239c9cU, 0xf753a4a4U, 0x96e47272U, 0x5b9bc0c0U,
781 0xc275b7b7U, 0x1ce1fdfdU, 0xae3d9393U, 0x6a4c2626U,
782 0x5a6c3636U, 0x417e3f3fU, 0x02f5f7f7U, 0x4f83ccccU,
783 0x5c683434U, 0xf451a5a5U, 0x34d1e5e5U, 0x08f9f1f1U,
784 0x93e27171U, 0x73abd8d8U, 0x53623131U, 0x3f2a1515U,
785 0x0c080404U, 0x5295c7c7U, 0x65462323U, 0x5e9dc3c3U,
786 0x28301818U, 0xa1379696U, 0x0f0a0505U, 0xb52f9a9aU,
787 0x090e0707U, 0x36241212U, 0x9b1b8080U, 0x3ddfe2e2U,
788 0x26cdebebU, 0x694e2727U, 0xcd7fb2b2U, 0x9fea7575U,
789 0x1b120909U, 0x9e1d8383U, 0x74582c2cU, 0x2e341a1aU,
790 0x2d361b1bU, 0xb2dc6e6eU, 0xeeb45a5aU, 0xfb5ba0a0U,
791 0xf6a45252U, 0x4d763b3bU, 0x61b7d6d6U, 0xce7db3b3U,
792 0x7b522929U, 0x3edde3e3U, 0x715e2f2fU, 0x97138484U,
793 0xf5a65353U, 0x68b9d1d1U, 0x00000000U, 0x2cc1ededU,
794 0x60402020U, 0x1fe3fcfcU, 0xc879b1b1U, 0xedb65b5bU,
795 0xbed46a6aU, 0x468dcbcbU, 0xd967bebeU, 0x4b723939U,
796 0xde944a4aU, 0xd4984c4cU, 0xe8b05858U, 0x4a85cfcfU,
797 0x6bbbd0d0U, 0x2ac5efefU, 0xe54faaaaU, 0x16edfbfbU,
798 0xc5864343U, 0xd79a4d4dU, 0x55663333U, 0x94118585U,
799 0xcf8a4545U, 0x10e9f9f9U, 0x06040202U, 0x81fe7f7fU,
800 0xf0a05050U, 0x44783c3cU, 0xba259f9fU, 0xe34ba8a8U,
801 0xf3a25151U, 0xfe5da3a3U, 0xc0804040U, 0x8a058f8fU,
802 0xad3f9292U, 0xbc219d9dU, 0x48703838U, 0x04f1f5f5U,
803 0xdf63bcbcU, 0xc177b6b6U, 0x75afdadaU, 0x63422121U,
804 0x30201010U, 0x1ae5ffffU, 0x0efdf3f3U, 0x6dbfd2d2U,
805 0x4c81cdcdU, 0x14180c0cU, 0x35261313U, 0x2fc3ececU,
806 0xe1be5f5fU, 0xa2359797U, 0xcc884444U, 0x392e1717U,
807 0x5793c4c4U, 0xf255a7a7U, 0x82fc7e7eU, 0x477a3d3dU,
808 0xacc86464U, 0xe7ba5d5dU, 0x2b321919U, 0x95e67373U,
809 0xa0c06060U, 0x98198181U, 0xd19e4f4fU, 0x7fa3dcdcU,
810 0x66442222U, 0x7e542a2aU, 0xab3b9090U, 0x830b8888U,
811 0xca8c4646U, 0x29c7eeeeU, 0xd36bb8b8U, 0x3c281414U,
812 0x79a7dedeU, 0xe2bc5e5eU, 0x1d160b0bU, 0x76addbdbU,
813 0x3bdbe0e0U, 0x56643232U, 0x4e743a3aU, 0x1e140a0aU,
814 0xdb924949U, 0x0a0c0606U, 0x6c482424U, 0xe4b85c5cU,
815 0x5d9fc2c2U, 0x6ebdd3d3U, 0xef43acacU, 0xa6c46262U,
816 0xa8399191U, 0xa4319595U, 0x37d3e4e4U, 0x8bf27979U,
817 0x32d5e7e7U, 0x438bc8c8U, 0x596e3737U, 0xb7da6d6dU,
818 0x8c018d8dU, 0x64b1d5d5U, 0xd29c4e4eU, 0xe049a9a9U,
819 0xb4d86c6cU, 0xfaac5656U, 0x07f3f4f4U, 0x25cfeaeaU,
820 0xafca6565U, 0x8ef47a7aU, 0xe947aeaeU, 0x18100808U,
821 0xd56fbabaU, 0x88f07878U, 0x6f4a2525U, 0x725c2e2eU,
822 0x24381c1cU, 0xf157a6a6U, 0xc773b4b4U, 0x5197c6c6U,
823 0x23cbe8e8U, 0x7ca1ddddU, 0x9ce87474U, 0x213e1f1fU,
824 0xdd964b4bU, 0xdc61bdbdU, 0x860d8b8bU, 0x850f8a8aU,
825 0x90e07070U, 0x427c3e3eU, 0xc471b5b5U, 0xaacc6666U,
826 0xd8904848U, 0x05060303U, 0x01f7f6f6U, 0x121c0e0eU,
827 0xa3c26161U, 0x5f6a3535U, 0xf9ae5757U, 0xd069b9b9U,
828 0x91178686U, 0x5899c1c1U, 0x273a1d1dU, 0xb9279e9eU,
829 0x38d9e1e1U, 0x13ebf8f8U, 0xb32b9898U, 0x33221111U,
830 0xbbd26969U, 0x70a9d9d9U, 0x89078e8eU, 0xa7339494U,
831 0xb62d9b9bU, 0x223c1e1eU, 0x92158787U, 0x20c9e9e9U,
832 0x4987ceceU, 0xffaa5555U, 0x78502828U, 0x7aa5dfdfU,
833 0x8f038c8cU, 0xf859a1a1U, 0x80098989U, 0x171a0d0dU,
834 0xda65bfbfU, 0x31d7e6e6U, 0xc6844242U, 0xb8d06868U,
835 0xc3824141U, 0xb0299999U, 0x775a2d2dU, 0x111e0f0fU,
836 0xcb7bb0b0U, 0xfca85454U, 0xd66dbbbbU, 0x3a2c1616U,
837 };
838 static const u32 Te2[256] = {
839 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU,
840 0xf20dfff2U, 0x6bbdd66bU, 0x6fb1de6fU, 0xc55491c5U,
841 0x30506030U, 0x01030201U, 0x67a9ce67U, 0x2b7d562bU,
842 0xfe19e7feU, 0xd762b5d7U, 0xabe64dabU, 0x769aec76U,
843 0xca458fcaU, 0x829d1f82U, 0xc94089c9U, 0x7d87fa7dU,
844 0xfa15effaU, 0x59ebb259U, 0x47c98e47U, 0xf00bfbf0U,
845 0xadec41adU, 0xd467b3d4U, 0xa2fd5fa2U, 0xafea45afU,
846 0x9cbf239cU, 0xa4f753a4U, 0x7296e472U, 0xc05b9bc0U,
847 0xb7c275b7U, 0xfd1ce1fdU, 0x93ae3d93U, 0x266a4c26U,
848 0x365a6c36U, 0x3f417e3fU, 0xf702f5f7U, 0xcc4f83ccU,
849 0x345c6834U, 0xa5f451a5U, 0xe534d1e5U, 0xf108f9f1U,
850 0x7193e271U, 0xd873abd8U, 0x31536231U, 0x153f2a15U,
851 0x040c0804U, 0xc75295c7U, 0x23654623U, 0xc35e9dc3U,
852 0x18283018U, 0x96a13796U, 0x050f0a05U, 0x9ab52f9aU,
853 0x07090e07U, 0x12362412U, 0x809b1b80U, 0xe23ddfe2U,
854 0xeb26cdebU, 0x27694e27U, 0xb2cd7fb2U, 0x759fea75U,
855 0x091b1209U, 0x839e1d83U, 0x2c74582cU, 0x1a2e341aU,
856 0x1b2d361bU, 0x6eb2dc6eU, 0x5aeeb45aU, 0xa0fb5ba0U,
857 0x52f6a452U, 0x3b4d763bU, 0xd661b7d6U, 0xb3ce7db3U,
858 0x297b5229U, 0xe33edde3U, 0x2f715e2fU, 0x84971384U,
859 0x53f5a653U, 0xd168b9d1U, 0x00000000U, 0xed2cc1edU,
860 0x20604020U, 0xfc1fe3fcU, 0xb1c879b1U, 0x5bedb65bU,
861 0x6abed46aU, 0xcb468dcbU, 0xbed967beU, 0x394b7239U,
862 0x4ade944aU, 0x4cd4984cU, 0x58e8b058U, 0xcf4a85cfU,
863 0xd06bbbd0U, 0xef2ac5efU, 0xaae54faaU, 0xfb16edfbU,
864 0x43c58643U, 0x4dd79a4dU, 0x33556633U, 0x85941185U,
865 0x45cf8a45U, 0xf910e9f9U, 0x02060402U, 0x7f81fe7fU,
866 0x50f0a050U, 0x3c44783cU, 0x9fba259fU, 0xa8e34ba8U,
867 0x51f3a251U, 0xa3fe5da3U, 0x40c08040U, 0x8f8a058fU,
868 0x92ad3f92U, 0x9dbc219dU, 0x38487038U, 0xf504f1f5U,
869 0xbcdf63bcU, 0xb6c177b6U, 0xda75afdaU, 0x21634221U,
870 0x10302010U, 0xff1ae5ffU, 0xf30efdf3U, 0xd26dbfd2U,
871 0xcd4c81cdU, 0x0c14180cU, 0x13352613U, 0xec2fc3ecU,
872 0x5fe1be5fU, 0x97a23597U, 0x44cc8844U, 0x17392e17U,
873 0xc45793c4U, 0xa7f255a7U, 0x7e82fc7eU, 0x3d477a3dU,
874 0x64acc864U, 0x5de7ba5dU, 0x192b3219U, 0x7395e673U,
875 0x60a0c060U, 0x81981981U, 0x4fd19e4fU, 0xdc7fa3dcU,
876 0x22664422U, 0x2a7e542aU, 0x90ab3b90U, 0x88830b88U,
877 0x46ca8c46U, 0xee29c7eeU, 0xb8d36bb8U, 0x143c2814U,
878 0xde79a7deU, 0x5ee2bc5eU, 0x0b1d160bU, 0xdb76addbU,
879 0xe03bdbe0U, 0x32566432U, 0x3a4e743aU, 0x0a1e140aU,
880 0x49db9249U, 0x060a0c06U, 0x246c4824U, 0x5ce4b85cU,
881 0xc25d9fc2U, 0xd36ebdd3U, 0xacef43acU, 0x62a6c462U,
882 0x91a83991U, 0x95a43195U, 0xe437d3e4U, 0x798bf279U,
883 0xe732d5e7U, 0xc8438bc8U, 0x37596e37U, 0x6db7da6dU,
884 0x8d8c018dU, 0xd564b1d5U, 0x4ed29c4eU, 0xa9e049a9U,
885 0x6cb4d86cU, 0x56faac56U, 0xf407f3f4U, 0xea25cfeaU,
886 0x65afca65U, 0x7a8ef47aU, 0xaee947aeU, 0x08181008U,
887 0xbad56fbaU, 0x7888f078U, 0x256f4a25U, 0x2e725c2eU,
888 0x1c24381cU, 0xa6f157a6U, 0xb4c773b4U, 0xc65197c6U,
889 0xe823cbe8U, 0xdd7ca1ddU, 0x749ce874U, 0x1f213e1fU,
890 0x4bdd964bU, 0xbddc61bdU, 0x8b860d8bU, 0x8a850f8aU,
891 0x7090e070U, 0x3e427c3eU, 0xb5c471b5U, 0x66aacc66U,
892 0x48d89048U, 0x03050603U, 0xf601f7f6U, 0x0e121c0eU,
893 0x61a3c261U, 0x355f6a35U, 0x57f9ae57U, 0xb9d069b9U,
894 0x86911786U, 0xc15899c1U, 0x1d273a1dU, 0x9eb9279eU,
895 0xe138d9e1U, 0xf813ebf8U, 0x98b32b98U, 0x11332211U,
896 0x69bbd269U, 0xd970a9d9U, 0x8e89078eU, 0x94a73394U,
897 0x9bb62d9bU, 0x1e223c1eU, 0x87921587U, 0xe920c9e9U,
898 0xce4987ceU, 0x55ffaa55U, 0x28785028U, 0xdf7aa5dfU,
899 0x8c8f038cU, 0xa1f859a1U, 0x89800989U, 0x0d171a0dU,
900 0xbfda65bfU, 0xe631d7e6U, 0x42c68442U, 0x68b8d068U,
901 0x41c38241U, 0x99b02999U, 0x2d775a2dU, 0x0f111e0fU,
902 0xb0cb7bb0U, 0x54fca854U, 0xbbd66dbbU, 0x163a2c16U,
903 };
904 static const u32 Te3[256] = {
905 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U,
906 0xf2f20dffU, 0x6b6bbdd6U, 0x6f6fb1deU, 0xc5c55491U,
907 0x30305060U, 0x01010302U, 0x6767a9ceU, 0x2b2b7d56U,
908 0xfefe19e7U, 0xd7d762b5U, 0xababe64dU, 0x76769aecU,
909 0xcaca458fU, 0x82829d1fU, 0xc9c94089U, 0x7d7d87faU,
910 0xfafa15efU, 0x5959ebb2U, 0x4747c98eU, 0xf0f00bfbU,
911 0xadadec41U, 0xd4d467b3U, 0xa2a2fd5fU, 0xafafea45U,
912 0x9c9cbf23U, 0xa4a4f753U, 0x727296e4U, 0xc0c05b9bU,
913 0xb7b7c275U, 0xfdfd1ce1U, 0x9393ae3dU, 0x26266a4cU,
914 0x36365a6cU, 0x3f3f417eU, 0xf7f702f5U, 0xcccc4f83U,
915 0x34345c68U, 0xa5a5f451U, 0xe5e534d1U, 0xf1f108f9U,
916 0x717193e2U, 0xd8d873abU, 0x31315362U, 0x15153f2aU,
917 0x04040c08U, 0xc7c75295U, 0x23236546U, 0xc3c35e9dU,
918 0x18182830U, 0x9696a137U, 0x05050f0aU, 0x9a9ab52fU,
919 0x0707090eU, 0x12123624U, 0x80809b1bU, 0xe2e23ddfU,
920 0xebeb26cdU, 0x2727694eU, 0xb2b2cd7fU, 0x75759feaU,
921 0x09091b12U, 0x83839e1dU, 0x2c2c7458U, 0x1a1a2e34U,
922 0x1b1b2d36U, 0x6e6eb2dcU, 0x5a5aeeb4U, 0xa0a0fb5bU,
923 0x5252f6a4U, 0x3b3b4d76U, 0xd6d661b7U, 0xb3b3ce7dU,
924 0x29297b52U, 0xe3e33eddU, 0x2f2f715eU, 0x84849713U,
925 0x5353f5a6U, 0xd1d168b9U, 0x00000000U, 0xeded2cc1U,
926 0x20206040U, 0xfcfc1fe3U, 0xb1b1c879U, 0x5b5bedb6U,
927 0x6a6abed4U, 0xcbcb468dU, 0xbebed967U, 0x39394b72U,
928 0x4a4ade94U, 0x4c4cd498U, 0x5858e8b0U, 0xcfcf4a85U,
929 0xd0d06bbbU, 0xefef2ac5U, 0xaaaae54fU, 0xfbfb16edU,
930 0x4343c586U, 0x4d4dd79aU, 0x33335566U, 0x85859411U,
931 0x4545cf8aU, 0xf9f910e9U, 0x02020604U, 0x7f7f81feU,
932 0x5050f0a0U, 0x3c3c4478U, 0x9f9fba25U, 0xa8a8e34bU,
933 0x5151f3a2U, 0xa3a3fe5dU, 0x4040c080U, 0x8f8f8a05U,
934 0x9292ad3fU, 0x9d9dbc21U, 0x38384870U, 0xf5f504f1U,
935 0xbcbcdf63U, 0xb6b6c177U, 0xdada75afU, 0x21216342U,
936 0x10103020U, 0xffff1ae5U, 0xf3f30efdU, 0xd2d26dbfU,
937 0xcdcd4c81U, 0x0c0c1418U, 0x13133526U, 0xecec2fc3U,
938 0x5f5fe1beU, 0x9797a235U, 0x4444cc88U, 0x1717392eU,
939 0xc4c45793U, 0xa7a7f255U, 0x7e7e82fcU, 0x3d3d477aU,
940 0x6464acc8U, 0x5d5de7baU, 0x19192b32U, 0x737395e6U,
941 0x6060a0c0U, 0x81819819U, 0x4f4fd19eU, 0xdcdc7fa3U,
942 0x22226644U, 0x2a2a7e54U, 0x9090ab3bU, 0x8888830bU,
943 0x4646ca8cU, 0xeeee29c7U, 0xb8b8d36bU, 0x14143c28U,
944 0xdede79a7U, 0x5e5ee2bcU, 0x0b0b1d16U, 0xdbdb76adU,
945 0xe0e03bdbU, 0x32325664U, 0x3a3a4e74U, 0x0a0a1e14U,
946 0x4949db92U, 0x06060a0cU, 0x24246c48U, 0x5c5ce4b8U,
947 0xc2c25d9fU, 0xd3d36ebdU, 0xacacef43U, 0x6262a6c4U,
948 0x9191a839U, 0x9595a431U, 0xe4e437d3U, 0x79798bf2U,
949 0xe7e732d5U, 0xc8c8438bU, 0x3737596eU, 0x6d6db7daU,
950 0x8d8d8c01U, 0xd5d564b1U, 0x4e4ed29cU, 0xa9a9e049U,
951 0x6c6cb4d8U, 0x5656faacU, 0xf4f407f3U, 0xeaea25cfU,
952 0x6565afcaU, 0x7a7a8ef4U, 0xaeaee947U, 0x08081810U,
953 0xbabad56fU, 0x787888f0U, 0x25256f4aU, 0x2e2e725cU,
954 0x1c1c2438U, 0xa6a6f157U, 0xb4b4c773U, 0xc6c65197U,
955 0xe8e823cbU, 0xdddd7ca1U, 0x74749ce8U, 0x1f1f213eU,
956 0x4b4bdd96U, 0xbdbddc61U, 0x8b8b860dU, 0x8a8a850fU,
957 0x707090e0U, 0x3e3e427cU, 0xb5b5c471U, 0x6666aaccU,
958 0x4848d890U, 0x03030506U, 0xf6f601f7U, 0x0e0e121cU,
959 0x6161a3c2U, 0x35355f6aU, 0x5757f9aeU, 0xb9b9d069U,
960 0x86869117U, 0xc1c15899U, 0x1d1d273aU, 0x9e9eb927U,
961 0xe1e138d9U, 0xf8f813ebU, 0x9898b32bU, 0x11113322U,
962 0x6969bbd2U, 0xd9d970a9U, 0x8e8e8907U, 0x9494a733U,
963 0x9b9bb62dU, 0x1e1e223cU, 0x87879215U, 0xe9e920c9U,
964 0xcece4987U, 0x5555ffaaU, 0x28287850U, 0xdfdf7aa5U,
965 0x8c8c8f03U, 0xa1a1f859U, 0x89898009U, 0x0d0d171aU,
966 0xbfbfda65U, 0xe6e631d7U, 0x4242c684U, 0x6868b8d0U,
967 0x4141c382U, 0x9999b029U, 0x2d2d775aU, 0x0f0f111eU,
968 0xb0b0cb7bU, 0x5454fca8U, 0xbbbbd66dU, 0x16163a2cU,
969 };
970
971 static const u32 Td0[256] = {
972 0x51f4a750U, 0x7e416553U, 0x1a17a4c3U, 0x3a275e96U,
973 0x3bab6bcbU, 0x1f9d45f1U, 0xacfa58abU, 0x4be30393U,
974 0x2030fa55U, 0xad766df6U, 0x88cc7691U, 0xf5024c25U,
975 0x4fe5d7fcU, 0xc52acbd7U, 0x26354480U, 0xb562a38fU,
976 0xdeb15a49U, 0x25ba1b67U, 0x45ea0e98U, 0x5dfec0e1U,
977 0xc32f7502U, 0x814cf012U, 0x8d4697a3U, 0x6bd3f9c6U,
978 0x038f5fe7U, 0x15929c95U, 0xbf6d7aebU, 0x955259daU,
979 0xd4be832dU, 0x587421d3U, 0x49e06929U, 0x8ec9c844U,
980 0x75c2896aU, 0xf48e7978U, 0x99583e6bU, 0x27b971ddU,
981 0xbee14fb6U, 0xf088ad17U, 0xc920ac66U, 0x7dce3ab4U,
982 0x63df4a18U, 0xe51a3182U, 0x97513360U, 0x62537f45U,
983 0xb16477e0U, 0xbb6bae84U, 0xfe81a01cU, 0xf9082b94U,
984 0x70486858U, 0x8f45fd19U, 0x94de6c87U, 0x527bf8b7U,
985 0xab73d323U, 0x724b02e2U, 0xe31f8f57U, 0x6655ab2aU,
986 0xb2eb2807U, 0x2fb5c203U, 0x86c57b9aU, 0xd33708a5U,
987 0x302887f2U, 0x23bfa5b2U, 0x02036abaU, 0xed16825cU,
988 0x8acf1c2bU, 0xa779b492U, 0xf307f2f0U, 0x4e69e2a1U,
989 0x65daf4cdU, 0x0605bed5U, 0xd134621fU, 0xc4a6fe8aU,
990 0x342e539dU, 0xa2f355a0U, 0x058ae132U, 0xa4f6eb75U,
991 0x0b83ec39U, 0x4060efaaU, 0x5e719f06U, 0xbd6e1051U,
992 0x3e218af9U, 0x96dd063dU, 0xdd3e05aeU, 0x4de6bd46U,
993 0x91548db5U, 0x71c45d05U, 0x0406d46fU, 0x605015ffU,
994 0x1998fb24U, 0xd6bde997U, 0x894043ccU, 0x67d99e77U,
995 0xb0e842bdU, 0x07898b88U, 0xe7195b38U, 0x79c8eedbU,
996 0xa17c0a47U, 0x7c420fe9U, 0xf8841ec9U, 0x00000000U,
997 0x09808683U, 0x322bed48U, 0x1e1170acU, 0x6c5a724eU,
998 0xfd0efffbU, 0x0f853856U, 0x3daed51eU, 0x362d3927U,
999 0x0a0fd964U, 0x685ca621U, 0x9b5b54d1U, 0x24362e3aU,
1000 0x0c0a67b1U, 0x9357e70fU, 0xb4ee96d2U, 0x1b9b919eU,
1001 0x80c0c54fU, 0x61dc20a2U, 0x5a774b69U, 0x1c121a16U,
1002 0xe293ba0aU, 0xc0a02ae5U, 0x3c22e043U, 0x121b171dU,
1003 0x0e090d0bU, 0xf28bc7adU, 0x2db6a8b9U, 0x141ea9c8U,
1004 0x57f11985U, 0xaf75074cU, 0xee99ddbbU, 0xa37f60fdU,
1005 0xf701269fU, 0x5c72f5bcU, 0x44663bc5U, 0x5bfb7e34U,
1006 0x8b432976U, 0xcb23c6dcU, 0xb6edfc68U, 0xb8e4f163U,
1007 0xd731dccaU, 0x42638510U, 0x13972240U, 0x84c61120U,
1008 0x854a247dU, 0xd2bb3df8U, 0xaef93211U, 0xc729a16dU,
1009 0x1d9e2f4bU, 0xdcb230f3U, 0x0d8652ecU, 0x77c1e3d0U,
1010 0x2bb3166cU, 0xa970b999U, 0x119448faU, 0x47e96422U,
1011 0xa8fc8cc4U, 0xa0f03f1aU, 0x567d2cd8U, 0x223390efU,
1012 0x87494ec7U, 0xd938d1c1U, 0x8ccaa2feU, 0x98d40b36U,
1013 0xa6f581cfU, 0xa57ade28U, 0xdab78e26U, 0x3fadbfa4U,
1014 0x2c3a9de4U, 0x5078920dU, 0x6a5fcc9bU, 0x547e4662U,
1015 0xf68d13c2U, 0x90d8b8e8U, 0x2e39f75eU, 0x82c3aff5U,
1016 0x9f5d80beU, 0x69d0937cU, 0x6fd52da9U, 0xcf2512b3U,
1017 0xc8ac993bU, 0x10187da7U, 0xe89c636eU, 0xdb3bbb7bU,
1018 0xcd267809U, 0x6e5918f4U, 0xec9ab701U, 0x834f9aa8U,
1019 0xe6956e65U, 0xaaffe67eU, 0x21bccf08U, 0xef15e8e6U,
1020 0xbae79bd9U, 0x4a6f36ceU, 0xea9f09d4U, 0x29b07cd6U,
1021 0x31a4b2afU, 0x2a3f2331U, 0xc6a59430U, 0x35a266c0U,
1022 0x744ebc37U, 0xfc82caa6U, 0xe090d0b0U, 0x33a7d815U,
1023 0xf104984aU, 0x41ecdaf7U, 0x7fcd500eU, 0x1791f62fU,
1024 0x764dd68dU, 0x43efb04dU, 0xccaa4d54U, 0xe49604dfU,
1025 0x9ed1b5e3U, 0x4c6a881bU, 0xc12c1fb8U, 0x4665517fU,
1026 0x9d5eea04U, 0x018c355dU, 0xfa877473U, 0xfb0b412eU,
1027 0xb3671d5aU, 0x92dbd252U, 0xe9105633U, 0x6dd64713U,
1028 0x9ad7618cU, 0x37a10c7aU, 0x59f8148eU, 0xeb133c89U,
1029 0xcea927eeU, 0xb761c935U, 0xe11ce5edU, 0x7a47b13cU,
1030 0x9cd2df59U, 0x55f2733fU, 0x1814ce79U, 0x73c737bfU,
1031 0x53f7cdeaU, 0x5ffdaa5bU, 0xdf3d6f14U, 0x7844db86U,
1032 0xcaaff381U, 0xb968c43eU, 0x3824342cU, 0xc2a3405fU,
1033 0x161dc372U, 0xbce2250cU, 0x283c498bU, 0xff0d9541U,
1034 0x39a80171U, 0x080cb3deU, 0xd8b4e49cU, 0x6456c190U,
1035 0x7bcb8461U, 0xd532b670U, 0x486c5c74U, 0xd0b85742U,
1036 };
1037 static const u32 Td1[256] = {
1038 0x5051f4a7U, 0x537e4165U, 0xc31a17a4U, 0x963a275eU,
1039 0xcb3bab6bU, 0xf11f9d45U, 0xabacfa58U, 0x934be303U,
1040 0x552030faU, 0xf6ad766dU, 0x9188cc76U, 0x25f5024cU,
1041 0xfc4fe5d7U, 0xd7c52acbU, 0x80263544U, 0x8fb562a3U,
1042 0x49deb15aU, 0x6725ba1bU, 0x9845ea0eU, 0xe15dfec0U,
1043 0x02c32f75U, 0x12814cf0U, 0xa38d4697U, 0xc66bd3f9U,
1044 0xe7038f5fU, 0x9515929cU, 0xebbf6d7aU, 0xda955259U,
1045 0x2dd4be83U, 0xd3587421U, 0x2949e069U, 0x448ec9c8U,
1046 0x6a75c289U, 0x78f48e79U, 0x6b99583eU, 0xdd27b971U,
1047 0xb6bee14fU, 0x17f088adU, 0x66c920acU, 0xb47dce3aU,
1048 0x1863df4aU, 0x82e51a31U, 0x60975133U, 0x4562537fU,
1049 0xe0b16477U, 0x84bb6baeU, 0x1cfe81a0U, 0x94f9082bU,
1050 0x58704868U, 0x198f45fdU, 0x8794de6cU, 0xb7527bf8U,
1051 0x23ab73d3U, 0xe2724b02U, 0x57e31f8fU, 0x2a6655abU,
1052 0x07b2eb28U, 0x032fb5c2U, 0x9a86c57bU, 0xa5d33708U,
1053 0xf2302887U, 0xb223bfa5U, 0xba02036aU, 0x5ced1682U,
1054 0x2b8acf1cU, 0x92a779b4U, 0xf0f307f2U, 0xa14e69e2U,
1055 0xcd65daf4U, 0xd50605beU, 0x1fd13462U, 0x8ac4a6feU,
1056 0x9d342e53U, 0xa0a2f355U, 0x32058ae1U, 0x75a4f6ebU,
1057 0x390b83ecU, 0xaa4060efU, 0x065e719fU, 0x51bd6e10U,
1058 0xf93e218aU, 0x3d96dd06U, 0xaedd3e05U, 0x464de6bdU,
1059 0xb591548dU, 0x0571c45dU, 0x6f0406d4U, 0xff605015U,
1060 0x241998fbU, 0x97d6bde9U, 0xcc894043U, 0x7767d99eU,
1061 0xbdb0e842U, 0x8807898bU, 0x38e7195bU, 0xdb79c8eeU,
1062 0x47a17c0aU, 0xe97c420fU, 0xc9f8841eU, 0x00000000U,
1063 0x83098086U, 0x48322bedU, 0xac1e1170U, 0x4e6c5a72U,
1064 0xfbfd0effU, 0x560f8538U, 0x1e3daed5U, 0x27362d39U,
1065 0x640a0fd9U, 0x21685ca6U, 0xd19b5b54U, 0x3a24362eU,
1066 0xb10c0a67U, 0x0f9357e7U, 0xd2b4ee96U, 0x9e1b9b91U,
1067 0x4f80c0c5U, 0xa261dc20U, 0x695a774bU, 0x161c121aU,
1068 0x0ae293baU, 0xe5c0a02aU, 0x433c22e0U, 0x1d121b17U,
1069 0x0b0e090dU, 0xadf28bc7U, 0xb92db6a8U, 0xc8141ea9U,
1070 0x8557f119U, 0x4caf7507U, 0xbbee99ddU, 0xfda37f60U,
1071 0x9ff70126U, 0xbc5c72f5U, 0xc544663bU, 0x345bfb7eU,
1072 0x768b4329U, 0xdccb23c6U, 0x68b6edfcU, 0x63b8e4f1U,
1073 0xcad731dcU, 0x10426385U, 0x40139722U, 0x2084c611U,
1074 0x7d854a24U, 0xf8d2bb3dU, 0x11aef932U, 0x6dc729a1U,
1075 0x4b1d9e2fU, 0xf3dcb230U, 0xec0d8652U, 0xd077c1e3U,
1076 0x6c2bb316U, 0x99a970b9U, 0xfa119448U, 0x2247e964U,
1077 0xc4a8fc8cU, 0x1aa0f03fU, 0xd8567d2cU, 0xef223390U,
1078 0xc787494eU, 0xc1d938d1U, 0xfe8ccaa2U, 0x3698d40bU,
1079 0xcfa6f581U, 0x28a57adeU, 0x26dab78eU, 0xa43fadbfU,
1080 0xe42c3a9dU, 0x0d507892U, 0x9b6a5fccU, 0x62547e46U,
1081 0xc2f68d13U, 0xe890d8b8U, 0x5e2e39f7U, 0xf582c3afU,
1082 0xbe9f5d80U, 0x7c69d093U, 0xa96fd52dU, 0xb3cf2512U,
1083 0x3bc8ac99U, 0xa710187dU, 0x6ee89c63U, 0x7bdb3bbbU,
1084 0x09cd2678U, 0xf46e5918U, 0x01ec9ab7U, 0xa8834f9aU,
1085 0x65e6956eU, 0x7eaaffe6U, 0x0821bccfU, 0xe6ef15e8U,
1086 0xd9bae79bU, 0xce4a6f36U, 0xd4ea9f09U, 0xd629b07cU,
1087 0xaf31a4b2U, 0x312a3f23U, 0x30c6a594U, 0xc035a266U,
1088 0x37744ebcU, 0xa6fc82caU, 0xb0e090d0U, 0x1533a7d8U,
1089 0x4af10498U, 0xf741ecdaU, 0x0e7fcd50U, 0x2f1791f6U,
1090 0x8d764dd6U, 0x4d43efb0U, 0x54ccaa4dU, 0xdfe49604U,
1091 0xe39ed1b5U, 0x1b4c6a88U, 0xb8c12c1fU, 0x7f466551U,
1092 0x049d5eeaU, 0x5d018c35U, 0x73fa8774U, 0x2efb0b41U,
1093 0x5ab3671dU, 0x5292dbd2U, 0x33e91056U, 0x136dd647U,
1094 0x8c9ad761U, 0x7a37a10cU, 0x8e59f814U, 0x89eb133cU,
1095 0xeecea927U, 0x35b761c9U, 0xede11ce5U, 0x3c7a47b1U,
1096 0x599cd2dfU, 0x3f55f273U, 0x791814ceU, 0xbf73c737U,
1097 0xea53f7cdU, 0x5b5ffdaaU, 0x14df3d6fU, 0x867844dbU,
1098 0x81caaff3U, 0x3eb968c4U, 0x2c382434U, 0x5fc2a340U,
1099 0x72161dc3U, 0x0cbce225U, 0x8b283c49U, 0x41ff0d95U,
1100 0x7139a801U, 0xde080cb3U, 0x9cd8b4e4U, 0x906456c1U,
1101 0x617bcb84U, 0x70d532b6U, 0x74486c5cU, 0x42d0b857U,
1102 };
1103 static const u32 Td2[256] = {
1104 0xa75051f4U, 0x65537e41U, 0xa4c31a17U, 0x5e963a27U,
1105 0x6bcb3babU, 0x45f11f9dU, 0x58abacfaU, 0x03934be3U,
1106 0xfa552030U, 0x6df6ad76U, 0x769188ccU, 0x4c25f502U,
1107 0xd7fc4fe5U, 0xcbd7c52aU, 0x44802635U, 0xa38fb562U,
1108 0x5a49deb1U, 0x1b6725baU, 0x0e9845eaU, 0xc0e15dfeU,
1109 0x7502c32fU, 0xf012814cU, 0x97a38d46U, 0xf9c66bd3U,
1110 0x5fe7038fU, 0x9c951592U, 0x7aebbf6dU, 0x59da9552U,
1111 0x832dd4beU, 0x21d35874U, 0x692949e0U, 0xc8448ec9U,
1112 0x896a75c2U, 0x7978f48eU, 0x3e6b9958U, 0x71dd27b9U,
1113 0x4fb6bee1U, 0xad17f088U, 0xac66c920U, 0x3ab47dceU,
1114 0x4a1863dfU, 0x3182e51aU, 0x33609751U, 0x7f456253U,
1115 0x77e0b164U, 0xae84bb6bU, 0xa01cfe81U, 0x2b94f908U,
1116 0x68587048U, 0xfd198f45U, 0x6c8794deU, 0xf8b7527bU,
1117 0xd323ab73U, 0x02e2724bU, 0x8f57e31fU, 0xab2a6655U,
1118 0x2807b2ebU, 0xc2032fb5U, 0x7b9a86c5U, 0x08a5d337U,
1119 0x87f23028U, 0xa5b223bfU, 0x6aba0203U, 0x825ced16U,
1120 0x1c2b8acfU, 0xb492a779U, 0xf2f0f307U, 0xe2a14e69U,
1121 0xf4cd65daU, 0xbed50605U, 0x621fd134U, 0xfe8ac4a6U,
1122 0x539d342eU, 0x55a0a2f3U, 0xe132058aU, 0xeb75a4f6U,
1123 0xec390b83U, 0xefaa4060U, 0x9f065e71U, 0x1051bd6eU,
1124 0x8af93e21U, 0x063d96ddU, 0x05aedd3eU, 0xbd464de6U,
1125 0x8db59154U, 0x5d0571c4U, 0xd46f0406U, 0x15ff6050U,
1126 0xfb241998U, 0xe997d6bdU, 0x43cc8940U, 0x9e7767d9U,
1127 0x42bdb0e8U, 0x8b880789U, 0x5b38e719U, 0xeedb79c8U,
1128 0x0a47a17cU, 0x0fe97c42U, 0x1ec9f884U, 0x00000000U,
1129 0x86830980U, 0xed48322bU, 0x70ac1e11U, 0x724e6c5aU,
1130 0xfffbfd0eU, 0x38560f85U, 0xd51e3daeU, 0x3927362dU,
1131 0xd9640a0fU, 0xa621685cU, 0x54d19b5bU, 0x2e3a2436U,
1132 0x67b10c0aU, 0xe70f9357U, 0x96d2b4eeU, 0x919e1b9bU,
1133 0xc54f80c0U, 0x20a261dcU, 0x4b695a77U, 0x1a161c12U,
1134 0xba0ae293U, 0x2ae5c0a0U, 0xe0433c22U, 0x171d121bU,
1135 0x0d0b0e09U, 0xc7adf28bU, 0xa8b92db6U, 0xa9c8141eU,
1136 0x198557f1U, 0x074caf75U, 0xddbbee99U, 0x60fda37fU,
1137 0x269ff701U, 0xf5bc5c72U, 0x3bc54466U, 0x7e345bfbU,
1138 0x29768b43U, 0xc6dccb23U, 0xfc68b6edU, 0xf163b8e4U,
1139 0xdccad731U, 0x85104263U, 0x22401397U, 0x112084c6U,
1140 0x247d854aU, 0x3df8d2bbU, 0x3211aef9U, 0xa16dc729U,
1141 0x2f4b1d9eU, 0x30f3dcb2U, 0x52ec0d86U, 0xe3d077c1U,
1142 0x166c2bb3U, 0xb999a970U, 0x48fa1194U, 0x642247e9U,
1143 0x8cc4a8fcU, 0x3f1aa0f0U, 0x2cd8567dU, 0x90ef2233U,
1144 0x4ec78749U, 0xd1c1d938U, 0xa2fe8ccaU, 0x0b3698d4U,
1145 0x81cfa6f5U, 0xde28a57aU, 0x8e26dab7U, 0xbfa43fadU,
1146 0x9de42c3aU, 0x920d5078U, 0xcc9b6a5fU, 0x4662547eU,
1147 0x13c2f68dU, 0xb8e890d8U, 0xf75e2e39U, 0xaff582c3U,
1148 0x80be9f5dU, 0x937c69d0U, 0x2da96fd5U, 0x12b3cf25U,
1149 0x993bc8acU, 0x7da71018U, 0x636ee89cU, 0xbb7bdb3bU,
1150 0x7809cd26U, 0x18f46e59U, 0xb701ec9aU, 0x9aa8834fU,
1151 0x6e65e695U, 0xe67eaaffU, 0xcf0821bcU, 0xe8e6ef15U,
1152 0x9bd9bae7U, 0x36ce4a6fU, 0x09d4ea9fU, 0x7cd629b0U,
1153 0xb2af31a4U, 0x23312a3fU, 0x9430c6a5U, 0x66c035a2U,
1154 0xbc37744eU, 0xcaa6fc82U, 0xd0b0e090U, 0xd81533a7U,
1155 0x984af104U, 0xdaf741ecU, 0x500e7fcdU, 0xf62f1791U,
1156 0xd68d764dU, 0xb04d43efU, 0x4d54ccaaU, 0x04dfe496U,
1157 0xb5e39ed1U, 0x881b4c6aU, 0x1fb8c12cU, 0x517f4665U,
1158 0xea049d5eU, 0x355d018cU, 0x7473fa87U, 0x412efb0bU,
1159 0x1d5ab367U, 0xd25292dbU, 0x5633e910U, 0x47136dd6U,
1160 0x618c9ad7U, 0x0c7a37a1U, 0x148e59f8U, 0x3c89eb13U,
1161 0x27eecea9U, 0xc935b761U, 0xe5ede11cU, 0xb13c7a47U,
1162 0xdf599cd2U, 0x733f55f2U, 0xce791814U, 0x37bf73c7U,
1163 0xcdea53f7U, 0xaa5b5ffdU, 0x6f14df3dU, 0xdb867844U,
1164 0xf381caafU, 0xc43eb968U, 0x342c3824U, 0x405fc2a3U,
1165 0xc372161dU, 0x250cbce2U, 0x498b283cU, 0x9541ff0dU,
1166 0x017139a8U, 0xb3de080cU, 0xe49cd8b4U, 0xc1906456U,
1167 0x84617bcbU, 0xb670d532U, 0x5c74486cU, 0x5742d0b8U,
1168 };
1169 static const u32 Td3[256] = {
1170 0xf4a75051U, 0x4165537eU, 0x17a4c31aU, 0x275e963aU,
1171 0xab6bcb3bU, 0x9d45f11fU, 0xfa58abacU, 0xe303934bU,
1172 0x30fa5520U, 0x766df6adU, 0xcc769188U, 0x024c25f5U,
1173 0xe5d7fc4fU, 0x2acbd7c5U, 0x35448026U, 0x62a38fb5U,
1174 0xb15a49deU, 0xba1b6725U, 0xea0e9845U, 0xfec0e15dU,
1175 0x2f7502c3U, 0x4cf01281U, 0x4697a38dU, 0xd3f9c66bU,
1176 0x8f5fe703U, 0x929c9515U, 0x6d7aebbfU, 0x5259da95U,
1177 0xbe832dd4U, 0x7421d358U, 0xe0692949U, 0xc9c8448eU,
1178 0xc2896a75U, 0x8e7978f4U, 0x583e6b99U, 0xb971dd27U,
1179 0xe14fb6beU, 0x88ad17f0U, 0x20ac66c9U, 0xce3ab47dU,
1180 0xdf4a1863U, 0x1a3182e5U, 0x51336097U, 0x537f4562U,
1181 0x6477e0b1U, 0x6bae84bbU, 0x81a01cfeU, 0x082b94f9U,
1182 0x48685870U, 0x45fd198fU, 0xde6c8794U, 0x7bf8b752U,
1183 0x73d323abU, 0x4b02e272U, 0x1f8f57e3U, 0x55ab2a66U,
1184 0xeb2807b2U, 0xb5c2032fU, 0xc57b9a86U, 0x3708a5d3U,
1185 0x2887f230U, 0xbfa5b223U, 0x036aba02U, 0x16825cedU,
1186 0xcf1c2b8aU, 0x79b492a7U, 0x07f2f0f3U, 0x69e2a14eU,
1187 0xdaf4cd65U, 0x05bed506U, 0x34621fd1U, 0xa6fe8ac4U,
1188 0x2e539d34U, 0xf355a0a2U, 0x8ae13205U, 0xf6eb75a4U,
1189 0x83ec390bU, 0x60efaa40U, 0x719f065eU, 0x6e1051bdU,
1190 0x218af93eU, 0xdd063d96U, 0x3e05aeddU, 0xe6bd464dU,
1191 0x548db591U, 0xc45d0571U, 0x06d46f04U, 0x5015ff60U,
1192 0x98fb2419U, 0xbde997d6U, 0x4043cc89U, 0xd99e7767U,
1193 0xe842bdb0U, 0x898b8807U, 0x195b38e7U, 0xc8eedb79U,
1194 0x7c0a47a1U, 0x420fe97cU, 0x841ec9f8U, 0x00000000U,
1195 0x80868309U, 0x2bed4832U, 0x1170ac1eU, 0x5a724e6cU,
1196 0x0efffbfdU, 0x8538560fU, 0xaed51e3dU, 0x2d392736U,
1197 0x0fd9640aU, 0x5ca62168U, 0x5b54d19bU, 0x362e3a24U,
1198 0x0a67b10cU, 0x57e70f93U, 0xee96d2b4U, 0x9b919e1bU,
1199 0xc0c54f80U, 0xdc20a261U, 0x774b695aU, 0x121a161cU,
1200 0x93ba0ae2U, 0xa02ae5c0U, 0x22e0433cU, 0x1b171d12U,
1201 0x090d0b0eU, 0x8bc7adf2U, 0xb6a8b92dU, 0x1ea9c814U,
1202 0xf1198557U, 0x75074cafU, 0x99ddbbeeU, 0x7f60fda3U,
1203 0x01269ff7U, 0x72f5bc5cU, 0x663bc544U, 0xfb7e345bU,
1204 0x4329768bU, 0x23c6dccbU, 0xedfc68b6U, 0xe4f163b8U,
1205 0x31dccad7U, 0x63851042U, 0x97224013U, 0xc6112084U,
1206 0x4a247d85U, 0xbb3df8d2U, 0xf93211aeU, 0x29a16dc7U,
1207 0x9e2f4b1dU, 0xb230f3dcU, 0x8652ec0dU, 0xc1e3d077U,
1208 0xb3166c2bU, 0x70b999a9U, 0x9448fa11U, 0xe9642247U,
1209 0xfc8cc4a8U, 0xf03f1aa0U, 0x7d2cd856U, 0x3390ef22U,
1210 0x494ec787U, 0x38d1c1d9U, 0xcaa2fe8cU, 0xd40b3698U,
1211 0xf581cfa6U, 0x7ade28a5U, 0xb78e26daU, 0xadbfa43fU,
1212 0x3a9de42cU, 0x78920d50U, 0x5fcc9b6aU, 0x7e466254U,
1213 0x8d13c2f6U, 0xd8b8e890U, 0x39f75e2eU, 0xc3aff582U,
1214 0x5d80be9fU, 0xd0937c69U, 0xd52da96fU, 0x2512b3cfU,
1215 0xac993bc8U, 0x187da710U, 0x9c636ee8U, 0x3bbb7bdbU,
1216 0x267809cdU, 0x5918f46eU, 0x9ab701ecU, 0x4f9aa883U,
1217 0x956e65e6U, 0xffe67eaaU, 0xbccf0821U, 0x15e8e6efU,
1218 0xe79bd9baU, 0x6f36ce4aU, 0x9f09d4eaU, 0xb07cd629U,
1219 0xa4b2af31U, 0x3f23312aU, 0xa59430c6U, 0xa266c035U,
1220 0x4ebc3774U, 0x82caa6fcU, 0x90d0b0e0U, 0xa7d81533U,
1221 0x04984af1U, 0xecdaf741U, 0xcd500e7fU, 0x91f62f17U,
1222 0x4dd68d76U, 0xefb04d43U, 0xaa4d54ccU, 0x9604dfe4U,
1223 0xd1b5e39eU, 0x6a881b4cU, 0x2c1fb8c1U, 0x65517f46U,
1224 0x5eea049dU, 0x8c355d01U, 0x877473faU, 0x0b412efbU,
1225 0x671d5ab3U, 0xdbd25292U, 0x105633e9U, 0xd647136dU,
1226 0xd7618c9aU, 0xa10c7a37U, 0xf8148e59U, 0x133c89ebU,
1227 0xa927eeceU, 0x61c935b7U, 0x1ce5ede1U, 0x47b13c7aU,
1228 0xd2df599cU, 0xf2733f55U, 0x14ce7918U, 0xc737bf73U,
1229 0xf7cdea53U, 0xfdaa5b5fU, 0x3d6f14dfU, 0x44db8678U,
1230 0xaff381caU, 0x68c43eb9U, 0x24342c38U, 0xa3405fc2U,
1231 0x1dc37216U, 0xe2250cbcU, 0x3c498b28U, 0x0d9541ffU,
1232 0xa8017139U, 0x0cb3de08U, 0xb4e49cd8U, 0x56c19064U,
1233 0xcb84617bU, 0x32b670d5U, 0x6c5c7448U, 0xb85742d0U,
1234 };
1235 static const u8 Td4[256] = {
1236 0x52U, 0x09U, 0x6aU, 0xd5U, 0x30U, 0x36U, 0xa5U, 0x38U,
1237 0xbfU, 0x40U, 0xa3U, 0x9eU, 0x81U, 0xf3U, 0xd7U, 0xfbU,
1238 0x7cU, 0xe3U, 0x39U, 0x82U, 0x9bU, 0x2fU, 0xffU, 0x87U,
1239 0x34U, 0x8eU, 0x43U, 0x44U, 0xc4U, 0xdeU, 0xe9U, 0xcbU,
1240 0x54U, 0x7bU, 0x94U, 0x32U, 0xa6U, 0xc2U, 0x23U, 0x3dU,
1241 0xeeU, 0x4cU, 0x95U, 0x0bU, 0x42U, 0xfaU, 0xc3U, 0x4eU,
1242 0x08U, 0x2eU, 0xa1U, 0x66U, 0x28U, 0xd9U, 0x24U, 0xb2U,
1243 0x76U, 0x5bU, 0xa2U, 0x49U, 0x6dU, 0x8bU, 0xd1U, 0x25U,
1244 0x72U, 0xf8U, 0xf6U, 0x64U, 0x86U, 0x68U, 0x98U, 0x16U,
1245 0xd4U, 0xa4U, 0x5cU, 0xccU, 0x5dU, 0x65U, 0xb6U, 0x92U,
1246 0x6cU, 0x70U, 0x48U, 0x50U, 0xfdU, 0xedU, 0xb9U, 0xdaU,
1247 0x5eU, 0x15U, 0x46U, 0x57U, 0xa7U, 0x8dU, 0x9dU, 0x84U,
1248 0x90U, 0xd8U, 0xabU, 0x00U, 0x8cU, 0xbcU, 0xd3U, 0x0aU,
1249 0xf7U, 0xe4U, 0x58U, 0x05U, 0xb8U, 0xb3U, 0x45U, 0x06U,
1250 0xd0U, 0x2cU, 0x1eU, 0x8fU, 0xcaU, 0x3fU, 0x0fU, 0x02U,
1251 0xc1U, 0xafU, 0xbdU, 0x03U, 0x01U, 0x13U, 0x8aU, 0x6bU,
1252 0x3aU, 0x91U, 0x11U, 0x41U, 0x4fU, 0x67U, 0xdcU, 0xeaU,
1253 0x97U, 0xf2U, 0xcfU, 0xceU, 0xf0U, 0xb4U, 0xe6U, 0x73U,
1254 0x96U, 0xacU, 0x74U, 0x22U, 0xe7U, 0xadU, 0x35U, 0x85U,
1255 0xe2U, 0xf9U, 0x37U, 0xe8U, 0x1cU, 0x75U, 0xdfU, 0x6eU,
1256 0x47U, 0xf1U, 0x1aU, 0x71U, 0x1dU, 0x29U, 0xc5U, 0x89U,
1257 0x6fU, 0xb7U, 0x62U, 0x0eU, 0xaaU, 0x18U, 0xbeU, 0x1bU,
1258 0xfcU, 0x56U, 0x3eU, 0x4bU, 0xc6U, 0xd2U, 0x79U, 0x20U,
1259 0x9aU, 0xdbU, 0xc0U, 0xfeU, 0x78U, 0xcdU, 0x5aU, 0xf4U,
1260 0x1fU, 0xddU, 0xa8U, 0x33U, 0x88U, 0x07U, 0xc7U, 0x31U,
1261 0xb1U, 0x12U, 0x10U, 0x59U, 0x27U, 0x80U, 0xecU, 0x5fU,
1262 0x60U, 0x51U, 0x7fU, 0xa9U, 0x19U, 0xb5U, 0x4aU, 0x0dU,
1263 0x2dU, 0xe5U, 0x7aU, 0x9fU, 0x93U, 0xc9U, 0x9cU, 0xefU,
1264 0xa0U, 0xe0U, 0x3bU, 0x4dU, 0xaeU, 0x2aU, 0xf5U, 0xb0U,
1265 0xc8U, 0xebU, 0xbbU, 0x3cU, 0x83U, 0x53U, 0x99U, 0x61U,
1266 0x17U, 0x2bU, 0x04U, 0x7eU, 0xbaU, 0x77U, 0xd6U, 0x26U,
1267 0xe1U, 0x69U, 0x14U, 0x63U, 0x55U, 0x21U, 0x0cU, 0x7dU,
1268 };
1269 static const u32 rcon[] = {
1270 0x01000000, 0x02000000, 0x04000000, 0x08000000,
1271 0x10000000, 0x20000000, 0x40000000, 0x80000000,
1272 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
1273 };
1274
1275 /**
1276 * Expand the cipher key into the encryption key schedule.
1277 */
AES_set_encrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)1278 int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
1279 AES_KEY *key)
1280 {
1281
1282 u32 *rk;
1283 int i = 0;
1284 u32 temp;
1285
1286 if (!userKey || !key)
1287 return -1;
1288 if (bits != 128 && bits != 192 && bits != 256)
1289 return -2;
1290
1291 rk = key->rd_key;
1292
1293 if (bits == 128)
1294 key->rounds = 10;
1295 else if (bits == 192)
1296 key->rounds = 12;
1297 else
1298 key->rounds = 14;
1299
1300 rk[0] = GETU32(userKey );
1301 rk[1] = GETU32(userKey + 4);
1302 rk[2] = GETU32(userKey + 8);
1303 rk[3] = GETU32(userKey + 12);
1304 if (bits == 128) {
1305 while (1) {
1306 temp = rk[3];
1307 rk[4] = rk[0] ^
1308 (Te2[(temp >> 16) & 0xff] & 0xff000000) ^
1309 (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^
1310 (Te0[(temp ) & 0xff] & 0x0000ff00) ^
1311 (Te1[(temp >> 24) ] & 0x000000ff) ^
1312 rcon[i];
1313 rk[5] = rk[1] ^ rk[4];
1314 rk[6] = rk[2] ^ rk[5];
1315 rk[7] = rk[3] ^ rk[6];
1316 if (++i == 10) {
1317 return 0;
1318 }
1319 rk += 4;
1320 }
1321 }
1322 rk[4] = GETU32(userKey + 16);
1323 rk[5] = GETU32(userKey + 20);
1324 if (bits == 192) {
1325 while (1) {
1326 temp = rk[ 5];
1327 rk[ 6] = rk[ 0] ^
1328 (Te2[(temp >> 16) & 0xff] & 0xff000000) ^
1329 (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^
1330 (Te0[(temp ) & 0xff] & 0x0000ff00) ^
1331 (Te1[(temp >> 24) ] & 0x000000ff) ^
1332 rcon[i];
1333 rk[ 7] = rk[ 1] ^ rk[ 6];
1334 rk[ 8] = rk[ 2] ^ rk[ 7];
1335 rk[ 9] = rk[ 3] ^ rk[ 8];
1336 if (++i == 8) {
1337 return 0;
1338 }
1339 rk[10] = rk[ 4] ^ rk[ 9];
1340 rk[11] = rk[ 5] ^ rk[10];
1341 rk += 6;
1342 }
1343 }
1344 rk[6] = GETU32(userKey + 24);
1345 rk[7] = GETU32(userKey + 28);
1346 if (bits == 256) {
1347 while (1) {
1348 temp = rk[ 7];
1349 rk[ 8] = rk[ 0] ^
1350 (Te2[(temp >> 16) & 0xff] & 0xff000000) ^
1351 (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ^
1352 (Te0[(temp ) & 0xff] & 0x0000ff00) ^
1353 (Te1[(temp >> 24) ] & 0x000000ff) ^
1354 rcon[i];
1355 rk[ 9] = rk[ 1] ^ rk[ 8];
1356 rk[10] = rk[ 2] ^ rk[ 9];
1357 rk[11] = rk[ 3] ^ rk[10];
1358 if (++i == 7) {
1359 return 0;
1360 }
1361 temp = rk[11];
1362 rk[12] = rk[ 4] ^
1363 (Te2[(temp >> 24) ] & 0xff000000) ^
1364 (Te3[(temp >> 16) & 0xff] & 0x00ff0000) ^
1365 (Te0[(temp >> 8) & 0xff] & 0x0000ff00) ^
1366 (Te1[(temp ) & 0xff] & 0x000000ff);
1367 rk[13] = rk[ 5] ^ rk[12];
1368 rk[14] = rk[ 6] ^ rk[13];
1369 rk[15] = rk[ 7] ^ rk[14];
1370
1371 rk += 8;
1372 }
1373 }
1374 return 0;
1375 }
1376
1377 /**
1378 * Expand the cipher key into the decryption key schedule.
1379 */
AES_set_decrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)1380 int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
1381 AES_KEY *key)
1382 {
1383
1384 u32 *rk;
1385 int i, j, status;
1386 u32 temp;
1387
1388 /* first, start with an encryption schedule */
1389 status = AES_set_encrypt_key(userKey, bits, key);
1390 if (status < 0)
1391 return status;
1392
1393 rk = key->rd_key;
1394
1395 /* invert the order of the round keys: */
1396 for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) {
1397 temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
1398 temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
1399 temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
1400 temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
1401 }
1402 /* apply the inverse MixColumn transform to all round keys but the first and the last: */
1403 for (i = 1; i < (key->rounds); i++) {
1404 rk += 4;
1405 rk[0] =
1406 Td0[Te1[(rk[0] >> 24) ] & 0xff] ^
1407 Td1[Te1[(rk[0] >> 16) & 0xff] & 0xff] ^
1408 Td2[Te1[(rk[0] >> 8) & 0xff] & 0xff] ^
1409 Td3[Te1[(rk[0] ) & 0xff] & 0xff];
1410 rk[1] =
1411 Td0[Te1[(rk[1] >> 24) ] & 0xff] ^
1412 Td1[Te1[(rk[1] >> 16) & 0xff] & 0xff] ^
1413 Td2[Te1[(rk[1] >> 8) & 0xff] & 0xff] ^
1414 Td3[Te1[(rk[1] ) & 0xff] & 0xff];
1415 rk[2] =
1416 Td0[Te1[(rk[2] >> 24) ] & 0xff] ^
1417 Td1[Te1[(rk[2] >> 16) & 0xff] & 0xff] ^
1418 Td2[Te1[(rk[2] >> 8) & 0xff] & 0xff] ^
1419 Td3[Te1[(rk[2] ) & 0xff] & 0xff];
1420 rk[3] =
1421 Td0[Te1[(rk[3] >> 24) ] & 0xff] ^
1422 Td1[Te1[(rk[3] >> 16) & 0xff] & 0xff] ^
1423 Td2[Te1[(rk[3] >> 8) & 0xff] & 0xff] ^
1424 Td3[Te1[(rk[3] ) & 0xff] & 0xff];
1425 }
1426 return 0;
1427 }
1428
1429 /*
1430 * Encrypt a single block
1431 * in and out can overlap
1432 */
AES_encrypt(const unsigned char * in,unsigned char * out,const AES_KEY * key)1433 void AES_encrypt(const unsigned char *in, unsigned char *out,
1434 const AES_KEY *key) {
1435
1436 const u32 *rk;
1437 u32 s0, s1, s2, s3, t0, t1, t2, t3;
1438 #ifndef FULL_UNROLL
1439 int r;
1440 #endif /* ?FULL_UNROLL */
1441
1442 assert(in && out && key);
1443 rk = key->rd_key;
1444
1445 /*
1446 * map byte array block to cipher state
1447 * and add initial round key:
1448 */
1449 s0 = GETU32(in ) ^ rk[0];
1450 s1 = GETU32(in + 4) ^ rk[1];
1451 s2 = GETU32(in + 8) ^ rk[2];
1452 s3 = GETU32(in + 12) ^ rk[3];
1453 #ifdef FULL_UNROLL
1454 /* round 1: */
1455 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[ 4];
1456 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[ 5];
1457 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[ 6];
1458 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[ 7];
1459 /* round 2: */
1460 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[ 8];
1461 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[ 9];
1462 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10];
1463 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11];
1464 /* round 3: */
1465 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[12];
1466 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[13];
1467 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[14];
1468 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[15];
1469 /* round 4: */
1470 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[16];
1471 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[17];
1472 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[18];
1473 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[19];
1474 /* round 5: */
1475 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[20];
1476 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[21];
1477 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[22];
1478 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[23];
1479 /* round 6: */
1480 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[24];
1481 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[25];
1482 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[26];
1483 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[27];
1484 /* round 7: */
1485 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[28];
1486 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[29];
1487 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[30];
1488 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[31];
1489 /* round 8: */
1490 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[32];
1491 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[33];
1492 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[34];
1493 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[35];
1494 /* round 9: */
1495 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[36];
1496 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[37];
1497 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[38];
1498 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[39];
1499 if (key->rounds > 10) {
1500 /* round 10: */
1501 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[40];
1502 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[41];
1503 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[42];
1504 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[43];
1505 /* round 11: */
1506 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[44];
1507 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[45];
1508 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[46];
1509 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[47];
1510 if (key->rounds > 12) {
1511 /* round 12: */
1512 s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[48];
1513 s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[49];
1514 s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[50];
1515 s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[51];
1516 /* round 13: */
1517 t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[52];
1518 t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[53];
1519 t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[54];
1520 t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[55];
1521 }
1522 }
1523 rk += key->rounds << 2;
1524 #else /* !FULL_UNROLL */
1525 /*
1526 * Nr - 1 full rounds:
1527 */
1528 r = key->rounds >> 1;
1529 for (;;) {
1530 t0 =
1531 Te0[(s0 >> 24) ] ^
1532 Te1[(s1 >> 16) & 0xff] ^
1533 Te2[(s2 >> 8) & 0xff] ^
1534 Te3[(s3 ) & 0xff] ^
1535 rk[4];
1536 t1 =
1537 Te0[(s1 >> 24) ] ^
1538 Te1[(s2 >> 16) & 0xff] ^
1539 Te2[(s3 >> 8) & 0xff] ^
1540 Te3[(s0 ) & 0xff] ^
1541 rk[5];
1542 t2 =
1543 Te0[(s2 >> 24) ] ^
1544 Te1[(s3 >> 16) & 0xff] ^
1545 Te2[(s0 >> 8) & 0xff] ^
1546 Te3[(s1 ) & 0xff] ^
1547 rk[6];
1548 t3 =
1549 Te0[(s3 >> 24) ] ^
1550 Te1[(s0 >> 16) & 0xff] ^
1551 Te2[(s1 >> 8) & 0xff] ^
1552 Te3[(s2 ) & 0xff] ^
1553 rk[7];
1554
1555 rk += 8;
1556 if (--r == 0) {
1557 break;
1558 }
1559
1560 s0 =
1561 Te0[(t0 >> 24) ] ^
1562 Te1[(t1 >> 16) & 0xff] ^
1563 Te2[(t2 >> 8) & 0xff] ^
1564 Te3[(t3 ) & 0xff] ^
1565 rk[0];
1566 s1 =
1567 Te0[(t1 >> 24) ] ^
1568 Te1[(t2 >> 16) & 0xff] ^
1569 Te2[(t3 >> 8) & 0xff] ^
1570 Te3[(t0 ) & 0xff] ^
1571 rk[1];
1572 s2 =
1573 Te0[(t2 >> 24) ] ^
1574 Te1[(t3 >> 16) & 0xff] ^
1575 Te2[(t0 >> 8) & 0xff] ^
1576 Te3[(t1 ) & 0xff] ^
1577 rk[2];
1578 s3 =
1579 Te0[(t3 >> 24) ] ^
1580 Te1[(t0 >> 16) & 0xff] ^
1581 Te2[(t1 >> 8) & 0xff] ^
1582 Te3[(t2 ) & 0xff] ^
1583 rk[3];
1584 }
1585 #endif /* ?FULL_UNROLL */
1586 /*
1587 * apply last round and
1588 * map cipher state to byte array block:
1589 */
1590 s0 =
1591 (Te2[(t0 >> 24) ] & 0xff000000) ^
1592 (Te3[(t1 >> 16) & 0xff] & 0x00ff0000) ^
1593 (Te0[(t2 >> 8) & 0xff] & 0x0000ff00) ^
1594 (Te1[(t3 ) & 0xff] & 0x000000ff) ^
1595 rk[0];
1596 PUTU32(out , s0);
1597 s1 =
1598 (Te2[(t1 >> 24) ] & 0xff000000) ^
1599 (Te3[(t2 >> 16) & 0xff] & 0x00ff0000) ^
1600 (Te0[(t3 >> 8) & 0xff] & 0x0000ff00) ^
1601 (Te1[(t0 ) & 0xff] & 0x000000ff) ^
1602 rk[1];
1603 PUTU32(out + 4, s1);
1604 s2 =
1605 (Te2[(t2 >> 24) ] & 0xff000000) ^
1606 (Te3[(t3 >> 16) & 0xff] & 0x00ff0000) ^
1607 (Te0[(t0 >> 8) & 0xff] & 0x0000ff00) ^
1608 (Te1[(t1 ) & 0xff] & 0x000000ff) ^
1609 rk[2];
1610 PUTU32(out + 8, s2);
1611 s3 =
1612 (Te2[(t3 >> 24) ] & 0xff000000) ^
1613 (Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ^
1614 (Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ^
1615 (Te1[(t2 ) & 0xff] & 0x000000ff) ^
1616 rk[3];
1617 PUTU32(out + 12, s3);
1618 }
1619
1620 /*
1621 * Decrypt a single block
1622 * in and out can overlap
1623 */
AES_decrypt(const unsigned char * in,unsigned char * out,const AES_KEY * key)1624 void AES_decrypt(const unsigned char *in, unsigned char *out,
1625 const AES_KEY *key)
1626 {
1627
1628 const u32 *rk;
1629 u32 s0, s1, s2, s3, t0, t1, t2, t3;
1630 #ifndef FULL_UNROLL
1631 int r;
1632 #endif /* ?FULL_UNROLL */
1633
1634 assert(in && out && key);
1635 rk = key->rd_key;
1636
1637 /*
1638 * map byte array block to cipher state
1639 * and add initial round key:
1640 */
1641 s0 = GETU32(in ) ^ rk[0];
1642 s1 = GETU32(in + 4) ^ rk[1];
1643 s2 = GETU32(in + 8) ^ rk[2];
1644 s3 = GETU32(in + 12) ^ rk[3];
1645 #ifdef FULL_UNROLL
1646 /* round 1: */
1647 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[ 4];
1648 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[ 5];
1649 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[ 6];
1650 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[ 7];
1651 /* round 2: */
1652 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[ 8];
1653 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[ 9];
1654 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[10];
1655 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[11];
1656 /* round 3: */
1657 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[12];
1658 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[13];
1659 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[14];
1660 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[15];
1661 /* round 4: */
1662 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[16];
1663 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[17];
1664 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[18];
1665 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[19];
1666 /* round 5: */
1667 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[20];
1668 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[21];
1669 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[22];
1670 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[23];
1671 /* round 6: */
1672 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[24];
1673 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[25];
1674 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[26];
1675 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[27];
1676 /* round 7: */
1677 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[28];
1678 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[29];
1679 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[30];
1680 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[31];
1681 /* round 8: */
1682 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[32];
1683 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[33];
1684 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[34];
1685 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[35];
1686 /* round 9: */
1687 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[36];
1688 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[37];
1689 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[38];
1690 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[39];
1691 if (key->rounds > 10) {
1692 /* round 10: */
1693 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[40];
1694 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[41];
1695 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[42];
1696 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[43];
1697 /* round 11: */
1698 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[44];
1699 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[45];
1700 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[46];
1701 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[47];
1702 if (key->rounds > 12) {
1703 /* round 12: */
1704 s0 = Td0[t0 >> 24] ^ Td1[(t3 >> 16) & 0xff] ^ Td2[(t2 >> 8) & 0xff] ^ Td3[t1 & 0xff] ^ rk[48];
1705 s1 = Td0[t1 >> 24] ^ Td1[(t0 >> 16) & 0xff] ^ Td2[(t3 >> 8) & 0xff] ^ Td3[t2 & 0xff] ^ rk[49];
1706 s2 = Td0[t2 >> 24] ^ Td1[(t1 >> 16) & 0xff] ^ Td2[(t0 >> 8) & 0xff] ^ Td3[t3 & 0xff] ^ rk[50];
1707 s3 = Td0[t3 >> 24] ^ Td1[(t2 >> 16) & 0xff] ^ Td2[(t1 >> 8) & 0xff] ^ Td3[t0 & 0xff] ^ rk[51];
1708 /* round 13: */
1709 t0 = Td0[s0 >> 24] ^ Td1[(s3 >> 16) & 0xff] ^ Td2[(s2 >> 8) & 0xff] ^ Td3[s1 & 0xff] ^ rk[52];
1710 t1 = Td0[s1 >> 24] ^ Td1[(s0 >> 16) & 0xff] ^ Td2[(s3 >> 8) & 0xff] ^ Td3[s2 & 0xff] ^ rk[53];
1711 t2 = Td0[s2 >> 24] ^ Td1[(s1 >> 16) & 0xff] ^ Td2[(s0 >> 8) & 0xff] ^ Td3[s3 & 0xff] ^ rk[54];
1712 t3 = Td0[s3 >> 24] ^ Td1[(s2 >> 16) & 0xff] ^ Td2[(s1 >> 8) & 0xff] ^ Td3[s0 & 0xff] ^ rk[55];
1713 }
1714 }
1715 rk += key->rounds << 2;
1716 #else /* !FULL_UNROLL */
1717 /*
1718 * Nr - 1 full rounds:
1719 */
1720 r = key->rounds >> 1;
1721 for (;;) {
1722 t0 =
1723 Td0[(s0 >> 24) ] ^
1724 Td1[(s3 >> 16) & 0xff] ^
1725 Td2[(s2 >> 8) & 0xff] ^
1726 Td3[(s1 ) & 0xff] ^
1727 rk[4];
1728 t1 =
1729 Td0[(s1 >> 24) ] ^
1730 Td1[(s0 >> 16) & 0xff] ^
1731 Td2[(s3 >> 8) & 0xff] ^
1732 Td3[(s2 ) & 0xff] ^
1733 rk[5];
1734 t2 =
1735 Td0[(s2 >> 24) ] ^
1736 Td1[(s1 >> 16) & 0xff] ^
1737 Td2[(s0 >> 8) & 0xff] ^
1738 Td3[(s3 ) & 0xff] ^
1739 rk[6];
1740 t3 =
1741 Td0[(s3 >> 24) ] ^
1742 Td1[(s2 >> 16) & 0xff] ^
1743 Td2[(s1 >> 8) & 0xff] ^
1744 Td3[(s0 ) & 0xff] ^
1745 rk[7];
1746
1747 rk += 8;
1748 if (--r == 0) {
1749 break;
1750 }
1751
1752 s0 =
1753 Td0[(t0 >> 24) ] ^
1754 Td1[(t3 >> 16) & 0xff] ^
1755 Td2[(t2 >> 8) & 0xff] ^
1756 Td3[(t1 ) & 0xff] ^
1757 rk[0];
1758 s1 =
1759 Td0[(t1 >> 24) ] ^
1760 Td1[(t0 >> 16) & 0xff] ^
1761 Td2[(t3 >> 8) & 0xff] ^
1762 Td3[(t2 ) & 0xff] ^
1763 rk[1];
1764 s2 =
1765 Td0[(t2 >> 24) ] ^
1766 Td1[(t1 >> 16) & 0xff] ^
1767 Td2[(t0 >> 8) & 0xff] ^
1768 Td3[(t3 ) & 0xff] ^
1769 rk[2];
1770 s3 =
1771 Td0[(t3 >> 24) ] ^
1772 Td1[(t2 >> 16) & 0xff] ^
1773 Td2[(t1 >> 8) & 0xff] ^
1774 Td3[(t0 ) & 0xff] ^
1775 rk[3];
1776 }
1777 #endif /* ?FULL_UNROLL */
1778 /*
1779 * apply last round and
1780 * map cipher state to byte array block:
1781 */
1782 s0 =
1783 ((u32)Td4[(t0 >> 24) ] << 24) ^
1784 ((u32)Td4[(t3 >> 16) & 0xff] << 16) ^
1785 ((u32)Td4[(t2 >> 8) & 0xff] << 8) ^
1786 ((u32)Td4[(t1 ) & 0xff]) ^
1787 rk[0];
1788 PUTU32(out , s0);
1789 s1 =
1790 ((u32)Td4[(t1 >> 24) ] << 24) ^
1791 ((u32)Td4[(t0 >> 16) & 0xff] << 16) ^
1792 ((u32)Td4[(t3 >> 8) & 0xff] << 8) ^
1793 ((u32)Td4[(t2 ) & 0xff]) ^
1794 rk[1];
1795 PUTU32(out + 4, s1);
1796 s2 =
1797 ((u32)Td4[(t2 >> 24) ] << 24) ^
1798 ((u32)Td4[(t1 >> 16) & 0xff] << 16) ^
1799 ((u32)Td4[(t0 >> 8) & 0xff] << 8) ^
1800 ((u32)Td4[(t3 ) & 0xff]) ^
1801 rk[2];
1802 PUTU32(out + 8, s2);
1803 s3 =
1804 ((u32)Td4[(t3 >> 24) ] << 24) ^
1805 ((u32)Td4[(t2 >> 16) & 0xff] << 16) ^
1806 ((u32)Td4[(t1 >> 8) & 0xff] << 8) ^
1807 ((u32)Td4[(t0 ) & 0xff]) ^
1808 rk[3];
1809 PUTU32(out + 12, s3);
1810 }
1811
1812 #else /* AES_ASM */
1813
1814 static const u8 Te4[256] = {
1815 0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U,
1816 0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U,
1817 0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U,
1818 0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U,
1819 0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU,
1820 0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U,
1821 0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU,
1822 0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U,
1823 0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U,
1824 0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U,
1825 0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU,
1826 0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU,
1827 0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U,
1828 0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U,
1829 0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U,
1830 0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U,
1831 0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U,
1832 0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U,
1833 0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U,
1834 0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU,
1835 0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU,
1836 0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U,
1837 0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U,
1838 0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U,
1839 0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U,
1840 0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU,
1841 0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU,
1842 0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU,
1843 0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U,
1844 0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU,
1845 0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U,
1846 0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U
1847 };
1848 static const u32 rcon[] = {
1849 0x01000000, 0x02000000, 0x04000000, 0x08000000,
1850 0x10000000, 0x20000000, 0x40000000, 0x80000000,
1851 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
1852 };
1853
1854 /**
1855 * Expand the cipher key into the encryption key schedule.
1856 */
AES_set_encrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)1857 int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
1858 AES_KEY *key)
1859 {
1860 u32 *rk;
1861 int i = 0;
1862 u32 temp;
1863
1864 if (!userKey || !key)
1865 return -1;
1866 if (bits != 128 && bits != 192 && bits != 256)
1867 return -2;
1868
1869 rk = key->rd_key;
1870
1871 if (bits == 128)
1872 key->rounds = 10;
1873 else if (bits == 192)
1874 key->rounds = 12;
1875 else
1876 key->rounds = 14;
1877
1878 rk[0] = GETU32(userKey );
1879 rk[1] = GETU32(userKey + 4);
1880 rk[2] = GETU32(userKey + 8);
1881 rk[3] = GETU32(userKey + 12);
1882 if (bits == 128) {
1883 while (1) {
1884 temp = rk[3];
1885 rk[4] = rk[0] ^
1886 ((u32)Te4[(temp >> 16) & 0xff] << 24) ^
1887 ((u32)Te4[(temp >> 8) & 0xff] << 16) ^
1888 ((u32)Te4[(temp ) & 0xff] << 8) ^
1889 ((u32)Te4[(temp >> 24) ]) ^
1890 rcon[i];
1891 rk[5] = rk[1] ^ rk[4];
1892 rk[6] = rk[2] ^ rk[5];
1893 rk[7] = rk[3] ^ rk[6];
1894 if (++i == 10) {
1895 return 0;
1896 }
1897 rk += 4;
1898 }
1899 }
1900 rk[4] = GETU32(userKey + 16);
1901 rk[5] = GETU32(userKey + 20);
1902 if (bits == 192) {
1903 while (1) {
1904 temp = rk[ 5];
1905 rk[ 6] = rk[ 0] ^
1906 ((u32)Te4[(temp >> 16) & 0xff] << 24) ^
1907 ((u32)Te4[(temp >> 8) & 0xff] << 16) ^
1908 ((u32)Te4[(temp ) & 0xff] << 8) ^
1909 ((u32)Te4[(temp >> 24) ]) ^
1910 rcon[i];
1911 rk[ 7] = rk[ 1] ^ rk[ 6];
1912 rk[ 8] = rk[ 2] ^ rk[ 7];
1913 rk[ 9] = rk[ 3] ^ rk[ 8];
1914 if (++i == 8) {
1915 return 0;
1916 }
1917 rk[10] = rk[ 4] ^ rk[ 9];
1918 rk[11] = rk[ 5] ^ rk[10];
1919 rk += 6;
1920 }
1921 }
1922 rk[6] = GETU32(userKey + 24);
1923 rk[7] = GETU32(userKey + 28);
1924 if (bits == 256) {
1925 while (1) {
1926 temp = rk[ 7];
1927 rk[ 8] = rk[ 0] ^
1928 ((u32)Te4[(temp >> 16) & 0xff] << 24) ^
1929 ((u32)Te4[(temp >> 8) & 0xff] << 16) ^
1930 ((u32)Te4[(temp ) & 0xff] << 8) ^
1931 ((u32)Te4[(temp >> 24) ]) ^
1932 rcon[i];
1933 rk[ 9] = rk[ 1] ^ rk[ 8];
1934 rk[10] = rk[ 2] ^ rk[ 9];
1935 rk[11] = rk[ 3] ^ rk[10];
1936 if (++i == 7) {
1937 return 0;
1938 }
1939 temp = rk[11];
1940 rk[12] = rk[ 4] ^
1941 ((u32)Te4[(temp >> 24) ] << 24) ^
1942 ((u32)Te4[(temp >> 16) & 0xff] << 16) ^
1943 ((u32)Te4[(temp >> 8) & 0xff] << 8) ^
1944 ((u32)Te4[(temp ) & 0xff]);
1945 rk[13] = rk[ 5] ^ rk[12];
1946 rk[14] = rk[ 6] ^ rk[13];
1947 rk[15] = rk[ 7] ^ rk[14];
1948
1949 rk += 8;
1950 }
1951 }
1952 return 0;
1953 }
1954
1955 /**
1956 * Expand the cipher key into the decryption key schedule.
1957 */
AES_set_decrypt_key(const unsigned char * userKey,const int bits,AES_KEY * key)1958 int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
1959 AES_KEY *key)
1960 {
1961
1962 u32 *rk;
1963 int i, j, status;
1964 u32 temp;
1965
1966 /* first, start with an encryption schedule */
1967 status = AES_set_encrypt_key(userKey, bits, key);
1968 if (status < 0)
1969 return status;
1970
1971 rk = key->rd_key;
1972
1973 /* invert the order of the round keys: */
1974 for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) {
1975 temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
1976 temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
1977 temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
1978 temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
1979 }
1980 /* apply the inverse MixColumn transform to all round keys but the first and the last: */
1981 for (i = 1; i < (key->rounds); i++) {
1982 rk += 4;
1983 for (j = 0; j < 4; j++) {
1984 u32 tp1, tp2, tp4, tp8, tp9, tpb, tpd, tpe, m;
1985
1986 tp1 = rk[j];
1987 m = tp1 & 0x80808080;
1988 tp2 = ((tp1 & 0x7f7f7f7f) << 1) ^
1989 ((m - (m >> 7)) & 0x1b1b1b1b);
1990 m = tp2 & 0x80808080;
1991 tp4 = ((tp2 & 0x7f7f7f7f) << 1) ^
1992 ((m - (m >> 7)) & 0x1b1b1b1b);
1993 m = tp4 & 0x80808080;
1994 tp8 = ((tp4 & 0x7f7f7f7f) << 1) ^
1995 ((m - (m >> 7)) & 0x1b1b1b1b);
1996 tp9 = tp8 ^ tp1;
1997 tpb = tp9 ^ tp2;
1998 tpd = tp9 ^ tp4;
1999 tpe = tp8 ^ tp4 ^ tp2;
2000 #if defined(ROTATE)
2001 rk[j] = tpe ^ ROTATE(tpd,16) ^
2002 ROTATE(tp9,24) ^ ROTATE(tpb,8);
2003 #else
2004 rk[j] = tpe ^ (tpd >> 16) ^ (tpd << 16) ^
2005 (tp9 >> 8) ^ (tp9 << 24) ^
2006 (tpb >> 24) ^ (tpb << 8);
2007 #endif
2008 }
2009 }
2010 return 0;
2011 }
2012
2013 #endif /* AES_ASM */
2014