xref: /PHP-8.0/ext/pcre/pcre2lib/sljit/sljitLir.h (revision 9f2d0395)
1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29 
30 /*
31    ------------------------------------------------------------------------
32     Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33    ------------------------------------------------------------------------
34 
35    Short description
36     Advantages:
37       - The execution can be continued from any LIR instruction. In other
38         words, it is possible to jump to any label from anywhere, even from
39         a code fragment, which is compiled later, if both compiled code
40         shares the same context. See sljit_emit_enter for more details
41       - Supports self modifying code: target of (conditional) jump and call
42         instructions and some constant values can be dynamically modified
43         during runtime
44         - although it is not suggested to do it frequently
45         - can be used for inline caching: save an important value once
46           in the instruction stream
47         - since this feature limits the optimization possibilities, a
48           special flag must be passed at compile time when these
49           instructions are emitted
50       - A fixed stack space can be allocated for local variables
51       - The compiler is thread-safe
52       - The compiler is highly configurable through preprocessor macros.
53         You can disable unneeded features (multithreading in single
54         threaded applications), and you can use your own system functions
55         (including memory allocators). See sljitConfig.h
56     Disadvantages:
57       - No automatic register allocation, and temporary results are
58         not stored on the stack. (hence the name comes)
59     In practice:
60       - This approach is very effective for interpreters
61         - One of the saved registers typically points to a stack interface
62         - It can jump to any exception handler anytime (even if it belongs
63           to another function)
64         - Hot paths can be modified during runtime reflecting the changes
65           of the fastest execution path of the dynamic language
66         - SLJIT supports complex memory addressing modes
67         - mainly position and context independent code (except some cases)
68 
69     For valgrind users:
70       - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72 
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76 
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80 
81 #include "sljitConfigInternal.h"
82 
83 #ifdef __cplusplus
84 extern "C" {
85 #endif
86 
87 /* --------------------------------------------------------------------- */
88 /*  Error codes                                                          */
89 /* --------------------------------------------------------------------- */
90 
91 /* Indicates no error. */
92 #define SLJIT_SUCCESS			0
93 /* After the call of sljit_generate_code(), the error code of the compiler
94    is set to this value to avoid future sljit calls (in debug mode at least).
95    The complier should be freed after sljit_generate_code(). */
96 #define SLJIT_ERR_COMPILED		1
97 /* Cannot allocate non executable memory. */
98 #define SLJIT_ERR_ALLOC_FAILED		2
99 /* Cannot allocate executable memory.
100    Only for sljit_generate_code() */
101 #define SLJIT_ERR_EX_ALLOC_FAILED	3
102 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
103 #define SLJIT_ERR_UNSUPPORTED		4
104 /* An ivalid argument is passed to any SLJIT function. */
105 #define SLJIT_ERR_BAD_ARGUMENT		5
106 /* Dynamic code modification is not enabled. */
107 #define SLJIT_ERR_DYN_CODE_MOD		6
108 
109 /* --------------------------------------------------------------------- */
110 /*  Registers                                                            */
111 /* --------------------------------------------------------------------- */
112 
113 /*
114   Scratch (R) registers: registers whose may not preserve their values
115   across function calls.
116 
117   Saved (S) registers: registers whose preserve their values across
118   function calls.
119 
120   The scratch and saved register sets are overlap. The last scratch register
121   is the first saved register, the one before the last is the second saved
122   register, and so on.
123 
124   If an architecture provides two scratch and three saved registers,
125   its scratch and saved register sets are the following:
126 
127      R0   |        |   R0 is always a scratch register
128      R1   |        |   R1 is always a scratch register
129     [R2]  |   S2   |   R2 and S2 represent the same physical register
130     [R3]  |   S1   |   R3 and S1 represent the same physical register
131     [R4]  |   S0   |   R4 and S0 represent the same physical register
132 
133   Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
134         SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
135 
136   Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
137         and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
138         are virtual on x86-32. See below.
139 
140   The purpose of this definition is convenience: saved registers can
141   be used as extra scratch registers. For example four registers can
142   be specified as scratch registers and the fifth one as saved register
143   on the CPU above and any user code which requires four scratch
144   registers can run unmodified. The SLJIT compiler automatically saves
145   the content of the two extra scratch register on the stack. Scratch
146   registers can also be preserved by saving their value on the stack
147   but this needs to be done manually.
148 
149   Note: To emphasize that registers assigned to R2-R4 are saved
150         registers, they are enclosed by square brackets.
151 
152   Note: sljit_emit_enter and sljit_set_context defines whether a register
153         is S or R register. E.g: when 3 scratches and 1 saved is mapped
154         by sljit_emit_enter, the allowed register set will be: R0-R2 and
155         S0. Although S2 is mapped to the same position as R2, it does not
156         available in the current configuration. Furthermore the S1 register
157         is not available at all.
158 */
159 
160 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
161    or sljit_emit_op2 operations the result is discarded. Some status
162    flags must be set when the destination is SLJIT_UNUSED, because the
163    operation would have no effect otherwise. Other SLJIT operations do
164    not support SLJIT_UNUSED as a destination operand. */
165 #define SLJIT_UNUSED		0
166 
167 /* Scratch registers. */
168 #define SLJIT_R0	1
169 #define SLJIT_R1	2
170 #define SLJIT_R2	3
171 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
172    are allocated on the stack). These registers are called virtual
173    and cannot be used for memory addressing (cannot be part of
174    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
175    limitation on other CPUs. See sljit_get_register_index(). */
176 #define SLJIT_R3	4
177 #define SLJIT_R4	5
178 #define SLJIT_R5	6
179 #define SLJIT_R6	7
180 #define SLJIT_R7	8
181 #define SLJIT_R8	9
182 #define SLJIT_R9	10
183 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
184    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
185 #define SLJIT_R(i)	(1 + (i))
186 
187 /* Saved registers. */
188 #define SLJIT_S0	(SLJIT_NUMBER_OF_REGISTERS)
189 #define SLJIT_S1	(SLJIT_NUMBER_OF_REGISTERS - 1)
190 #define SLJIT_S2	(SLJIT_NUMBER_OF_REGISTERS - 2)
191 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
192    are allocated on the stack). These registers are called virtual
193    and cannot be used for memory addressing (cannot be part of
194    any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
195    limitation on other CPUs. See sljit_get_register_index(). */
196 #define SLJIT_S3	(SLJIT_NUMBER_OF_REGISTERS - 3)
197 #define SLJIT_S4	(SLJIT_NUMBER_OF_REGISTERS - 4)
198 #define SLJIT_S5	(SLJIT_NUMBER_OF_REGISTERS - 5)
199 #define SLJIT_S6	(SLJIT_NUMBER_OF_REGISTERS - 6)
200 #define SLJIT_S7	(SLJIT_NUMBER_OF_REGISTERS - 7)
201 #define SLJIT_S8	(SLJIT_NUMBER_OF_REGISTERS - 8)
202 #define SLJIT_S9	(SLJIT_NUMBER_OF_REGISTERS - 9)
203 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
204    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
205 #define SLJIT_S(i)	(SLJIT_NUMBER_OF_REGISTERS - (i))
206 
207 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
208 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
209 
210 /* The SLJIT_SP provides direct access to the linear stack space allocated by
211    sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
212    The immediate offset is extended by the relative stack offset automatically.
213    The sljit_get_local_base can be used to obtain the absolute offset. */
214 #define SLJIT_SP	(SLJIT_NUMBER_OF_REGISTERS + 1)
215 
216 /* Return with machine word. */
217 
218 #define SLJIT_RETURN_REG	SLJIT_R0
219 
220 /* --------------------------------------------------------------------- */
221 /*  Floating point registers                                             */
222 /* --------------------------------------------------------------------- */
223 
224 /* Each floating point register can store a 32 or a 64 bit precision
225    value. The FR and FS register sets are overlap in the same way as R
226    and S register sets. See above. */
227 
228 /* Note: SLJIT_UNUSED as destination is not valid for floating point
229    operations, since they cannot be used for setting flags. */
230 
231 /* Floating point scratch registers. */
232 #define SLJIT_FR0	1
233 #define SLJIT_FR1	2
234 #define SLJIT_FR2	3
235 #define SLJIT_FR3	4
236 #define SLJIT_FR4	5
237 #define SLJIT_FR5	6
238 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
239    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
240 #define SLJIT_FR(i)	(1 + (i))
241 
242 /* Floating point saved registers. */
243 #define SLJIT_FS0	(SLJIT_NUMBER_OF_FLOAT_REGISTERS)
244 #define SLJIT_FS1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
245 #define SLJIT_FS2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
246 #define SLJIT_FS3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
247 #define SLJIT_FS4	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
248 #define SLJIT_FS5	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
249 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
250    The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
251 #define SLJIT_FS(i)	(SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
252 
253 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
254 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
255 
256 /* --------------------------------------------------------------------- */
257 /*  Argument type definitions                                            */
258 /* --------------------------------------------------------------------- */
259 
260 /* Argument type definitions.
261    Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
262 
263 #define SLJIT_ARG_TYPE_VOID 0
264 #define SLJIT_ARG_TYPE_SW 1
265 #define SLJIT_ARG_TYPE_UW 2
266 #define SLJIT_ARG_TYPE_S32 3
267 #define SLJIT_ARG_TYPE_U32 4
268 #define SLJIT_ARG_TYPE_F32 5
269 #define SLJIT_ARG_TYPE_F64 6
270 
271 /* The following argument type definitions are used by sljit_emit_enter,
272    sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
273    The following return type definitions are used by sljit_emit_call
274    and sljit_emit_icall functions.
275 
276    When a function is called, the first integer argument must be placed
277    in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
278    floating point argument must be placed in SLJIT_FR0, the second in
279    SLJIT_FR1, and so on.
280 
281    Example function definition:
282      sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
283          sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
284 
285    Argument type definition:
286      SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
287         | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
288         | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
289 
290    Short form of argument type definition:
291      SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
292         | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
293 
294    Argument passing:
295      arg_a must be placed in SLJIT_R0
296      arg_c must be placed in SLJIT_R1
297      arg_b must be placed in SLJIT_FR0
298      arg_d must be placed in SLJIT_FR1
299 
300 Note:
301    The SLJIT_ARG_TYPE_VOID type is only supported by
302    SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
303    default value when SLJIT_DEF_RET is not specified. */
304 #define SLJIT_DEF_SHIFT 4
305 #define SLJIT_DEF_RET(type) (type)
306 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
307 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
308 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
309 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
310 
311 /* Short form of the macros above.
312 
313    For example the following definition:
314    SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
315 
316    can be shortened to:
317    SLJIT_RET(SW) | SLJIT_ARG1(F32)
318 
319 Note:
320    The VOID type is only supported by SLJIT_RET, and
321    VOID is also the default value when SLJIT_RET is
322    not specified. */
323 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
324 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
325 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
326 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
327 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
328 
329 /* --------------------------------------------------------------------- */
330 /*  Main structures and functions                                        */
331 /* --------------------------------------------------------------------- */
332 
333 /*
334 	The following structures are private, and can be changed in the
335 	future. Keeping them here allows code inlining.
336 */
337 
338 struct sljit_memory_fragment {
339 	struct sljit_memory_fragment *next;
340 	sljit_uw used_size;
341 	/* Must be aligned to sljit_sw. */
342 	sljit_u8 memory[1];
343 };
344 
345 struct sljit_label {
346 	struct sljit_label *next;
347 	sljit_uw addr;
348 	/* The maximum size difference. */
349 	sljit_uw size;
350 };
351 
352 struct sljit_jump {
353 	struct sljit_jump *next;
354 	sljit_uw addr;
355 	sljit_uw flags;
356 	union {
357 		sljit_uw target;
358 		struct sljit_label *label;
359 	} u;
360 };
361 
362 struct sljit_put_label {
363 	struct sljit_put_label *next;
364 	struct sljit_label *label;
365 	sljit_uw addr;
366 	sljit_uw flags;
367 };
368 
369 struct sljit_const {
370 	struct sljit_const *next;
371 	sljit_uw addr;
372 };
373 
374 struct sljit_compiler {
375 	sljit_s32 error;
376 	sljit_s32 options;
377 
378 	struct sljit_label *labels;
379 	struct sljit_jump *jumps;
380 	struct sljit_put_label *put_labels;
381 	struct sljit_const *consts;
382 	struct sljit_label *last_label;
383 	struct sljit_jump *last_jump;
384 	struct sljit_const *last_const;
385 	struct sljit_put_label *last_put_label;
386 
387 	void *allocator_data;
388 	struct sljit_memory_fragment *buf;
389 	struct sljit_memory_fragment *abuf;
390 
391 	/* Used scratch registers. */
392 	sljit_s32 scratches;
393 	/* Used saved registers. */
394 	sljit_s32 saveds;
395 	/* Used float scratch registers. */
396 	sljit_s32 fscratches;
397 	/* Used float saved registers. */
398 	sljit_s32 fsaveds;
399 	/* Local stack size. */
400 	sljit_s32 local_size;
401 	/* Code size. */
402 	sljit_uw size;
403 	/* Relative offset of the executable mapping from the writable mapping. */
404 	sljit_uw executable_offset;
405 	/* Executable size for statistical purposes. */
406 	sljit_uw executable_size;
407 
408 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
409 	sljit_s32 args;
410 	sljit_s32 locals_offset;
411 	sljit_s32 saveds_offset;
412 	sljit_s32 stack_tmp_size;
413 #endif
414 
415 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
416 	sljit_s32 mode32;
417 #ifdef _WIN64
418 	sljit_s32 locals_offset;
419 #endif
420 #endif
421 
422 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
423 	/* Constant pool handling. */
424 	sljit_uw *cpool;
425 	sljit_u8 *cpool_unique;
426 	sljit_uw cpool_diff;
427 	sljit_uw cpool_fill;
428 	/* Other members. */
429 	/* Contains pointer, "ldr pc, [...]" pairs. */
430 	sljit_uw patches;
431 #endif
432 
433 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
434 	/* Temporary fields. */
435 	sljit_uw shift_imm;
436 #endif
437 
438 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
439 	sljit_sw imm;
440 #endif
441 
442 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
443 	sljit_s32 delay_slot;
444 	sljit_s32 cache_arg;
445 	sljit_sw cache_argw;
446 #endif
447 
448 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
449 	sljit_s32 delay_slot;
450 	sljit_s32 cache_arg;
451 	sljit_sw cache_argw;
452 #endif
453 
454 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
455 	sljit_s32 cache_arg;
456 	sljit_sw cache_argw;
457 #endif
458 
459 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
460 	FILE* verbose;
461 #endif
462 
463 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
464 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG)
465 	/* Flags specified by the last arithmetic instruction.
466 	   It contains the type of the variable flag. */
467 	sljit_s32 last_flags;
468 	/* Local size passed to the functions. */
469 	sljit_s32 logical_local_size;
470 #endif
471 
472 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
473 		|| (defined SLJIT_DEBUG && SLJIT_DEBUG) \
474 		|| (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
475 	/* Trust arguments when the API function is called. */
476 	sljit_s32 skip_checks;
477 #endif
478 };
479 
480 /* --------------------------------------------------------------------- */
481 /*  Main functions                                                       */
482 /* --------------------------------------------------------------------- */
483 
484 /* Creates an sljit compiler. The allocator_data is required by some
485    custom memory managers. This pointer is passed to SLJIT_MALLOC
486    and SLJIT_FREE macros. Most allocators (including the default
487    one) ignores this value, and it is recommended to pass NULL
488    as a dummy value for allocator_data.
489 
490    Returns NULL if failed. */
491 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
492 
493 /* Frees everything except the compiled machine code. */
494 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
495 
496 /* Returns the current error code. If an error is occurred, future sljit
497    calls which uses the same compiler argument returns early with the same
498    error code. Thus there is no need for checking the error after every
499    call, it is enough to do it before the code is compiled. Removing
500    these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)501 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
502 
503 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
504    if an error was detected before. After the error code is set
505    the compiler behaves as if the allocation failure happened
506    during an sljit function call. This can greatly simplify error
507    checking, since only the compiler status needs to be checked
508    after the compilation. */
509 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
510 
511 /*
512    Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
513    and <= 128 bytes on 64 bit architectures. The memory area is owned by the
514    compiler, and freed by sljit_free_compiler. The returned pointer is
515    sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
516    the compiling, and no need to worry about freeing them. The size is
517    enough to contain at most 16 pointers. If the size is outside of the range,
518    the function will return with NULL. However, this return value does not
519    indicate that there is no more memory (does not set the current error code
520    of the compiler to out-of-memory status).
521 */
522 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
523 
524 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
525 /* Passing NULL disables verbose. */
526 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
527 #endif
528 
529 /*
530    Create executable code from the sljit instruction stream. This is the final step
531    of the code generation so no more instructions can be added after this call.
532 */
533 
534 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
535 
536 /* Free executable code. */
537 
538 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
539 
540 /*
541    When the protected executable allocator is used the JIT code is mapped
542    twice. The first mapping has read/write and the second mapping has read/exec
543    permissions. This function returns with the relative offset of the executable
544    mapping using the writable mapping as the base after the machine code is
545    successfully generated. The returned value is always 0 for the normal executable
546    allocator, since it uses only one mapping with read/write/exec permissions.
547    Dynamic code modifications requires this value.
548 
549    Before a successful code generation, this function returns with 0.
550 */
sljit_get_executable_offset(struct sljit_compiler * compiler)551 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
552 
553 /*
554    The executable memory consumption of the generated code can be retrieved by
555    this function. The returned value can be used for statistical purposes.
556 
557    Before a successful code generation, this function returns with 0.
558 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)559 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
560 
561 /* Returns with non-zero if the feature or limitation type passed as its
562    argument is present on the current CPU.
563 
564    Some features (e.g. floating point operations) require hardware (CPU)
565    support while others (e.g. move with update) are emulated if not available.
566    However even if a feature is emulated, specialized code paths can be faster
567    than the emulation. Some limitations are emulated as well so their general
568    case is supported but it has extra performance costs. */
569 
570 /* [Not emulated] Floating-point support is available. */
571 #define SLJIT_HAS_FPU			0
572 /* [Limitation] Some registers are virtual registers. */
573 #define SLJIT_HAS_VIRTUAL_REGISTERS	1
574 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
575 #define SLJIT_HAS_ZERO_REGISTER		2
576 /* [Emulated] Count leading zero is supported. */
577 #define SLJIT_HAS_CLZ			3
578 /* [Emulated] Conditional move is supported. */
579 #define SLJIT_HAS_CMOV			4
580 /* [Emulated] Conditional move is supported. */
581 #define SLJIT_HAS_PREFETCH		5
582 
583 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
584 /* [Not emulated] SSE2 support is available on x86. */
585 #define SLJIT_HAS_SSE2			100
586 #endif
587 
588 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
589 
590 /* Instruction generation. Returns with any error code. If there is no
591    error, they return with SLJIT_SUCCESS. */
592 
593 /*
594    The executable code is a function from the viewpoint of the C
595    language. The function calls must obey to the ABI (Application
596    Binary Interface) of the platform, which specify the purpose of
597    machine registers and stack handling among other things. The
598    sljit_emit_enter function emits the necessary instructions for
599    setting up a new context for the executable code and moves function
600    arguments to the saved registers. Furthermore the options argument
601    can be used to pass configuration options to the compiler. The
602    available options are listed before sljit_emit_enter.
603 
604    The function argument list is the combination of SLJIT_ARGx
605    (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
606    (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
607    The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
608    and so on. The register set used by the function must be declared
609    as well. The number of scratch and saved registers used by the
610    function must be passed to sljit_emit_enter. Only R registers
611    between R0 and "scratches" argument can be used later. E.g. if
612    "scratches" is set to 2, the scratch register set will be limited
613    to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
614    registers ("fscratches" and "fsaveds") are specified in a similar
615    manner. The sljit_emit_enter is also capable of allocating a stack
616    space for local variables. The "local_size" argument contains the
617    size in bytes of this local area and its staring address is stored
618    in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
619    SLJIT_SP + local_size (exclusive) can be modified freely until
620    the function returns. The stack space is not initialized.
621 
622    Note: the following conditions must met:
623          0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
624          0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
625          scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
626          0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
627          0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
628          fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
629 
630    Note: every call of sljit_emit_enter and sljit_set_context
631          overwrites the previous context.
632 */
633 
634 /* The absolute address returned by sljit_get_local_base with
635 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
636 #define SLJIT_F64_ALIGNMENT 0x00000001
637 
638 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
639 #define SLJIT_MAX_LOCAL_SIZE	65536
640 
641 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
642 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
643 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
644 
645 /* The machine code has a context (which contains the local stack space size,
646    number of used registers, etc.) which initialized by sljit_emit_enter. Several
647    functions (like sljit_emit_return) requres this context to be able to generate
648    the appropriate code. However, some code fragments (like inline cache) may have
649    no normal entry point so their context is unknown for the compiler. Their context
650    can be provided to the compiler by the sljit_set_context function.
651 
652    Note: every call of sljit_emit_enter and sljit_set_context overwrites
653          the previous context. */
654 
655 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
656 	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
657 	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
658 
659 /* Return from machine code.  The op argument can be SLJIT_UNUSED which means the
660    function does not return with anything or any opcode between SLJIT_MOV and
661    SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
662    is SLJIT_UNUSED, otherwise see below the description about source and
663    destination arguments. */
664 
665 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
666 	sljit_s32 src, sljit_sw srcw);
667 
668 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
669    Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
670    values of all registers and stack frame. The return address is stored in the
671    dst argument of sljit_emit_fast_enter, and this return address can be passed
672    to SLJIT_FAST_RETURN to continue the execution after the fast call.
673 
674    Fast calls are cheap operations (usually only a single call instruction is
675    emitted) but they do not preserve any registers. However the callee function
676    can freely use / update any registers and stack values which can be
677    efficiently exploited by various optimizations. Registers can be saved
678    manually by the callee function if needed.
679 
680    Although returning to different address by SLJIT_FAST_RETURN is possible,
681    this address usually cannot be predicted by the return address predictor of
682    modern CPUs which may reduce performance. Furthermore certain security
683    enhancement technologies such as Intel Control-flow Enforcement Technology
684    (CET) may disallow returning to a different address.
685 
686    Flags: - (does not modify flags). */
687 
688 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
689 
690 /*
691    Source and destination operands for arithmetical instructions
692     imm              - a simple immediate value (cannot be used as a destination)
693     reg              - any of the registers (immediate argument must be 0)
694     [imm]            - absolute immediate memory address
695     [reg+imm]        - indirect memory address
696     [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
697                        useful for (byte, half, int, sljit_sw) array access
698                        (fully supported by both x86 and ARM architectures, and cheap operation on others)
699 */
700 
701 /*
702    IMPORATNT NOTE: memory access MUST be naturally aligned except
703                    SLJIT_UNALIGNED macro is defined and its value is 1.
704 
705      length | alignment
706    ---------+-----------
707      byte   | 1 byte (any physical_address is accepted)
708      half   | 2 byte (physical_address & 0x1 == 0)
709      int    | 4 byte (physical_address & 0x3 == 0)
710      word   | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
711             | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
712     pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
713             | on 64 bit machines)
714 
715    Note:   Different architectures have different addressing limitations.
716            A single instruction is enough for the following addressing
717            modes. Other adrressing modes are emulated by instruction
718            sequences. This information could help to improve those code
719            generators which focuses only a few architectures.
720 
721    x86:    [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
722            [reg+(reg<<imm)] is supported
723            [imm], -2^32+1 <= imm <= 2^32-1 is supported
724            Write-back is not supported
725    arm:    [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
726                 bytes, any halfs or floating point values)
727            [reg+(reg<<imm)] is supported
728            Write-back is supported
729    arm-t2: [reg+imm], -255 <= imm <= 4095
730            [reg+(reg<<imm)] is supported
731            Write back is supported only for [reg+imm], where -255 <= imm <= 255
732    arm64:  [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
733            [reg+(reg<<imm)] is supported
734            Write back is supported only for [reg+imm], where -256 <= imm <= 255
735    ppc:    [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
736                 signed load on 64 bit requires immediates divisible by 4.
737                 [reg+imm] is not supported for signed 8 bit values.
738            [reg+reg] is supported
739            Write-back is supported except for one instruction: 32 bit signed
740                 load with [reg+imm] addressing mode on 64 bit.
741    mips:   [reg+imm], -65536 <= imm <= 65535
742    sparc:  [reg+imm], -4096 <= imm <= 4095
743            [reg+reg] is supported
744 */
745 
746 /* Macros for specifying operand types. */
747 #define SLJIT_MEM		0x80
748 #define SLJIT_MEM0()		(SLJIT_MEM)
749 #define SLJIT_MEM1(r1)		(SLJIT_MEM | (r1))
750 #define SLJIT_MEM2(r1, r2)	(SLJIT_MEM | (r1) | ((r2) << 8))
751 #define SLJIT_IMM		0x40
752 
753 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
754    32 bit CPUs. When this option is set for an arithmetic operation, only
755    the lower 32 bit of the input registers are used, and the CPU status
756    flags are set according to the 32 bit result. Although the higher 32 bit
757    of the input and the result registers are not defined by SLJIT, it might
758    be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
759    requirements all source registers must be the result of those operations
760    where this option was also set. Memory loads read 32 bit values rather
761    than 64 bit ones. In other words 32 bit and 64 bit operations cannot
762    be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
763    register can hold any 32 or 64 bit value, and it is converted to a 32 bit
764    compatible format first. This conversion is free (no instructions are
765    emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
766    value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
767 
768    Note: memory addressing always uses 64 bit values on 64 bit systems so
769          the result of a 32 bit operation must not be used with SLJIT_MEMx
770          macros.
771 
772    This option is part of the instruction name, so there is no need to
773    manually set it. E.g:
774 
775      SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
776 #define SLJIT_I32_OP		0x100
777 
778 /* Set F32 (single) precision mode for floating-point computation. This
779    option is similar to SLJIT_I32_OP, it just applies to floating point
780    registers. When this option is passed, the CPU performs 32 bit floating
781    point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
782    register arguments must be the result of those operations where this
783    option was also set.
784 
785    This option is part of the instruction name, so there is no need to
786    manually set it. E.g:
787 
788      SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
789  */
790 #define SLJIT_F32_OP		SLJIT_I32_OP
791 
792 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
793    to the result of an operation. Other CPUs (MIPS) do not have status
794    flags, and results must be stored in registers. To cover both architecture
795    types efficiently only two flags are defined by SLJIT:
796 
797     * Zero (equal) flag: it is set if the result is zero
798     * Variable flag: its value is defined by the last arithmetic operation
799 
800    SLJIT instructions can set any or both of these flags. The value of
801    these flags is undefined if the instruction does not specify their value.
802    The description of each instruction contains the list of allowed flag
803    types.
804 
805    Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
806 
807      sljit_op2(..., SLJIT_ADD, ...)
808        Both the zero and variable flags are undefined so they can
809        have any value after the operation is completed.
810 
811      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
812        Sets the zero flag if the result is zero, clears it otherwise.
813        The variable flag is undefined.
814 
815      sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
816        Sets the variable flag if an integer overflow occurs, clears
817        it otherwise. The zero flag is undefined.
818 
819      sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
820        Sets the zero flag if the result is zero, clears it otherwise.
821        Sets the variable flag if unsigned overflow (carry) occurs,
822        clears it otherwise.
823 
824    If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
825    unchanged.
826 
827    Using these flags can reduce the number of emitted instructions. E.g. a
828    fast loop can be implemented by decreasing a counter register and set the
829    zero flag to jump back if the counter register has not reached zero.
830 
831    Motivation: although CPUs can set a large number of flags, usually their
832    values are ignored or only one of them is used. Emulating a large number
833    of flags on systems without flag register is complicated so SLJIT
834    instructions must specify the flag they want to use and only that flag
835    will be emulated. The last arithmetic instruction can be repeated if
836    multiple flags need to be checked.
837 */
838 
839 /* Set Zero status flag. */
840 #define SLJIT_SET_Z			0x0200
841 /* Set the variable status flag if condition is true.
842    See comparison types. */
843 #define SLJIT_SET(condition)			((condition) << 10)
844 
845 /* Notes:
846      - you cannot postpone conditional jump instructions except if noted that
847        the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
848      - flag combinations: '|' means 'logical or'. */
849 
850 /* Starting index of opcodes for sljit_emit_op0. */
851 #define SLJIT_OP0_BASE			0
852 
853 /* Flags: - (does not modify flags)
854    Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
855          It falls back to SLJIT_NOP in those cases. */
856 #define SLJIT_BREAKPOINT		(SLJIT_OP0_BASE + 0)
857 /* Flags: - (does not modify flags)
858    Note: may or may not cause an extra cycle wait
859          it can even decrease the runtime in a few cases. */
860 #define SLJIT_NOP			(SLJIT_OP0_BASE + 1)
861 /* Flags: - (may destroy flags)
862    Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
863    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
864 #define SLJIT_LMUL_UW			(SLJIT_OP0_BASE + 2)
865 /* Flags: - (may destroy flags)
866    Signed multiplication of SLJIT_R0 and SLJIT_R1.
867    Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
868 #define SLJIT_LMUL_SW			(SLJIT_OP0_BASE + 3)
869 /* Flags: - (may destroy flags)
870    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
871    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
872    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
873 #define SLJIT_DIVMOD_UW			(SLJIT_OP0_BASE + 4)
874 #define SLJIT_DIVMOD_U32		(SLJIT_DIVMOD_UW | SLJIT_I32_OP)
875 /* Flags: - (may destroy flags)
876    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
877    The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
878    Note: if SLJIT_R1 is 0, the behaviour is undefined.
879    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
880          the behaviour is undefined. */
881 #define SLJIT_DIVMOD_SW			(SLJIT_OP0_BASE + 5)
882 #define SLJIT_DIVMOD_S32		(SLJIT_DIVMOD_SW | SLJIT_I32_OP)
883 /* Flags: - (may destroy flags)
884    Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
885    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
886    Note: if SLJIT_R1 is 0, the behaviour is undefined. */
887 #define SLJIT_DIV_UW			(SLJIT_OP0_BASE + 6)
888 #define SLJIT_DIV_U32			(SLJIT_DIV_UW | SLJIT_I32_OP)
889 /* Flags: - (may destroy flags)
890    Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
891    The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
892    Note: if SLJIT_R1 is 0, the behaviour is undefined.
893    Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
894          the behaviour is undefined. */
895 #define SLJIT_DIV_SW			(SLJIT_OP0_BASE + 7)
896 #define SLJIT_DIV_S32			(SLJIT_DIV_SW | SLJIT_I32_OP)
897 /* Flags: - (does not modify flags)
898    ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
899    when Intel Control-flow Enforcement Technology (CET) is enabled.
900    No instruction for other architectures.  */
901 #define SLJIT_ENDBR			(SLJIT_OP0_BASE + 8)
902 /* Flags: - (may destroy flags)
903    Skip stack frames before return.  */
904 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN	(SLJIT_OP0_BASE + 9)
905 
906 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
907 
908 /* Starting index of opcodes for sljit_emit_op1. */
909 #define SLJIT_OP1_BASE			32
910 
911 /* The MOV instruction transfers data from source to destination.
912 
913    MOV instruction suffixes:
914 
915    U8  - unsigned 8 bit data transfer
916    S8  - signed 8 bit data transfer
917    U16 - unsigned 16 bit data transfer
918    S16 - signed 16 bit data transfer
919    U32 - unsigned int (32 bit) data transfer
920    S32 - signed int (32 bit) data transfer
921    P   - pointer (sljit_p) data transfer
922 */
923 
924 /* Flags: - (does not modify flags) */
925 #define SLJIT_MOV			(SLJIT_OP1_BASE + 0)
926 /* Flags: - (does not modify flags) */
927 #define SLJIT_MOV_U8			(SLJIT_OP1_BASE + 1)
928 #define SLJIT_MOV32_U8			(SLJIT_MOV_U8 | SLJIT_I32_OP)
929 /* Flags: - (does not modify flags) */
930 #define SLJIT_MOV_S8			(SLJIT_OP1_BASE + 2)
931 #define SLJIT_MOV32_S8			(SLJIT_MOV_S8 | SLJIT_I32_OP)
932 /* Flags: - (does not modify flags) */
933 #define SLJIT_MOV_U16			(SLJIT_OP1_BASE + 3)
934 #define SLJIT_MOV32_U16			(SLJIT_MOV_U16 | SLJIT_I32_OP)
935 /* Flags: - (does not modify flags) */
936 #define SLJIT_MOV_S16			(SLJIT_OP1_BASE + 4)
937 #define SLJIT_MOV32_S16			(SLJIT_MOV_S16 | SLJIT_I32_OP)
938 /* Flags: - (does not modify flags)
939    Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
940 #define SLJIT_MOV_U32			(SLJIT_OP1_BASE + 5)
941 /* Flags: - (does not modify flags)
942    Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
943 #define SLJIT_MOV_S32			(SLJIT_OP1_BASE + 6)
944 /* Flags: - (does not modify flags) */
945 #define SLJIT_MOV32			(SLJIT_MOV_S32 | SLJIT_I32_OP)
946 /* Flags: - (does not modify flags)
947    Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
948          where all x64 features are available, e.g. 16 register) or similar
949          compiling modes */
950 #define SLJIT_MOV_P			(SLJIT_OP1_BASE + 7)
951 /* Flags: Z
952    Note: immediate source argument is not supported */
953 #define SLJIT_NOT			(SLJIT_OP1_BASE + 8)
954 #define SLJIT_NOT32			(SLJIT_NOT | SLJIT_I32_OP)
955 /* Flags: Z | OVERFLOW
956    Note: immediate source argument is not supported */
957 #define SLJIT_NEG			(SLJIT_OP1_BASE + 9)
958 #define SLJIT_NEG32			(SLJIT_NEG | SLJIT_I32_OP)
959 /* Count leading zeroes
960    Flags: - (may destroy flags)
961    Note: immediate source argument is not supported */
962 #define SLJIT_CLZ			(SLJIT_OP1_BASE + 10)
963 #define SLJIT_CLZ32			(SLJIT_CLZ | SLJIT_I32_OP)
964 
965 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
966 	sljit_s32 dst, sljit_sw dstw,
967 	sljit_s32 src, sljit_sw srcw);
968 
969 /* Starting index of opcodes for sljit_emit_op2. */
970 #define SLJIT_OP2_BASE			96
971 
972 /* Flags: Z | OVERFLOW | CARRY */
973 #define SLJIT_ADD			(SLJIT_OP2_BASE + 0)
974 #define SLJIT_ADD32			(SLJIT_ADD | SLJIT_I32_OP)
975 /* Flags: CARRY */
976 #define SLJIT_ADDC			(SLJIT_OP2_BASE + 1)
977 #define SLJIT_ADDC32			(SLJIT_ADDC | SLJIT_I32_OP)
978 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
979           SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
980           SIG_LESS_EQUAL | CARRY */
981 #define SLJIT_SUB			(SLJIT_OP2_BASE + 2)
982 #define SLJIT_SUB32			(SLJIT_SUB | SLJIT_I32_OP)
983 /* Flags: CARRY */
984 #define SLJIT_SUBC			(SLJIT_OP2_BASE + 3)
985 #define SLJIT_SUBC32			(SLJIT_SUBC | SLJIT_I32_OP)
986 /* Note: integer mul
987    Flags: MUL_OVERFLOW */
988 #define SLJIT_MUL			(SLJIT_OP2_BASE + 4)
989 #define SLJIT_MUL32			(SLJIT_MUL | SLJIT_I32_OP)
990 /* Flags: Z */
991 #define SLJIT_AND			(SLJIT_OP2_BASE + 5)
992 #define SLJIT_AND32			(SLJIT_AND | SLJIT_I32_OP)
993 /* Flags: Z */
994 #define SLJIT_OR			(SLJIT_OP2_BASE + 6)
995 #define SLJIT_OR32			(SLJIT_OR | SLJIT_I32_OP)
996 /* Flags: Z */
997 #define SLJIT_XOR			(SLJIT_OP2_BASE + 7)
998 #define SLJIT_XOR32			(SLJIT_XOR | SLJIT_I32_OP)
999 /* Flags: Z
1000    Let bit_length be the length of the shift operation: 32 or 64.
1001    If src2 is immediate, src2w is masked by (bit_length - 1).
1002    Otherwise, if the content of src2 is outside the range from 0
1003    to bit_length - 1, the result is undefined. */
1004 #define SLJIT_SHL			(SLJIT_OP2_BASE + 8)
1005 #define SLJIT_SHL32			(SLJIT_SHL | SLJIT_I32_OP)
1006 /* Flags: Z
1007    Let bit_length be the length of the shift operation: 32 or 64.
1008    If src2 is immediate, src2w is masked by (bit_length - 1).
1009    Otherwise, if the content of src2 is outside the range from 0
1010    to bit_length - 1, the result is undefined. */
1011 #define SLJIT_LSHR			(SLJIT_OP2_BASE + 9)
1012 #define SLJIT_LSHR32			(SLJIT_LSHR | SLJIT_I32_OP)
1013 /* Flags: Z
1014    Let bit_length be the length of the shift operation: 32 or 64.
1015    If src2 is immediate, src2w is masked by (bit_length - 1).
1016    Otherwise, if the content of src2 is outside the range from 0
1017    to bit_length - 1, the result is undefined. */
1018 #define SLJIT_ASHR			(SLJIT_OP2_BASE + 10)
1019 #define SLJIT_ASHR32			(SLJIT_ASHR | SLJIT_I32_OP)
1020 
1021 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1022 	sljit_s32 dst, sljit_sw dstw,
1023 	sljit_s32 src1, sljit_sw src1w,
1024 	sljit_s32 src2, sljit_sw src2w);
1025 
1026 /* Starting index of opcodes for sljit_emit_op2. */
1027 #define SLJIT_OP_SRC_BASE		128
1028 
1029 /* Note: src cannot be an immedate value
1030    Flags: - (does not modify flags) */
1031 #define SLJIT_FAST_RETURN		(SLJIT_OP_SRC_BASE + 0)
1032 /* Skip stack frames before fast return.
1033    Note: src cannot be an immedate value
1034    Flags: may destroy flags. */
1035 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN	(SLJIT_OP_SRC_BASE + 1)
1036 /* Prefetch value into the level 1 data cache
1037    Note: if the target CPU does not support data prefetch,
1038          no instructions are emitted.
1039    Note: this instruction never fails, even if the memory address is invalid.
1040    Flags: - (does not modify flags) */
1041 #define SLJIT_PREFETCH_L1		(SLJIT_OP_SRC_BASE + 2)
1042 /* Prefetch value into the level 2 data cache
1043    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1044          does not support this instruction form.
1045    Note: this instruction never fails, even if the memory address is invalid.
1046    Flags: - (does not modify flags) */
1047 #define SLJIT_PREFETCH_L2		(SLJIT_OP_SRC_BASE + 3)
1048 /* Prefetch value into the level 3 data cache
1049    Note: same as SLJIT_PREFETCH_L2 if the target CPU
1050          does not support this instruction form.
1051    Note: this instruction never fails, even if the memory address is invalid.
1052    Flags: - (does not modify flags) */
1053 #define SLJIT_PREFETCH_L3		(SLJIT_OP_SRC_BASE + 4)
1054 /* Prefetch a value which is only used once (and can be discarded afterwards)
1055    Note: same as SLJIT_PREFETCH_L1 if the target CPU
1056          does not support this instruction form.
1057    Note: this instruction never fails, even if the memory address is invalid.
1058    Flags: - (does not modify flags) */
1059 #define SLJIT_PREFETCH_ONCE		(SLJIT_OP_SRC_BASE + 5)
1060 
1061 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1062 	sljit_s32 src, sljit_sw srcw);
1063 
1064 /* Starting index of opcodes for sljit_emit_fop1. */
1065 #define SLJIT_FOP1_BASE			160
1066 
1067 /* Flags: - (does not modify flags) */
1068 #define SLJIT_MOV_F64			(SLJIT_FOP1_BASE + 0)
1069 #define SLJIT_MOV_F32			(SLJIT_MOV_F64 | SLJIT_F32_OP)
1070 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1071    SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1072    Rounding mode when the destination is W or I: round towards zero. */
1073 /* Flags: - (does not modify flags) */
1074 #define SLJIT_CONV_F64_FROM_F32		(SLJIT_FOP1_BASE + 1)
1075 #define SLJIT_CONV_F32_FROM_F64		(SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1076 /* Flags: - (does not modify flags) */
1077 #define SLJIT_CONV_SW_FROM_F64		(SLJIT_FOP1_BASE + 2)
1078 #define SLJIT_CONV_SW_FROM_F32		(SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1079 /* Flags: - (does not modify flags) */
1080 #define SLJIT_CONV_S32_FROM_F64		(SLJIT_FOP1_BASE + 3)
1081 #define SLJIT_CONV_S32_FROM_F32		(SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1082 /* Flags: - (does not modify flags) */
1083 #define SLJIT_CONV_F64_FROM_SW		(SLJIT_FOP1_BASE + 4)
1084 #define SLJIT_CONV_F32_FROM_SW		(SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1085 /* Flags: - (does not modify flags) */
1086 #define SLJIT_CONV_F64_FROM_S32		(SLJIT_FOP1_BASE + 5)
1087 #define SLJIT_CONV_F32_FROM_S32		(SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1088 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1089    Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1090 #define SLJIT_CMP_F64			(SLJIT_FOP1_BASE + 6)
1091 #define SLJIT_CMP_F32			(SLJIT_CMP_F64 | SLJIT_F32_OP)
1092 /* Flags: - (does not modify flags) */
1093 #define SLJIT_NEG_F64			(SLJIT_FOP1_BASE + 7)
1094 #define SLJIT_NEG_F32			(SLJIT_NEG_F64 | SLJIT_F32_OP)
1095 /* Flags: - (does not modify flags) */
1096 #define SLJIT_ABS_F64			(SLJIT_FOP1_BASE + 8)
1097 #define SLJIT_ABS_F32			(SLJIT_ABS_F64 | SLJIT_F32_OP)
1098 
1099 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1100 	sljit_s32 dst, sljit_sw dstw,
1101 	sljit_s32 src, sljit_sw srcw);
1102 
1103 /* Starting index of opcodes for sljit_emit_fop2. */
1104 #define SLJIT_FOP2_BASE			192
1105 
1106 /* Flags: - (does not modify flags) */
1107 #define SLJIT_ADD_F64			(SLJIT_FOP2_BASE + 0)
1108 #define SLJIT_ADD_F32			(SLJIT_ADD_F64 | SLJIT_F32_OP)
1109 /* Flags: - (does not modify flags) */
1110 #define SLJIT_SUB_F64			(SLJIT_FOP2_BASE + 1)
1111 #define SLJIT_SUB_F32			(SLJIT_SUB_F64 | SLJIT_F32_OP)
1112 /* Flags: - (does not modify flags) */
1113 #define SLJIT_MUL_F64			(SLJIT_FOP2_BASE + 2)
1114 #define SLJIT_MUL_F32			(SLJIT_MUL_F64 | SLJIT_F32_OP)
1115 /* Flags: - (does not modify flags) */
1116 #define SLJIT_DIV_F64			(SLJIT_FOP2_BASE + 3)
1117 #define SLJIT_DIV_F32			(SLJIT_DIV_F64 | SLJIT_F32_OP)
1118 
1119 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1120 	sljit_s32 dst, sljit_sw dstw,
1121 	sljit_s32 src1, sljit_sw src1w,
1122 	sljit_s32 src2, sljit_sw src2w);
1123 
1124 /* Label and jump instructions. */
1125 
1126 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1127 
1128 /* Invert (negate) conditional type: xor (^) with 0x1 */
1129 
1130 /* Integer comparison types. */
1131 #define SLJIT_EQUAL			0
1132 #define SLJIT_EQUAL32			(SLJIT_EQUAL | SLJIT_I32_OP)
1133 #define SLJIT_ZERO			0
1134 #define SLJIT_ZERO32			(SLJIT_ZERO | SLJIT_I32_OP)
1135 #define SLJIT_NOT_EQUAL			1
1136 #define SLJIT_NOT_EQUAL32		(SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1137 #define SLJIT_NOT_ZERO			1
1138 #define SLJIT_NOT_ZERO32		(SLJIT_NOT_ZERO | SLJIT_I32_OP)
1139 
1140 #define SLJIT_LESS			2
1141 #define SLJIT_LESS32			(SLJIT_LESS | SLJIT_I32_OP)
1142 #define SLJIT_SET_LESS			SLJIT_SET(SLJIT_LESS)
1143 #define SLJIT_GREATER_EQUAL		3
1144 #define SLJIT_GREATER_EQUAL32		(SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1145 #define SLJIT_SET_GREATER_EQUAL		SLJIT_SET(SLJIT_GREATER_EQUAL)
1146 #define SLJIT_GREATER			4
1147 #define SLJIT_GREATER32			(SLJIT_GREATER | SLJIT_I32_OP)
1148 #define SLJIT_SET_GREATER		SLJIT_SET(SLJIT_GREATER)
1149 #define SLJIT_LESS_EQUAL		5
1150 #define SLJIT_LESS_EQUAL32		(SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1151 #define SLJIT_SET_LESS_EQUAL		SLJIT_SET(SLJIT_LESS_EQUAL)
1152 #define SLJIT_SIG_LESS			6
1153 #define SLJIT_SIG_LESS32		(SLJIT_SIG_LESS | SLJIT_I32_OP)
1154 #define SLJIT_SET_SIG_LESS		SLJIT_SET(SLJIT_SIG_LESS)
1155 #define SLJIT_SIG_GREATER_EQUAL		7
1156 #define SLJIT_SIG_GREATER_EQUAL32	(SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1157 #define SLJIT_SET_SIG_GREATER_EQUAL	SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1158 #define SLJIT_SIG_GREATER		8
1159 #define SLJIT_SIG_GREATER32		(SLJIT_SIG_GREATER | SLJIT_I32_OP)
1160 #define SLJIT_SET_SIG_GREATER		SLJIT_SET(SLJIT_SIG_GREATER)
1161 #define SLJIT_SIG_LESS_EQUAL		9
1162 #define SLJIT_SIG_LESS_EQUAL32		(SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1163 #define SLJIT_SET_SIG_LESS_EQUAL	SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1164 
1165 #define SLJIT_OVERFLOW			10
1166 #define SLJIT_OVERFLOW32		(SLJIT_OVERFLOW | SLJIT_I32_OP)
1167 #define SLJIT_SET_OVERFLOW		SLJIT_SET(SLJIT_OVERFLOW)
1168 #define SLJIT_NOT_OVERFLOW		11
1169 #define SLJIT_NOT_OVERFLOW32		(SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1170 
1171 #define SLJIT_MUL_OVERFLOW		12
1172 #define SLJIT_MUL_OVERFLOW32		(SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1173 #define SLJIT_SET_MUL_OVERFLOW		SLJIT_SET(SLJIT_MUL_OVERFLOW)
1174 #define SLJIT_MUL_NOT_OVERFLOW		13
1175 #define SLJIT_MUL_NOT_OVERFLOW32	(SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1176 
1177 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1178 #define SLJIT_SET_CARRY			SLJIT_SET(14)
1179 
1180 /* Floating point comparison types. */
1181 #define SLJIT_EQUAL_F64			16
1182 #define SLJIT_EQUAL_F32			(SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1183 #define SLJIT_SET_EQUAL_F		SLJIT_SET(SLJIT_EQUAL_F64)
1184 #define SLJIT_NOT_EQUAL_F64		17
1185 #define SLJIT_NOT_EQUAL_F32		(SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1186 #define SLJIT_SET_NOT_EQUAL_F		SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1187 #define SLJIT_LESS_F64			18
1188 #define SLJIT_LESS_F32			(SLJIT_LESS_F64 | SLJIT_F32_OP)
1189 #define SLJIT_SET_LESS_F		SLJIT_SET(SLJIT_LESS_F64)
1190 #define SLJIT_GREATER_EQUAL_F64		19
1191 #define SLJIT_GREATER_EQUAL_F32		(SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1192 #define SLJIT_SET_GREATER_EQUAL_F	SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1193 #define SLJIT_GREATER_F64		20
1194 #define SLJIT_GREATER_F32		(SLJIT_GREATER_F64 | SLJIT_F32_OP)
1195 #define SLJIT_SET_GREATER_F		SLJIT_SET(SLJIT_GREATER_F64)
1196 #define SLJIT_LESS_EQUAL_F64		21
1197 #define SLJIT_LESS_EQUAL_F32		(SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1198 #define SLJIT_SET_LESS_EQUAL_F		SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1199 #define SLJIT_UNORDERED_F64		22
1200 #define SLJIT_UNORDERED_F32		(SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1201 #define SLJIT_SET_UNORDERED_F		SLJIT_SET(SLJIT_UNORDERED_F64)
1202 #define SLJIT_ORDERED_F64		23
1203 #define SLJIT_ORDERED_F32		(SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1204 #define SLJIT_SET_ORDERED_F		SLJIT_SET(SLJIT_ORDERED_F64)
1205 
1206 /* Unconditional jump types. */
1207 #define SLJIT_JUMP			24
1208 	/* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1209 #define SLJIT_FAST_CALL			25
1210 	/* Called function must be declared with the SLJIT_FUNC attribute. */
1211 #define SLJIT_CALL			26
1212 	/* Called function must be declared with cdecl attribute.
1213 	   This is the default attribute for C functions. */
1214 #define SLJIT_CALL_CDECL		27
1215 
1216 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1217 #define SLJIT_REWRITABLE_JUMP		0x1000
1218 
1219 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1220     type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1221     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1222 
1223    Flags: does not modify flags. */
1224 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1225 
1226 /* Emit a C compiler (ABI) compatible function call.
1227     type must be SLJIT_CALL or SLJIT_CALL_CDECL
1228     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1229     arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1230 
1231    Flags: destroy all flags. */
1232 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1233 
1234 /* Basic arithmetic comparison. In most architectures it is implemented as
1235    an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1236    appropriate flags) followed by a sljit_emit_jump. However some
1237    architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1238    It is suggested to use this comparison form when appropriate.
1239     type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1240     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1241 
1242    Flags: may destroy flags. */
1243 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1244 	sljit_s32 src1, sljit_sw src1w,
1245 	sljit_s32 src2, sljit_sw src2w);
1246 
1247 /* Basic floating point comparison. In most architectures it is implemented as
1248    an SLJIT_FCMP operation (setting appropriate flags) followed by a
1249    sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1250    special optimizations here. It is suggested to use this comparison form
1251    when appropriate.
1252     type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1253     type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1254    Flags: destroy flags.
1255    Note: if either operand is NaN, the behaviour is undefined for
1256          types up to SLJIT_S_LESS_EQUAL. */
1257 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1258 	sljit_s32 src1, sljit_sw src1w,
1259 	sljit_s32 src2, sljit_sw src2w);
1260 
1261 /* Set the destination of the jump to this label. */
1262 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1263 /* Set the destination address of the jump to this label. */
1264 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1265 
1266 /* Emit an indirect jump or fast call.
1267    Direct form: set src to SLJIT_IMM() and srcw to the address
1268    Indirect form: any other valid addressing mode
1269     type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1270 
1271    Flags: does not modify flags. */
1272 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1273 
1274 /* Emit a C compiler (ABI) compatible function call.
1275    Direct form: set src to SLJIT_IMM() and srcw to the address
1276    Indirect form: any other valid addressing mode
1277     type must be SLJIT_CALL or SLJIT_CALL_CDECL
1278     arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1279 
1280    Flags: destroy all flags. */
1281 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1282 
1283 /* Perform the operation using the conditional flags as the second argument.
1284    Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1285    represented by the type is 1, if the condition represented by the type
1286    is fulfilled, and 0 otherwise.
1287 
1288    If op == SLJIT_MOV, SLJIT_MOV32:
1289      Set dst to the value represented by the type (0 or 1).
1290      Flags: - (does not modify flags)
1291    If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1292      Performs the binary operation using dst as the first, and the value
1293      represented by type as the second argument. Result is written into dst.
1294      Flags: Z (may destroy flags) */
1295 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1296 	sljit_s32 dst, sljit_sw dstw,
1297 	sljit_s32 type);
1298 
1299 /* Emit a conditional mov instruction which moves source to destination,
1300    if the condition is satisfied. Unlike other arithmetic operations this
1301    instruction does not support memory access.
1302 
1303    type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1304    dst_reg must be a valid register and it can be combined
1305       with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1306    src must be register or immediate (SLJIT_IMM)
1307 
1308    Flags: - (does not modify flags) */
1309 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1310 	sljit_s32 dst_reg,
1311 	sljit_s32 src, sljit_sw srcw);
1312 
1313 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1314 
1315 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1316    Instead the function returns with SLJIT_SUCCESS if the instruction
1317    form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1318    allows runtime checking of available instruction forms. */
1319 #define SLJIT_MEM_SUPP		0x0200
1320 /* Memory load operation. This is the default. */
1321 #define SLJIT_MEM_LOAD		0x0000
1322 /* Memory store operation. */
1323 #define SLJIT_MEM_STORE		0x0400
1324 /* Base register is updated before the memory access. */
1325 #define SLJIT_MEM_PRE		0x0800
1326 /* Base register is updated after the memory access. */
1327 #define SLJIT_MEM_POST		0x1000
1328 
1329 /* Emit a single memory load or store with update instruction. When the
1330    requested instruction form is not supported by the CPU, it returns
1331    with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1332    allows specializing tight loops based on the supported instruction
1333    forms (see SLJIT_MEM_SUPP flag).
1334 
1335    type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1336      combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1337      or SLJIT_MEM_POST must be specified.
1338    reg is the source or destination register, and must be
1339      different from the base register of the mem operand
1340    mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1341 
1342    Flags: - (does not modify flags) */
1343 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1344 	sljit_s32 reg,
1345 	sljit_s32 mem, sljit_sw memw);
1346 
1347 /* Same as sljit_emit_mem except the followings:
1348 
1349    type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1350      combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1351      or SLJIT_MEM_POST must be specified.
1352    freg is the source or destination floating point register */
1353 
1354 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1355 	sljit_s32 freg,
1356 	sljit_s32 mem, sljit_sw memw);
1357 
1358 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1359    anything to negate the effect of relative addressing. For example if an
1360    array of sljit_sw values is stored on the stack from offset 0x40, and R0
1361    contains the offset of an array item plus 0x120, this item can be
1362    overwritten by two SLJIT instructions:
1363 
1364    sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1365    sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1366 
1367    Flags: - (may destroy flags) */
1368 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1369 
1370 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1371    Flags: - (does not modify flags) */
1372 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1373 
1374 /* Store the value of a label (see: sljit_set_put_label)
1375    Flags: - (does not modify flags) */
1376 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1377 
1378 /* Set the value stored by put_label to this label. */
1379 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1380 
1381 /* After the code generation the address for label, jump and const instructions
1382    are computed. Since these structures are freed by sljit_free_compiler, the
1383    addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1384 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1385 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1386 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1387 
1388 /* Only the address and executable offset are required to perform dynamic
1389    code modifications. See sljit_get_executable_offset function. */
1390 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1391 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1392 
1393 /* --------------------------------------------------------------------- */
1394 /*  Miscellaneous utility functions                                      */
1395 /* --------------------------------------------------------------------- */
1396 
1397 #define SLJIT_MAJOR_VERSION	0
1398 #define SLJIT_MINOR_VERSION	94
1399 
1400 /* Get the human readable name of the platform. Can be useful on platforms
1401    like ARM, where ARM and Thumb2 functions can be mixed, and
1402    it is useful to know the type of the code generator. */
1403 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1404 
1405 /* Portable helper function to get an offset of a member. */
1406 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1407 
1408 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1409 /* This global lock is useful to compile common functions. */
1410 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_grab_lock(void);
1411 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_release_lock(void);
1412 #endif
1413 
1414 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1415 
1416 /* The sljit_stack structure and its manipulation functions provides
1417    an implementation for a top-down stack. The stack top is stored
1418    in the end field of the sljit_stack structure and the stack goes
1419    down to the min_start field, so the memory region reserved for
1420    this stack is between min_start (inclusive) and end (exclusive)
1421    fields. However the application can only use the region between
1422    start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1423    function can be used to extend this region up to min_start.
1424 
1425    This feature uses the "address space reserve" feature of modern
1426    operating systems. Instead of allocating a large memory block
1427    applications can allocate a small memory region and extend it
1428    later without moving the content of the memory area. Therefore
1429    after a successful resize by sljit_stack_resize all pointers into
1430    this region are still valid.
1431 
1432    Note:
1433      this structure may not be supported by all operating systems.
1434      end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1435          4 Kbyte or more).
1436      stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1437 
1438 struct sljit_stack {
1439 	/* User data, anything can be stored here.
1440 	   Initialized to the same value as the end field. */
1441 	sljit_u8 *top;
1442 /* These members are read only. */
1443 	/* End address of the stack */
1444 	sljit_u8 *end;
1445 	/* Current start address of the stack. */
1446 	sljit_u8 *start;
1447 	/* Lowest start address of the stack. */
1448 	sljit_u8 *min_start;
1449 };
1450 
1451 /* Allocates a new stack. Returns NULL if unsuccessful.
1452    Note: see sljit_create_compiler for the explanation of allocator_data. */
1453 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1454 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1455 
1456 /* Can be used to increase (extend) or decrease (shrink) the stack
1457    memory area. Returns with new_start if successful and NULL otherwise.
1458    It always fails if new_start is less than min_start or greater or equal
1459    than end fields. The fields of the stack are not changed if the returned
1460    value is NULL (the current memory content is never lost). */
1461 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1462 
1463 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1464 
1465 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1466 
1467 /* Get the entry address of a given function. */
1468 #define SLJIT_FUNC_OFFSET(func_name)	((sljit_sw)func_name)
1469 
1470 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1471 
1472 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1473 
1474 #define SLJIT_FUNC_OFFSET(func_name)	(*(sljit_sw*)(void*)func_name)
1475 
1476 /* For powerpc64, the function pointers point to a context descriptor. */
1477 struct sljit_function_context {
1478 	sljit_sw addr;
1479 	sljit_sw r2;
1480 	sljit_sw r11;
1481 };
1482 
1483 /* Fill the context arguments using the addr and the function.
1484    If func_ptr is NULL, it will not be set to the address of context
1485    If addr is NULL, the function address also comes from the func pointer. */
1486 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1487 
1488 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1489 
1490 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1491 /* Free unused executable memory. The allocator keeps some free memory
1492    around to reduce the number of OS executable memory allocations.
1493    This improves performance since these calls are costly. However
1494    it is sometimes desired to free all unused memory regions, e.g.
1495    before the application terminates. */
1496 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1497 #endif
1498 
1499 /* --------------------------------------------------------------------- */
1500 /*  CPU specific functions                                               */
1501 /* --------------------------------------------------------------------- */
1502 
1503 /* The following function is a helper function for sljit_emit_op_custom.
1504    It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1505    SLJIT_S and SLJIT_SP registers.
1506 
1507    Note: it returns with -1 for virtual registers (only on x86-32). */
1508 
1509 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1510 
1511 /* The following function is a helper function for sljit_emit_op_custom.
1512    It returns with the real machine register index of any SLJIT_FLOAT register.
1513 
1514    Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1515 
1516 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1517 
1518 /* Any instruction can be inserted into the instruction stream by
1519    sljit_emit_op_custom. It has a similar purpose as inline assembly.
1520    The size parameter must match to the instruction size of the target
1521    architecture:
1522 
1523          x86: 0 < size <= 15. The instruction argument can be byte aligned.
1524       Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1525               if size == 4, the instruction argument must be 4 byte aligned.
1526    Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1527 
1528 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1529 	void *instruction, sljit_s32 size);
1530 
1531 /* Define the currently available CPU status flags. It is usually used after an
1532    sljit_emit_op_custom call to define which flags are set. */
1533 
1534 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1535 	sljit_s32 current_flags);
1536 
1537 #ifdef __cplusplus
1538 } /* extern "C" */
1539 #endif
1540 
1541 #endif /* _SLJIT_LIR_H_ */
1542