1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80
81 #include "sljitConfigInternal.h"
82
83 #ifdef __cplusplus
84 extern "C" {
85 #endif
86
87 /* --------------------------------------------------------------------- */
88 /* Error codes */
89 /* --------------------------------------------------------------------- */
90
91 /* Indicates no error. */
92 #define SLJIT_SUCCESS 0
93 /* After the call of sljit_generate_code(), the error code of the compiler
94 is set to this value to avoid future sljit calls (in debug mode at least).
95 The complier should be freed after sljit_generate_code(). */
96 #define SLJIT_ERR_COMPILED 1
97 /* Cannot allocate non executable memory. */
98 #define SLJIT_ERR_ALLOC_FAILED 2
99 /* Cannot allocate executable memory.
100 Only for sljit_generate_code() */
101 #define SLJIT_ERR_EX_ALLOC_FAILED 3
102 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
103 #define SLJIT_ERR_UNSUPPORTED 4
104 /* An ivalid argument is passed to any SLJIT function. */
105 #define SLJIT_ERR_BAD_ARGUMENT 5
106 /* Dynamic code modification is not enabled. */
107 #define SLJIT_ERR_DYN_CODE_MOD 6
108
109 /* --------------------------------------------------------------------- */
110 /* Registers */
111 /* --------------------------------------------------------------------- */
112
113 /*
114 Scratch (R) registers: registers whose may not preserve their values
115 across function calls.
116
117 Saved (S) registers: registers whose preserve their values across
118 function calls.
119
120 The scratch and saved register sets are overlap. The last scratch register
121 is the first saved register, the one before the last is the second saved
122 register, and so on.
123
124 If an architecture provides two scratch and three saved registers,
125 its scratch and saved register sets are the following:
126
127 R0 | | R0 is always a scratch register
128 R1 | | R1 is always a scratch register
129 [R2] | S2 | R2 and S2 represent the same physical register
130 [R3] | S1 | R3 and S1 represent the same physical register
131 [R4] | S0 | R4 and S0 represent the same physical register
132
133 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
134 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
135
136 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
137 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
138 are virtual on x86-32. See below.
139
140 The purpose of this definition is convenience: saved registers can
141 be used as extra scratch registers. For example four registers can
142 be specified as scratch registers and the fifth one as saved register
143 on the CPU above and any user code which requires four scratch
144 registers can run unmodified. The SLJIT compiler automatically saves
145 the content of the two extra scratch register on the stack. Scratch
146 registers can also be preserved by saving their value on the stack
147 but this needs to be done manually.
148
149 Note: To emphasize that registers assigned to R2-R4 are saved
150 registers, they are enclosed by square brackets.
151
152 Note: sljit_emit_enter and sljit_set_context defines whether a register
153 is S or R register. E.g: when 3 scratches and 1 saved is mapped
154 by sljit_emit_enter, the allowed register set will be: R0-R2 and
155 S0. Although S2 is mapped to the same position as R2, it does not
156 available in the current configuration. Furthermore the S1 register
157 is not available at all.
158 */
159
160 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
161 or sljit_emit_op2 operations the result is discarded. Some status
162 flags must be set when the destination is SLJIT_UNUSED, because the
163 operation would have no effect otherwise. Other SLJIT operations do
164 not support SLJIT_UNUSED as a destination operand. */
165 #define SLJIT_UNUSED 0
166
167 /* Scratch registers. */
168 #define SLJIT_R0 1
169 #define SLJIT_R1 2
170 #define SLJIT_R2 3
171 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
172 are allocated on the stack). These registers are called virtual
173 and cannot be used for memory addressing (cannot be part of
174 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
175 limitation on other CPUs. See sljit_get_register_index(). */
176 #define SLJIT_R3 4
177 #define SLJIT_R4 5
178 #define SLJIT_R5 6
179 #define SLJIT_R6 7
180 #define SLJIT_R7 8
181 #define SLJIT_R8 9
182 #define SLJIT_R9 10
183 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
184 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
185 #define SLJIT_R(i) (1 + (i))
186
187 /* Saved registers. */
188 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
189 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
190 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
191 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
192 are allocated on the stack). These registers are called virtual
193 and cannot be used for memory addressing (cannot be part of
194 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
195 limitation on other CPUs. See sljit_get_register_index(). */
196 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
197 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
198 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
199 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
200 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
201 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
202 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
203 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
204 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
205 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
206
207 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
208 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
209
210 /* The SLJIT_SP provides direct access to the linear stack space allocated by
211 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
212 The immediate offset is extended by the relative stack offset automatically.
213 The sljit_get_local_base can be used to obtain the absolute offset. */
214 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
215
216 /* Return with machine word. */
217
218 #define SLJIT_RETURN_REG SLJIT_R0
219
220 /* --------------------------------------------------------------------- */
221 /* Floating point registers */
222 /* --------------------------------------------------------------------- */
223
224 /* Each floating point register can store a 32 or a 64 bit precision
225 value. The FR and FS register sets are overlap in the same way as R
226 and S register sets. See above. */
227
228 /* Note: SLJIT_UNUSED as destination is not valid for floating point
229 operations, since they cannot be used for setting flags. */
230
231 /* Floating point scratch registers. */
232 #define SLJIT_FR0 1
233 #define SLJIT_FR1 2
234 #define SLJIT_FR2 3
235 #define SLJIT_FR3 4
236 #define SLJIT_FR4 5
237 #define SLJIT_FR5 6
238 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
239 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
240 #define SLJIT_FR(i) (1 + (i))
241
242 /* Floating point saved registers. */
243 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
244 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
245 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
246 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
247 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
248 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
249 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
250 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
251 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
252
253 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
254 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
255
256 /* --------------------------------------------------------------------- */
257 /* Argument type definitions */
258 /* --------------------------------------------------------------------- */
259
260 /* Argument type definitions.
261 Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
262
263 #define SLJIT_ARG_TYPE_VOID 0
264 #define SLJIT_ARG_TYPE_SW 1
265 #define SLJIT_ARG_TYPE_UW 2
266 #define SLJIT_ARG_TYPE_S32 3
267 #define SLJIT_ARG_TYPE_U32 4
268 #define SLJIT_ARG_TYPE_F32 5
269 #define SLJIT_ARG_TYPE_F64 6
270
271 /* The following argument type definitions are used by sljit_emit_enter,
272 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
273 The following return type definitions are used by sljit_emit_call
274 and sljit_emit_icall functions.
275
276 When a function is called, the first integer argument must be placed
277 in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
278 floating point argument must be placed in SLJIT_FR0, the second in
279 SLJIT_FR1, and so on.
280
281 Example function definition:
282 sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
283 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
284
285 Argument type definition:
286 SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
287 | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
288 | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
289
290 Short form of argument type definition:
291 SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
292 | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
293
294 Argument passing:
295 arg_a must be placed in SLJIT_R0
296 arg_c must be placed in SLJIT_R1
297 arg_b must be placed in SLJIT_FR0
298 arg_d must be placed in SLJIT_FR1
299
300 Note:
301 The SLJIT_ARG_TYPE_VOID type is only supported by
302 SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
303 default value when SLJIT_DEF_RET is not specified. */
304 #define SLJIT_DEF_SHIFT 4
305 #define SLJIT_DEF_RET(type) (type)
306 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
307 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
308 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
309 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
310
311 /* Short form of the macros above.
312
313 For example the following definition:
314 SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
315
316 can be shortened to:
317 SLJIT_RET(SW) | SLJIT_ARG1(F32)
318
319 Note:
320 The VOID type is only supported by SLJIT_RET, and
321 VOID is also the default value when SLJIT_RET is
322 not specified. */
323 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
324 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
325 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
326 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
327 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
328
329 /* --------------------------------------------------------------------- */
330 /* Main structures and functions */
331 /* --------------------------------------------------------------------- */
332
333 /*
334 The following structures are private, and can be changed in the
335 future. Keeping them here allows code inlining.
336 */
337
338 struct sljit_memory_fragment {
339 struct sljit_memory_fragment *next;
340 sljit_uw used_size;
341 /* Must be aligned to sljit_sw. */
342 sljit_u8 memory[1];
343 };
344
345 struct sljit_label {
346 struct sljit_label *next;
347 sljit_uw addr;
348 /* The maximum size difference. */
349 sljit_uw size;
350 };
351
352 struct sljit_jump {
353 struct sljit_jump *next;
354 sljit_uw addr;
355 sljit_uw flags;
356 union {
357 sljit_uw target;
358 struct sljit_label *label;
359 } u;
360 };
361
362 struct sljit_put_label {
363 struct sljit_put_label *next;
364 struct sljit_label *label;
365 sljit_uw addr;
366 sljit_uw flags;
367 };
368
369 struct sljit_const {
370 struct sljit_const *next;
371 sljit_uw addr;
372 };
373
374 struct sljit_compiler {
375 sljit_s32 error;
376 sljit_s32 options;
377
378 struct sljit_label *labels;
379 struct sljit_jump *jumps;
380 struct sljit_put_label *put_labels;
381 struct sljit_const *consts;
382 struct sljit_label *last_label;
383 struct sljit_jump *last_jump;
384 struct sljit_const *last_const;
385 struct sljit_put_label *last_put_label;
386
387 void *allocator_data;
388 struct sljit_memory_fragment *buf;
389 struct sljit_memory_fragment *abuf;
390
391 /* Used scratch registers. */
392 sljit_s32 scratches;
393 /* Used saved registers. */
394 sljit_s32 saveds;
395 /* Used float scratch registers. */
396 sljit_s32 fscratches;
397 /* Used float saved registers. */
398 sljit_s32 fsaveds;
399 /* Local stack size. */
400 sljit_s32 local_size;
401 /* Code size. */
402 sljit_uw size;
403 /* Relative offset of the executable mapping from the writable mapping. */
404 sljit_uw executable_offset;
405 /* Executable size for statistical purposes. */
406 sljit_uw executable_size;
407
408 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
409 sljit_s32 args;
410 sljit_s32 locals_offset;
411 sljit_s32 saveds_offset;
412 sljit_s32 stack_tmp_size;
413 #endif
414
415 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
416 sljit_s32 mode32;
417 #ifdef _WIN64
418 sljit_s32 locals_offset;
419 #endif
420 #endif
421
422 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
423 /* Constant pool handling. */
424 sljit_uw *cpool;
425 sljit_u8 *cpool_unique;
426 sljit_uw cpool_diff;
427 sljit_uw cpool_fill;
428 /* Other members. */
429 /* Contains pointer, "ldr pc, [...]" pairs. */
430 sljit_uw patches;
431 #endif
432
433 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
434 /* Temporary fields. */
435 sljit_uw shift_imm;
436 #endif
437
438 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
439 sljit_sw imm;
440 #endif
441
442 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
443 sljit_s32 delay_slot;
444 sljit_s32 cache_arg;
445 sljit_sw cache_argw;
446 #endif
447
448 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
449 sljit_s32 delay_slot;
450 sljit_s32 cache_arg;
451 sljit_sw cache_argw;
452 #endif
453
454 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
455 sljit_s32 cache_arg;
456 sljit_sw cache_argw;
457 #endif
458
459 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
460 FILE* verbose;
461 #endif
462
463 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
464 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
465 /* Flags specified by the last arithmetic instruction.
466 It contains the type of the variable flag. */
467 sljit_s32 last_flags;
468 /* Local size passed to the functions. */
469 sljit_s32 logical_local_size;
470 #endif
471
472 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
473 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
474 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
475 /* Trust arguments when the API function is called. */
476 sljit_s32 skip_checks;
477 #endif
478 };
479
480 /* --------------------------------------------------------------------- */
481 /* Main functions */
482 /* --------------------------------------------------------------------- */
483
484 /* Creates an sljit compiler. The allocator_data is required by some
485 custom memory managers. This pointer is passed to SLJIT_MALLOC
486 and SLJIT_FREE macros. Most allocators (including the default
487 one) ignores this value, and it is recommended to pass NULL
488 as a dummy value for allocator_data.
489
490 Returns NULL if failed. */
491 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
492
493 /* Frees everything except the compiled machine code. */
494 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
495
496 /* Returns the current error code. If an error is occurred, future sljit
497 calls which uses the same compiler argument returns early with the same
498 error code. Thus there is no need for checking the error after every
499 call, it is enough to do it before the code is compiled. Removing
500 these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)501 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
502
503 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
504 if an error was detected before. After the error code is set
505 the compiler behaves as if the allocation failure happened
506 during an sljit function call. This can greatly simplify error
507 checking, since only the compiler status needs to be checked
508 after the compilation. */
509 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
510
511 /*
512 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
513 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
514 compiler, and freed by sljit_free_compiler. The returned pointer is
515 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
516 the compiling, and no need to worry about freeing them. The size is
517 enough to contain at most 16 pointers. If the size is outside of the range,
518 the function will return with NULL. However, this return value does not
519 indicate that there is no more memory (does not set the current error code
520 of the compiler to out-of-memory status).
521 */
522 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
523
524 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
525 /* Passing NULL disables verbose. */
526 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
527 #endif
528
529 /*
530 Create executable code from the sljit instruction stream. This is the final step
531 of the code generation so no more instructions can be added after this call.
532 */
533
534 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
535
536 /* Free executable code. */
537
538 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
539
540 /*
541 When the protected executable allocator is used the JIT code is mapped
542 twice. The first mapping has read/write and the second mapping has read/exec
543 permissions. This function returns with the relative offset of the executable
544 mapping using the writable mapping as the base after the machine code is
545 successfully generated. The returned value is always 0 for the normal executable
546 allocator, since it uses only one mapping with read/write/exec permissions.
547 Dynamic code modifications requires this value.
548
549 Before a successful code generation, this function returns with 0.
550 */
sljit_get_executable_offset(struct sljit_compiler * compiler)551 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
552
553 /*
554 The executable memory consumption of the generated code can be retrieved by
555 this function. The returned value can be used for statistical purposes.
556
557 Before a successful code generation, this function returns with 0.
558 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)559 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
560
561 /* Returns with non-zero if the feature or limitation type passed as its
562 argument is present on the current CPU.
563
564 Some features (e.g. floating point operations) require hardware (CPU)
565 support while others (e.g. move with update) are emulated if not available.
566 However even if a feature is emulated, specialized code paths can be faster
567 than the emulation. Some limitations are emulated as well so their general
568 case is supported but it has extra performance costs. */
569
570 /* [Not emulated] Floating-point support is available. */
571 #define SLJIT_HAS_FPU 0
572 /* [Limitation] Some registers are virtual registers. */
573 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
574 /* [Emulated] Has zero register (setting a memory location to zero is efficient). */
575 #define SLJIT_HAS_ZERO_REGISTER 2
576 /* [Emulated] Count leading zero is supported. */
577 #define SLJIT_HAS_CLZ 3
578 /* [Emulated] Conditional move is supported. */
579 #define SLJIT_HAS_CMOV 4
580 /* [Emulated] Conditional move is supported. */
581 #define SLJIT_HAS_PREFETCH 5
582
583 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
584 /* [Not emulated] SSE2 support is available on x86. */
585 #define SLJIT_HAS_SSE2 100
586 #endif
587
588 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
589
590 /* Instruction generation. Returns with any error code. If there is no
591 error, they return with SLJIT_SUCCESS. */
592
593 /*
594 The executable code is a function from the viewpoint of the C
595 language. The function calls must obey to the ABI (Application
596 Binary Interface) of the platform, which specify the purpose of
597 machine registers and stack handling among other things. The
598 sljit_emit_enter function emits the necessary instructions for
599 setting up a new context for the executable code and moves function
600 arguments to the saved registers. Furthermore the options argument
601 can be used to pass configuration options to the compiler. The
602 available options are listed before sljit_emit_enter.
603
604 The function argument list is the combination of SLJIT_ARGx
605 (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
606 (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
607 The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
608 and so on. The register set used by the function must be declared
609 as well. The number of scratch and saved registers used by the
610 function must be passed to sljit_emit_enter. Only R registers
611 between R0 and "scratches" argument can be used later. E.g. if
612 "scratches" is set to 2, the scratch register set will be limited
613 to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
614 registers ("fscratches" and "fsaveds") are specified in a similar
615 manner. The sljit_emit_enter is also capable of allocating a stack
616 space for local variables. The "local_size" argument contains the
617 size in bytes of this local area and its staring address is stored
618 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
619 SLJIT_SP + local_size (exclusive) can be modified freely until
620 the function returns. The stack space is not initialized.
621
622 Note: the following conditions must met:
623 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
624 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
625 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
626 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
627 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
628 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
629
630 Note: every call of sljit_emit_enter and sljit_set_context
631 overwrites the previous context.
632 */
633
634 /* The absolute address returned by sljit_get_local_base with
635 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
636 #define SLJIT_F64_ALIGNMENT 0x00000001
637
638 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
639 #define SLJIT_MAX_LOCAL_SIZE 65536
640
641 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
642 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
643 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
644
645 /* The machine code has a context (which contains the local stack space size,
646 number of used registers, etc.) which initialized by sljit_emit_enter. Several
647 functions (like sljit_emit_return) requres this context to be able to generate
648 the appropriate code. However, some code fragments (like inline cache) may have
649 no normal entry point so their context is unknown for the compiler. Their context
650 can be provided to the compiler by the sljit_set_context function.
651
652 Note: every call of sljit_emit_enter and sljit_set_context overwrites
653 the previous context. */
654
655 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
656 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
657 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
658
659 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
660 function does not return with anything or any opcode between SLJIT_MOV and
661 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
662 is SLJIT_UNUSED, otherwise see below the description about source and
663 destination arguments. */
664
665 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
666 sljit_s32 src, sljit_sw srcw);
667
668 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
669 Both sljit_emit_fast_enter and SLJIT_FAST_RETURN operations preserve the
670 values of all registers and stack frame. The return address is stored in the
671 dst argument of sljit_emit_fast_enter, and this return address can be passed
672 to SLJIT_FAST_RETURN to continue the execution after the fast call.
673
674 Fast calls are cheap operations (usually only a single call instruction is
675 emitted) but they do not preserve any registers. However the callee function
676 can freely use / update any registers and stack values which can be
677 efficiently exploited by various optimizations. Registers can be saved
678 manually by the callee function if needed.
679
680 Although returning to different address by SLJIT_FAST_RETURN is possible,
681 this address usually cannot be predicted by the return address predictor of
682 modern CPUs which may reduce performance. Furthermore certain security
683 enhancement technologies such as Intel Control-flow Enforcement Technology
684 (CET) may disallow returning to a different address.
685
686 Flags: - (does not modify flags). */
687
688 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
689
690 /*
691 Source and destination operands for arithmetical instructions
692 imm - a simple immediate value (cannot be used as a destination)
693 reg - any of the registers (immediate argument must be 0)
694 [imm] - absolute immediate memory address
695 [reg+imm] - indirect memory address
696 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
697 useful for (byte, half, int, sljit_sw) array access
698 (fully supported by both x86 and ARM architectures, and cheap operation on others)
699 */
700
701 /*
702 IMPORATNT NOTE: memory access MUST be naturally aligned except
703 SLJIT_UNALIGNED macro is defined and its value is 1.
704
705 length | alignment
706 ---------+-----------
707 byte | 1 byte (any physical_address is accepted)
708 half | 2 byte (physical_address & 0x1 == 0)
709 int | 4 byte (physical_address & 0x3 == 0)
710 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
711 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
712 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
713 | on 64 bit machines)
714
715 Note: Different architectures have different addressing limitations.
716 A single instruction is enough for the following addressing
717 modes. Other adrressing modes are emulated by instruction
718 sequences. This information could help to improve those code
719 generators which focuses only a few architectures.
720
721 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
722 [reg+(reg<<imm)] is supported
723 [imm], -2^32+1 <= imm <= 2^32-1 is supported
724 Write-back is not supported
725 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
726 bytes, any halfs or floating point values)
727 [reg+(reg<<imm)] is supported
728 Write-back is supported
729 arm-t2: [reg+imm], -255 <= imm <= 4095
730 [reg+(reg<<imm)] is supported
731 Write back is supported only for [reg+imm], where -255 <= imm <= 255
732 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
733 [reg+(reg<<imm)] is supported
734 Write back is supported only for [reg+imm], where -256 <= imm <= 255
735 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
736 signed load on 64 bit requires immediates divisible by 4.
737 [reg+imm] is not supported for signed 8 bit values.
738 [reg+reg] is supported
739 Write-back is supported except for one instruction: 32 bit signed
740 load with [reg+imm] addressing mode on 64 bit.
741 mips: [reg+imm], -65536 <= imm <= 65535
742 sparc: [reg+imm], -4096 <= imm <= 4095
743 [reg+reg] is supported
744 */
745
746 /* Macros for specifying operand types. */
747 #define SLJIT_MEM 0x80
748 #define SLJIT_MEM0() (SLJIT_MEM)
749 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
750 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
751 #define SLJIT_IMM 0x40
752
753 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
754 32 bit CPUs. When this option is set for an arithmetic operation, only
755 the lower 32 bit of the input registers are used, and the CPU status
756 flags are set according to the 32 bit result. Although the higher 32 bit
757 of the input and the result registers are not defined by SLJIT, it might
758 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
759 requirements all source registers must be the result of those operations
760 where this option was also set. Memory loads read 32 bit values rather
761 than 64 bit ones. In other words 32 bit and 64 bit operations cannot
762 be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
763 register can hold any 32 or 64 bit value, and it is converted to a 32 bit
764 compatible format first. This conversion is free (no instructions are
765 emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
766 value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
767
768 Note: memory addressing always uses 64 bit values on 64 bit systems so
769 the result of a 32 bit operation must not be used with SLJIT_MEMx
770 macros.
771
772 This option is part of the instruction name, so there is no need to
773 manually set it. E.g:
774
775 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
776 #define SLJIT_I32_OP 0x100
777
778 /* Set F32 (single) precision mode for floating-point computation. This
779 option is similar to SLJIT_I32_OP, it just applies to floating point
780 registers. When this option is passed, the CPU performs 32 bit floating
781 point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
782 register arguments must be the result of those operations where this
783 option was also set.
784
785 This option is part of the instruction name, so there is no need to
786 manually set it. E.g:
787
788 SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
789 */
790 #define SLJIT_F32_OP SLJIT_I32_OP
791
792 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
793 to the result of an operation. Other CPUs (MIPS) do not have status
794 flags, and results must be stored in registers. To cover both architecture
795 types efficiently only two flags are defined by SLJIT:
796
797 * Zero (equal) flag: it is set if the result is zero
798 * Variable flag: its value is defined by the last arithmetic operation
799
800 SLJIT instructions can set any or both of these flags. The value of
801 these flags is undefined if the instruction does not specify their value.
802 The description of each instruction contains the list of allowed flag
803 types.
804
805 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
806
807 sljit_op2(..., SLJIT_ADD, ...)
808 Both the zero and variable flags are undefined so they can
809 have any value after the operation is completed.
810
811 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
812 Sets the zero flag if the result is zero, clears it otherwise.
813 The variable flag is undefined.
814
815 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
816 Sets the variable flag if an integer overflow occurs, clears
817 it otherwise. The zero flag is undefined.
818
819 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
820 Sets the zero flag if the result is zero, clears it otherwise.
821 Sets the variable flag if unsigned overflow (carry) occurs,
822 clears it otherwise.
823
824 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
825 unchanged.
826
827 Using these flags can reduce the number of emitted instructions. E.g. a
828 fast loop can be implemented by decreasing a counter register and set the
829 zero flag to jump back if the counter register has not reached zero.
830
831 Motivation: although CPUs can set a large number of flags, usually their
832 values are ignored or only one of them is used. Emulating a large number
833 of flags on systems without flag register is complicated so SLJIT
834 instructions must specify the flag they want to use and only that flag
835 will be emulated. The last arithmetic instruction can be repeated if
836 multiple flags need to be checked.
837 */
838
839 /* Set Zero status flag. */
840 #define SLJIT_SET_Z 0x0200
841 /* Set the variable status flag if condition is true.
842 See comparison types. */
843 #define SLJIT_SET(condition) ((condition) << 10)
844
845 /* Notes:
846 - you cannot postpone conditional jump instructions except if noted that
847 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
848 - flag combinations: '|' means 'logical or'. */
849
850 /* Starting index of opcodes for sljit_emit_op0. */
851 #define SLJIT_OP0_BASE 0
852
853 /* Flags: - (does not modify flags)
854 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
855 It falls back to SLJIT_NOP in those cases. */
856 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
857 /* Flags: - (does not modify flags)
858 Note: may or may not cause an extra cycle wait
859 it can even decrease the runtime in a few cases. */
860 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
861 /* Flags: - (may destroy flags)
862 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
863 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
864 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
865 /* Flags: - (may destroy flags)
866 Signed multiplication of SLJIT_R0 and SLJIT_R1.
867 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
868 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
869 /* Flags: - (may destroy flags)
870 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
871 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
872 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
873 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
874 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_I32_OP)
875 /* Flags: - (may destroy flags)
876 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
877 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
878 Note: if SLJIT_R1 is 0, the behaviour is undefined.
879 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
880 the behaviour is undefined. */
881 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
882 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_I32_OP)
883 /* Flags: - (may destroy flags)
884 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
885 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
886 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
887 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
888 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_I32_OP)
889 /* Flags: - (may destroy flags)
890 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
891 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
892 Note: if SLJIT_R1 is 0, the behaviour is undefined.
893 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
894 the behaviour is undefined. */
895 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
896 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_I32_OP)
897 /* Flags: - (does not modify flags)
898 ENDBR32 instruction for x86-32 and ENDBR64 instruction for x86-64
899 when Intel Control-flow Enforcement Technology (CET) is enabled.
900 No instruction for other architectures. */
901 #define SLJIT_ENDBR (SLJIT_OP0_BASE + 8)
902 /* Flags: - (may destroy flags)
903 Skip stack frames before return. */
904 #define SLJIT_SKIP_FRAMES_BEFORE_RETURN (SLJIT_OP0_BASE + 9)
905
906 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
907
908 /* Starting index of opcodes for sljit_emit_op1. */
909 #define SLJIT_OP1_BASE 32
910
911 /* The MOV instruction transfers data from source to destination.
912
913 MOV instruction suffixes:
914
915 U8 - unsigned 8 bit data transfer
916 S8 - signed 8 bit data transfer
917 U16 - unsigned 16 bit data transfer
918 S16 - signed 16 bit data transfer
919 U32 - unsigned int (32 bit) data transfer
920 S32 - signed int (32 bit) data transfer
921 P - pointer (sljit_p) data transfer
922 */
923
924 /* Flags: - (does not modify flags) */
925 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
926 /* Flags: - (does not modify flags) */
927 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
928 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_I32_OP)
929 /* Flags: - (does not modify flags) */
930 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
931 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_I32_OP)
932 /* Flags: - (does not modify flags) */
933 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
934 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_I32_OP)
935 /* Flags: - (does not modify flags) */
936 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
937 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_I32_OP)
938 /* Flags: - (does not modify flags)
939 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
940 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
941 /* Flags: - (does not modify flags)
942 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
943 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
944 /* Flags: - (does not modify flags) */
945 #define SLJIT_MOV32 (SLJIT_MOV_S32 | SLJIT_I32_OP)
946 /* Flags: - (does not modify flags)
947 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
948 where all x64 features are available, e.g. 16 register) or similar
949 compiling modes */
950 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
951 /* Flags: Z
952 Note: immediate source argument is not supported */
953 #define SLJIT_NOT (SLJIT_OP1_BASE + 8)
954 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_I32_OP)
955 /* Flags: Z | OVERFLOW
956 Note: immediate source argument is not supported */
957 #define SLJIT_NEG (SLJIT_OP1_BASE + 9)
958 #define SLJIT_NEG32 (SLJIT_NEG | SLJIT_I32_OP)
959 /* Count leading zeroes
960 Flags: - (may destroy flags)
961 Note: immediate source argument is not supported */
962 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
963 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_I32_OP)
964
965 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
966 sljit_s32 dst, sljit_sw dstw,
967 sljit_s32 src, sljit_sw srcw);
968
969 /* Starting index of opcodes for sljit_emit_op2. */
970 #define SLJIT_OP2_BASE 96
971
972 /* Flags: Z | OVERFLOW | CARRY */
973 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
974 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_I32_OP)
975 /* Flags: CARRY */
976 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
977 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_I32_OP)
978 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
979 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
980 SIG_LESS_EQUAL | CARRY */
981 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
982 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_I32_OP)
983 /* Flags: CARRY */
984 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
985 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_I32_OP)
986 /* Note: integer mul
987 Flags: MUL_OVERFLOW */
988 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
989 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_I32_OP)
990 /* Flags: Z */
991 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
992 #define SLJIT_AND32 (SLJIT_AND | SLJIT_I32_OP)
993 /* Flags: Z */
994 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
995 #define SLJIT_OR32 (SLJIT_OR | SLJIT_I32_OP)
996 /* Flags: Z */
997 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
998 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_I32_OP)
999 /* Flags: Z
1000 Let bit_length be the length of the shift operation: 32 or 64.
1001 If src2 is immediate, src2w is masked by (bit_length - 1).
1002 Otherwise, if the content of src2 is outside the range from 0
1003 to bit_length - 1, the result is undefined. */
1004 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
1005 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_I32_OP)
1006 /* Flags: Z
1007 Let bit_length be the length of the shift operation: 32 or 64.
1008 If src2 is immediate, src2w is masked by (bit_length - 1).
1009 Otherwise, if the content of src2 is outside the range from 0
1010 to bit_length - 1, the result is undefined. */
1011 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
1012 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_I32_OP)
1013 /* Flags: Z
1014 Let bit_length be the length of the shift operation: 32 or 64.
1015 If src2 is immediate, src2w is masked by (bit_length - 1).
1016 Otherwise, if the content of src2 is outside the range from 0
1017 to bit_length - 1, the result is undefined. */
1018 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1019 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_I32_OP)
1020
1021 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1022 sljit_s32 dst, sljit_sw dstw,
1023 sljit_s32 src1, sljit_sw src1w,
1024 sljit_s32 src2, sljit_sw src2w);
1025
1026 /* Starting index of opcodes for sljit_emit_op2. */
1027 #define SLJIT_OP_SRC_BASE 128
1028
1029 /* Note: src cannot be an immedate value
1030 Flags: - (does not modify flags) */
1031 #define SLJIT_FAST_RETURN (SLJIT_OP_SRC_BASE + 0)
1032 /* Skip stack frames before fast return.
1033 Note: src cannot be an immedate value
1034 Flags: may destroy flags. */
1035 #define SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN (SLJIT_OP_SRC_BASE + 1)
1036 /* Prefetch value into the level 1 data cache
1037 Note: if the target CPU does not support data prefetch,
1038 no instructions are emitted.
1039 Note: this instruction never fails, even if the memory address is invalid.
1040 Flags: - (does not modify flags) */
1041 #define SLJIT_PREFETCH_L1 (SLJIT_OP_SRC_BASE + 2)
1042 /* Prefetch value into the level 2 data cache
1043 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1044 does not support this instruction form.
1045 Note: this instruction never fails, even if the memory address is invalid.
1046 Flags: - (does not modify flags) */
1047 #define SLJIT_PREFETCH_L2 (SLJIT_OP_SRC_BASE + 3)
1048 /* Prefetch value into the level 3 data cache
1049 Note: same as SLJIT_PREFETCH_L2 if the target CPU
1050 does not support this instruction form.
1051 Note: this instruction never fails, even if the memory address is invalid.
1052 Flags: - (does not modify flags) */
1053 #define SLJIT_PREFETCH_L3 (SLJIT_OP_SRC_BASE + 4)
1054 /* Prefetch a value which is only used once (and can be discarded afterwards)
1055 Note: same as SLJIT_PREFETCH_L1 if the target CPU
1056 does not support this instruction form.
1057 Note: this instruction never fails, even if the memory address is invalid.
1058 Flags: - (does not modify flags) */
1059 #define SLJIT_PREFETCH_ONCE (SLJIT_OP_SRC_BASE + 5)
1060
1061 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
1062 sljit_s32 src, sljit_sw srcw);
1063
1064 /* Starting index of opcodes for sljit_emit_fop1. */
1065 #define SLJIT_FOP1_BASE 160
1066
1067 /* Flags: - (does not modify flags) */
1068 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1069 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_F32_OP)
1070 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1071 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1072 Rounding mode when the destination is W or I: round towards zero. */
1073 /* Flags: - (does not modify flags) */
1074 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1075 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1076 /* Flags: - (does not modify flags) */
1077 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1078 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1079 /* Flags: - (does not modify flags) */
1080 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1081 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1082 /* Flags: - (does not modify flags) */
1083 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1084 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1085 /* Flags: - (does not modify flags) */
1086 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1087 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1088 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1089 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1090 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1091 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_F32_OP)
1092 /* Flags: - (does not modify flags) */
1093 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1094 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_F32_OP)
1095 /* Flags: - (does not modify flags) */
1096 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1097 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_F32_OP)
1098
1099 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1100 sljit_s32 dst, sljit_sw dstw,
1101 sljit_s32 src, sljit_sw srcw);
1102
1103 /* Starting index of opcodes for sljit_emit_fop2. */
1104 #define SLJIT_FOP2_BASE 192
1105
1106 /* Flags: - (does not modify flags) */
1107 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1108 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_F32_OP)
1109 /* Flags: - (does not modify flags) */
1110 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1111 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_F32_OP)
1112 /* Flags: - (does not modify flags) */
1113 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1114 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_F32_OP)
1115 /* Flags: - (does not modify flags) */
1116 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1117 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_F32_OP)
1118
1119 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1120 sljit_s32 dst, sljit_sw dstw,
1121 sljit_s32 src1, sljit_sw src1w,
1122 sljit_s32 src2, sljit_sw src2w);
1123
1124 /* Label and jump instructions. */
1125
1126 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1127
1128 /* Invert (negate) conditional type: xor (^) with 0x1 */
1129
1130 /* Integer comparison types. */
1131 #define SLJIT_EQUAL 0
1132 #define SLJIT_EQUAL32 (SLJIT_EQUAL | SLJIT_I32_OP)
1133 #define SLJIT_ZERO 0
1134 #define SLJIT_ZERO32 (SLJIT_ZERO | SLJIT_I32_OP)
1135 #define SLJIT_NOT_EQUAL 1
1136 #define SLJIT_NOT_EQUAL32 (SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1137 #define SLJIT_NOT_ZERO 1
1138 #define SLJIT_NOT_ZERO32 (SLJIT_NOT_ZERO | SLJIT_I32_OP)
1139
1140 #define SLJIT_LESS 2
1141 #define SLJIT_LESS32 (SLJIT_LESS | SLJIT_I32_OP)
1142 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1143 #define SLJIT_GREATER_EQUAL 3
1144 #define SLJIT_GREATER_EQUAL32 (SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1145 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1146 #define SLJIT_GREATER 4
1147 #define SLJIT_GREATER32 (SLJIT_GREATER | SLJIT_I32_OP)
1148 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1149 #define SLJIT_LESS_EQUAL 5
1150 #define SLJIT_LESS_EQUAL32 (SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1151 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1152 #define SLJIT_SIG_LESS 6
1153 #define SLJIT_SIG_LESS32 (SLJIT_SIG_LESS | SLJIT_I32_OP)
1154 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1155 #define SLJIT_SIG_GREATER_EQUAL 7
1156 #define SLJIT_SIG_GREATER_EQUAL32 (SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1157 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1158 #define SLJIT_SIG_GREATER 8
1159 #define SLJIT_SIG_GREATER32 (SLJIT_SIG_GREATER | SLJIT_I32_OP)
1160 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1161 #define SLJIT_SIG_LESS_EQUAL 9
1162 #define SLJIT_SIG_LESS_EQUAL32 (SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1163 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1164
1165 #define SLJIT_OVERFLOW 10
1166 #define SLJIT_OVERFLOW32 (SLJIT_OVERFLOW | SLJIT_I32_OP)
1167 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1168 #define SLJIT_NOT_OVERFLOW 11
1169 #define SLJIT_NOT_OVERFLOW32 (SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1170
1171 #define SLJIT_MUL_OVERFLOW 12
1172 #define SLJIT_MUL_OVERFLOW32 (SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1173 #define SLJIT_SET_MUL_OVERFLOW SLJIT_SET(SLJIT_MUL_OVERFLOW)
1174 #define SLJIT_MUL_NOT_OVERFLOW 13
1175 #define SLJIT_MUL_NOT_OVERFLOW32 (SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1176
1177 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1178 #define SLJIT_SET_CARRY SLJIT_SET(14)
1179
1180 /* Floating point comparison types. */
1181 #define SLJIT_EQUAL_F64 16
1182 #define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1183 #define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
1184 #define SLJIT_NOT_EQUAL_F64 17
1185 #define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1186 #define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1187 #define SLJIT_LESS_F64 18
1188 #define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_F32_OP)
1189 #define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
1190 #define SLJIT_GREATER_EQUAL_F64 19
1191 #define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1192 #define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1193 #define SLJIT_GREATER_F64 20
1194 #define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_F32_OP)
1195 #define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
1196 #define SLJIT_LESS_EQUAL_F64 21
1197 #define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1198 #define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1199 #define SLJIT_UNORDERED_F64 22
1200 #define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1201 #define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
1202 #define SLJIT_ORDERED_F64 23
1203 #define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1204 #define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
1205
1206 /* Unconditional jump types. */
1207 #define SLJIT_JUMP 24
1208 /* Fast calling method. See sljit_emit_fast_enter / SLJIT_FAST_RETURN. */
1209 #define SLJIT_FAST_CALL 25
1210 /* Called function must be declared with the SLJIT_FUNC attribute. */
1211 #define SLJIT_CALL 26
1212 /* Called function must be declared with cdecl attribute.
1213 This is the default attribute for C functions. */
1214 #define SLJIT_CALL_CDECL 27
1215
1216 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1217 #define SLJIT_REWRITABLE_JUMP 0x1000
1218
1219 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1220 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1221 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1222
1223 Flags: does not modify flags. */
1224 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1225
1226 /* Emit a C compiler (ABI) compatible function call.
1227 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1228 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1229 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1230
1231 Flags: destroy all flags. */
1232 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1233
1234 /* Basic arithmetic comparison. In most architectures it is implemented as
1235 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1236 appropriate flags) followed by a sljit_emit_jump. However some
1237 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1238 It is suggested to use this comparison form when appropriate.
1239 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1240 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1241
1242 Flags: may destroy flags. */
1243 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1244 sljit_s32 src1, sljit_sw src1w,
1245 sljit_s32 src2, sljit_sw src2w);
1246
1247 /* Basic floating point comparison. In most architectures it is implemented as
1248 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1249 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1250 special optimizations here. It is suggested to use this comparison form
1251 when appropriate.
1252 type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1253 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1254 Flags: destroy flags.
1255 Note: if either operand is NaN, the behaviour is undefined for
1256 types up to SLJIT_S_LESS_EQUAL. */
1257 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1258 sljit_s32 src1, sljit_sw src1w,
1259 sljit_s32 src2, sljit_sw src2w);
1260
1261 /* Set the destination of the jump to this label. */
1262 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1263 /* Set the destination address of the jump to this label. */
1264 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1265
1266 /* Emit an indirect jump or fast call.
1267 Direct form: set src to SLJIT_IMM() and srcw to the address
1268 Indirect form: any other valid addressing mode
1269 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1270
1271 Flags: does not modify flags. */
1272 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1273
1274 /* Emit a C compiler (ABI) compatible function call.
1275 Direct form: set src to SLJIT_IMM() and srcw to the address
1276 Indirect form: any other valid addressing mode
1277 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1278 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1279
1280 Flags: destroy all flags. */
1281 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1282
1283 /* Perform the operation using the conditional flags as the second argument.
1284 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1285 represented by the type is 1, if the condition represented by the type
1286 is fulfilled, and 0 otherwise.
1287
1288 If op == SLJIT_MOV, SLJIT_MOV32:
1289 Set dst to the value represented by the type (0 or 1).
1290 Flags: - (does not modify flags)
1291 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1292 Performs the binary operation using dst as the first, and the value
1293 represented by type as the second argument. Result is written into dst.
1294 Flags: Z (may destroy flags) */
1295 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1296 sljit_s32 dst, sljit_sw dstw,
1297 sljit_s32 type);
1298
1299 /* Emit a conditional mov instruction which moves source to destination,
1300 if the condition is satisfied. Unlike other arithmetic operations this
1301 instruction does not support memory access.
1302
1303 type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1304 dst_reg must be a valid register and it can be combined
1305 with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1306 src must be register or immediate (SLJIT_IMM)
1307
1308 Flags: - (does not modify flags) */
1309 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1310 sljit_s32 dst_reg,
1311 sljit_s32 src, sljit_sw srcw);
1312
1313 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1314
1315 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1316 Instead the function returns with SLJIT_SUCCESS if the instruction
1317 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1318 allows runtime checking of available instruction forms. */
1319 #define SLJIT_MEM_SUPP 0x0200
1320 /* Memory load operation. This is the default. */
1321 #define SLJIT_MEM_LOAD 0x0000
1322 /* Memory store operation. */
1323 #define SLJIT_MEM_STORE 0x0400
1324 /* Base register is updated before the memory access. */
1325 #define SLJIT_MEM_PRE 0x0800
1326 /* Base register is updated after the memory access. */
1327 #define SLJIT_MEM_POST 0x1000
1328
1329 /* Emit a single memory load or store with update instruction. When the
1330 requested instruction form is not supported by the CPU, it returns
1331 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1332 allows specializing tight loops based on the supported instruction
1333 forms (see SLJIT_MEM_SUPP flag).
1334
1335 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1336 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1337 or SLJIT_MEM_POST must be specified.
1338 reg is the source or destination register, and must be
1339 different from the base register of the mem operand
1340 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1341
1342 Flags: - (does not modify flags) */
1343 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1344 sljit_s32 reg,
1345 sljit_s32 mem, sljit_sw memw);
1346
1347 /* Same as sljit_emit_mem except the followings:
1348
1349 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1350 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1351 or SLJIT_MEM_POST must be specified.
1352 freg is the source or destination floating point register */
1353
1354 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1355 sljit_s32 freg,
1356 sljit_s32 mem, sljit_sw memw);
1357
1358 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1359 anything to negate the effect of relative addressing. For example if an
1360 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1361 contains the offset of an array item plus 0x120, this item can be
1362 overwritten by two SLJIT instructions:
1363
1364 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1365 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1366
1367 Flags: - (may destroy flags) */
1368 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1369
1370 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1371 Flags: - (does not modify flags) */
1372 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1373
1374 /* Store the value of a label (see: sljit_set_put_label)
1375 Flags: - (does not modify flags) */
1376 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1377
1378 /* Set the value stored by put_label to this label. */
1379 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1380
1381 /* After the code generation the address for label, jump and const instructions
1382 are computed. Since these structures are freed by sljit_free_compiler, the
1383 addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1384 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1385 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1386 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1387
1388 /* Only the address and executable offset are required to perform dynamic
1389 code modifications. See sljit_get_executable_offset function. */
1390 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1391 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1392
1393 /* --------------------------------------------------------------------- */
1394 /* Miscellaneous utility functions */
1395 /* --------------------------------------------------------------------- */
1396
1397 #define SLJIT_MAJOR_VERSION 0
1398 #define SLJIT_MINOR_VERSION 94
1399
1400 /* Get the human readable name of the platform. Can be useful on platforms
1401 like ARM, where ARM and Thumb2 functions can be mixed, and
1402 it is useful to know the type of the code generator. */
1403 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1404
1405 /* Portable helper function to get an offset of a member. */
1406 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1407
1408 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1409 /* This global lock is useful to compile common functions. */
1410 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_grab_lock(void);
1411 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_release_lock(void);
1412 #endif
1413
1414 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1415
1416 /* The sljit_stack structure and its manipulation functions provides
1417 an implementation for a top-down stack. The stack top is stored
1418 in the end field of the sljit_stack structure and the stack goes
1419 down to the min_start field, so the memory region reserved for
1420 this stack is between min_start (inclusive) and end (exclusive)
1421 fields. However the application can only use the region between
1422 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1423 function can be used to extend this region up to min_start.
1424
1425 This feature uses the "address space reserve" feature of modern
1426 operating systems. Instead of allocating a large memory block
1427 applications can allocate a small memory region and extend it
1428 later without moving the content of the memory area. Therefore
1429 after a successful resize by sljit_stack_resize all pointers into
1430 this region are still valid.
1431
1432 Note:
1433 this structure may not be supported by all operating systems.
1434 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1435 4 Kbyte or more).
1436 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1437
1438 struct sljit_stack {
1439 /* User data, anything can be stored here.
1440 Initialized to the same value as the end field. */
1441 sljit_u8 *top;
1442 /* These members are read only. */
1443 /* End address of the stack */
1444 sljit_u8 *end;
1445 /* Current start address of the stack. */
1446 sljit_u8 *start;
1447 /* Lowest start address of the stack. */
1448 sljit_u8 *min_start;
1449 };
1450
1451 /* Allocates a new stack. Returns NULL if unsuccessful.
1452 Note: see sljit_create_compiler for the explanation of allocator_data. */
1453 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1454 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1455
1456 /* Can be used to increase (extend) or decrease (shrink) the stack
1457 memory area. Returns with new_start if successful and NULL otherwise.
1458 It always fails if new_start is less than min_start or greater or equal
1459 than end fields. The fields of the stack are not changed if the returned
1460 value is NULL (the current memory content is never lost). */
1461 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1462
1463 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1464
1465 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1466
1467 /* Get the entry address of a given function. */
1468 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1469
1470 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1471
1472 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1473
1474 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1475
1476 /* For powerpc64, the function pointers point to a context descriptor. */
1477 struct sljit_function_context {
1478 sljit_sw addr;
1479 sljit_sw r2;
1480 sljit_sw r11;
1481 };
1482
1483 /* Fill the context arguments using the addr and the function.
1484 If func_ptr is NULL, it will not be set to the address of context
1485 If addr is NULL, the function address also comes from the func pointer. */
1486 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1487
1488 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1489
1490 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1491 /* Free unused executable memory. The allocator keeps some free memory
1492 around to reduce the number of OS executable memory allocations.
1493 This improves performance since these calls are costly. However
1494 it is sometimes desired to free all unused memory regions, e.g.
1495 before the application terminates. */
1496 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1497 #endif
1498
1499 /* --------------------------------------------------------------------- */
1500 /* CPU specific functions */
1501 /* --------------------------------------------------------------------- */
1502
1503 /* The following function is a helper function for sljit_emit_op_custom.
1504 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1505 SLJIT_S and SLJIT_SP registers.
1506
1507 Note: it returns with -1 for virtual registers (only on x86-32). */
1508
1509 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1510
1511 /* The following function is a helper function for sljit_emit_op_custom.
1512 It returns with the real machine register index of any SLJIT_FLOAT register.
1513
1514 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1515
1516 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1517
1518 /* Any instruction can be inserted into the instruction stream by
1519 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1520 The size parameter must match to the instruction size of the target
1521 architecture:
1522
1523 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1524 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1525 if size == 4, the instruction argument must be 4 byte aligned.
1526 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1527
1528 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1529 void *instruction, sljit_s32 size);
1530
1531 /* Define the currently available CPU status flags. It is usually used after an
1532 sljit_emit_op_custom call to define which flags are set. */
1533
1534 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1535 sljit_s32 current_flags);
1536
1537 #ifdef __cplusplus
1538 } /* extern "C" */
1539 #endif
1540
1541 #endif /* _SLJIT_LIR_H_ */
1542