1 /*
2  *    Stack-less Just-In-Time compiler
3  *
4  *    Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without modification, are
7  * permitted provided that the following conditions are met:
8  *
9  *   1. Redistributions of source code must retain the above copyright notice, this list of
10  *      conditions and the following disclaimer.
11  *
12  *   2. Redistributions in binary form must reproduce the above copyright notice, this list
13  *      of conditions and the following disclaimer in the documentation and/or other materials
14  *      provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19  * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /* ppc 64-bit arch dependent functions. */
28 
29 #if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
30 #define ASM_SLJIT_CLZ(src, dst) \
31 	__asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
32 #elif defined(__xlc__)
33 #error "Please enable GCC syntax for inline assembly statements"
34 #else
35 #error "Must implement count leading zeroes"
36 #endif
37 
38 #define RLDI(dst, src, sh, mb, type) \
39 	(HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))
40 
41 #define PUSH_RLDICR(reg, shift) \
42 	push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
43 
load_immediate(struct sljit_compiler * compiler,sljit_si reg,sljit_sw imm)44 static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si reg, sljit_sw imm)
45 {
46 	sljit_uw tmp;
47 	sljit_uw shift;
48 	sljit_uw tmp2;
49 	sljit_uw shift2;
50 
51 	if (imm <= SIMM_MAX && imm >= SIMM_MIN)
52 		return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
53 
54 	if (!(imm & ~0xffff))
55 		return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
56 
57 	if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
58 		FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
59 		return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
60 	}
61 
62 	/* Count leading zeroes. */
63 	tmp = (imm >= 0) ? imm : ~imm;
64 	ASM_SLJIT_CLZ(tmp, shift);
65 	SLJIT_ASSERT(shift > 0);
66 	shift--;
67 	tmp = (imm << shift);
68 
69 	if ((tmp & ~0xffff000000000000ul) == 0) {
70 		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
71 		shift += 15;
72 		return PUSH_RLDICR(reg, shift);
73 	}
74 
75 	if ((tmp & ~0xffffffff00000000ul) == 0) {
76 		FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
77 		FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
78 		shift += 31;
79 		return PUSH_RLDICR(reg, shift);
80 	}
81 
82 	/* Cut out the 16 bit from immediate. */
83 	shift += 15;
84 	tmp2 = imm & ((1ul << (63 - shift)) - 1);
85 
86 	if (tmp2 <= 0xffff) {
87 		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
88 		FAIL_IF(PUSH_RLDICR(reg, shift));
89 		return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
90 	}
91 
92 	if (tmp2 <= 0xffffffff) {
93 		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
94 		FAIL_IF(PUSH_RLDICR(reg, shift));
95 		FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
96 		return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
97 	}
98 
99 	ASM_SLJIT_CLZ(tmp2, shift2);
100 	tmp2 <<= shift2;
101 
102 	if ((tmp2 & ~0xffff000000000000ul) == 0) {
103 		FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
104 		shift2 += 15;
105 		shift += (63 - shift2);
106 		FAIL_IF(PUSH_RLDICR(reg, shift));
107 		FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
108 		return PUSH_RLDICR(reg, shift2);
109 	}
110 
111 	/* The general version. */
112 	FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
113 	FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
114 	FAIL_IF(PUSH_RLDICR(reg, 31));
115 	FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
116 	return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
117 }
118 
119 /* Simplified mnemonics: clrldi. */
120 #define INS_CLEAR_LEFT(dst, src, from) \
121 	(RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
122 
123 /* Sign extension for integer operations. */
124 #define UN_EXTS() \
125 	if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
126 		FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
127 		src2 = TMP_REG2; \
128 	}
129 
130 #define BIN_EXTS() \
131 	if (flags & ALT_SIGN_EXT) { \
132 		if (flags & REG1_SOURCE) { \
133 			FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
134 			src1 = TMP_REG1; \
135 		} \
136 		if (flags & REG2_SOURCE) { \
137 			FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
138 			src2 = TMP_REG2; \
139 		} \
140 	}
141 
142 #define BIN_IMM_EXTS() \
143 	if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
144 		FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
145 		src1 = TMP_REG1; \
146 	}
147 
emit_single_op(struct sljit_compiler * compiler,sljit_si op,sljit_si flags,sljit_si dst,sljit_si src1,sljit_si src2)148 static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
149 	sljit_si dst, sljit_si src1, sljit_si src2)
150 {
151 	switch (op) {
152 	case SLJIT_MOV:
153 	case SLJIT_MOV_P:
154 		SLJIT_ASSERT(src1 == TMP_REG1);
155 		if (dst != src2)
156 			return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
157 		return SLJIT_SUCCESS;
158 
159 	case SLJIT_MOV_UI:
160 	case SLJIT_MOV_SI:
161 		SLJIT_ASSERT(src1 == TMP_REG1);
162 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
163 			if (op == SLJIT_MOV_SI)
164 				return push_inst(compiler, EXTSW | S(src2) | A(dst));
165 			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
166 		}
167 		else {
168 			SLJIT_ASSERT(dst == src2);
169 		}
170 		return SLJIT_SUCCESS;
171 
172 	case SLJIT_MOV_UB:
173 	case SLJIT_MOV_SB:
174 		SLJIT_ASSERT(src1 == TMP_REG1);
175 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
176 			if (op == SLJIT_MOV_SB)
177 				return push_inst(compiler, EXTSB | S(src2) | A(dst));
178 			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
179 		}
180 		else if ((flags & REG_DEST) && op == SLJIT_MOV_SB)
181 			return push_inst(compiler, EXTSB | S(src2) | A(dst));
182 		else {
183 			SLJIT_ASSERT(dst == src2);
184 		}
185 		return SLJIT_SUCCESS;
186 
187 	case SLJIT_MOV_UH:
188 	case SLJIT_MOV_SH:
189 		SLJIT_ASSERT(src1 == TMP_REG1);
190 		if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
191 			if (op == SLJIT_MOV_SH)
192 				return push_inst(compiler, EXTSH | S(src2) | A(dst));
193 			return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
194 		}
195 		else {
196 			SLJIT_ASSERT(dst == src2);
197 		}
198 		return SLJIT_SUCCESS;
199 
200 	case SLJIT_NOT:
201 		SLJIT_ASSERT(src1 == TMP_REG1);
202 		UN_EXTS();
203 		return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
204 
205 	case SLJIT_NEG:
206 		SLJIT_ASSERT(src1 == TMP_REG1);
207 		UN_EXTS();
208 		return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));
209 
210 	case SLJIT_CLZ:
211 		SLJIT_ASSERT(src1 == TMP_REG1);
212 		if (flags & ALT_FORM1)
213 			return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
214 		return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));
215 
216 	case SLJIT_ADD:
217 		if (flags & ALT_FORM1) {
218 			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
219 			SLJIT_ASSERT(src2 == TMP_REG2);
220 			return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
221 		}
222 		if (flags & ALT_FORM2) {
223 			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
224 			SLJIT_ASSERT(src2 == TMP_REG2);
225 			return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
226 		}
227 		if (flags & ALT_FORM3) {
228 			SLJIT_ASSERT(src2 == TMP_REG2);
229 			BIN_IMM_EXTS();
230 			return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
231 		}
232 		if (flags & ALT_FORM4) {
233 			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
234 			FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
235 			return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
236 		}
237 		if (!(flags & ALT_SET_FLAGS))
238 			return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
239 		BIN_EXTS();
240 		return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
241 
242 	case SLJIT_ADDC:
243 		if (flags & ALT_FORM1) {
244 			FAIL_IF(push_inst(compiler, MFXER | D(0)));
245 			FAIL_IF(push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2)));
246 			return push_inst(compiler, MTXER | S(0));
247 		}
248 		BIN_EXTS();
249 		return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
250 
251 	case SLJIT_SUB:
252 		if (flags & ALT_FORM1) {
253 			/* Flags does not set: BIN_IMM_EXTS unnecessary. */
254 			SLJIT_ASSERT(src2 == TMP_REG2);
255 			return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
256 		}
257 		if (flags & (ALT_FORM2 | ALT_FORM3)) {
258 			SLJIT_ASSERT(src2 == TMP_REG2);
259 			if (flags & ALT_FORM2)
260 				FAIL_IF(push_inst(compiler, CMPI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
261 			if (flags & ALT_FORM3)
262 				return push_inst(compiler, CMPLI | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
263 			return SLJIT_SUCCESS;
264 		}
265 		if (flags & (ALT_FORM4 | ALT_FORM5)) {
266 			if (flags & ALT_FORM4)
267 				FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
268 			if (flags & ALT_FORM5)
269 				return push_inst(compiler, CMP | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
270 			return SLJIT_SUCCESS;
271 		}
272 		if (!(flags & ALT_SET_FLAGS))
273 			return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
274 		BIN_EXTS();
275 		if (flags & ALT_FORM6)
276 			FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
277 		return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
278 
279 	case SLJIT_SUBC:
280 		if (flags & ALT_FORM1) {
281 			FAIL_IF(push_inst(compiler, MFXER | D(0)));
282 			FAIL_IF(push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1)));
283 			return push_inst(compiler, MTXER | S(0));
284 		}
285 		BIN_EXTS();
286 		return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
287 
288 	case SLJIT_MUL:
289 		if (flags & ALT_FORM1) {
290 			SLJIT_ASSERT(src2 == TMP_REG2);
291 			return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
292 		}
293 		BIN_EXTS();
294 		if (flags & ALT_FORM2)
295 			return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
296 		return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));
297 
298 	case SLJIT_AND:
299 		if (flags & ALT_FORM1) {
300 			SLJIT_ASSERT(src2 == TMP_REG2);
301 			return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
302 		}
303 		if (flags & ALT_FORM2) {
304 			SLJIT_ASSERT(src2 == TMP_REG2);
305 			return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
306 		}
307 		return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
308 
309 	case SLJIT_OR:
310 		if (flags & ALT_FORM1) {
311 			SLJIT_ASSERT(src2 == TMP_REG2);
312 			return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
313 		}
314 		if (flags & ALT_FORM2) {
315 			SLJIT_ASSERT(src2 == TMP_REG2);
316 			return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
317 		}
318 		if (flags & ALT_FORM3) {
319 			SLJIT_ASSERT(src2 == TMP_REG2);
320 			FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
321 			return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
322 		}
323 		return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
324 
325 	case SLJIT_XOR:
326 		if (flags & ALT_FORM1) {
327 			SLJIT_ASSERT(src2 == TMP_REG2);
328 			return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
329 		}
330 		if (flags & ALT_FORM2) {
331 			SLJIT_ASSERT(src2 == TMP_REG2);
332 			return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
333 		}
334 		if (flags & ALT_FORM3) {
335 			SLJIT_ASSERT(src2 == TMP_REG2);
336 			FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
337 			return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
338 		}
339 		return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
340 
341 	case SLJIT_SHL:
342 		if (flags & ALT_FORM1) {
343 			SLJIT_ASSERT(src2 == TMP_REG2);
344 			if (flags & ALT_FORM2) {
345 				compiler->imm &= 0x1f;
346 				return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
347 			}
348 			else {
349 				compiler->imm &= 0x3f;
350 				return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
351 			}
352 		}
353 		return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
354 
355 	case SLJIT_LSHR:
356 		if (flags & ALT_FORM1) {
357 			SLJIT_ASSERT(src2 == TMP_REG2);
358 			if (flags & ALT_FORM2) {
359 				compiler->imm &= 0x1f;
360 				return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
361 			}
362 			else {
363 				compiler->imm &= 0x3f;
364 				return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
365 			}
366 		}
367 		return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
368 
369 	case SLJIT_ASHR:
370 		if (flags & ALT_FORM3)
371 			FAIL_IF(push_inst(compiler, MFXER | D(0)));
372 		if (flags & ALT_FORM1) {
373 			SLJIT_ASSERT(src2 == TMP_REG2);
374 			if (flags & ALT_FORM2) {
375 				compiler->imm &= 0x1f;
376 				FAIL_IF(push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11)));
377 			}
378 			else {
379 				compiler->imm &= 0x3f;
380 				FAIL_IF(push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4)));
381 			}
382 		}
383 		else
384 			FAIL_IF(push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2)));
385 		return (flags & ALT_FORM3) ? push_inst(compiler, MTXER | S(0)) : SLJIT_SUCCESS;
386 	}
387 
388 	SLJIT_ASSERT_STOP();
389 	return SLJIT_SUCCESS;
390 }
391 
emit_const(struct sljit_compiler * compiler,sljit_si reg,sljit_sw init_value)392 static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si reg, sljit_sw init_value)
393 {
394 	FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
395 	FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
396 	FAIL_IF(PUSH_RLDICR(reg, 31));
397 	FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
398 	return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
399 }
400 
sljit_set_jump_addr(sljit_uw addr,sljit_uw new_addr)401 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
402 {
403 	sljit_ins *inst = (sljit_ins*)addr;
404 
405 	inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff);
406 	inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff);
407 	inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
408 	inst[4] = (inst[4] & 0xffff0000) | (new_addr & 0xffff);
409 	SLJIT_CACHE_FLUSH(inst, inst + 5);
410 }
411 
sljit_set_const(sljit_uw addr,sljit_sw new_constant)412 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
413 {
414 	sljit_ins *inst = (sljit_ins*)addr;
415 
416 	inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
417 	inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
418 	inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
419 	inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
420 	SLJIT_CACHE_FLUSH(inst, inst + 5);
421 }
422