/*- * Copyright 2021 Tarsnap Backup Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "php_hash.h" #include "php_hash_sha.h" #ifdef __SSE2__ # include /* Original implementation from libcperciva follows. * * Modified to use `PHP_STATIC_RESTRICT` for MSVC compatibility. */ /** * mm_bswap_epi32(a): * Byte-swap each 32-bit word. */ static inline __m128i mm_bswap_epi32(__m128i a) { /* Swap bytes in each 16-bit word. */ a = _mm_or_si128(_mm_slli_epi16(a, 8), _mm_srli_epi16(a, 8)); /* Swap all 16-bit words. */ a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); return (a); } /* SHA256 round constants. */ static const uint32_t Krnd[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ h += S1(e) + Ch(e, f, g) + k; \ d += h; \ h += S0(a) + Maj(a, b, c) /* Adjusted round function for rotating state */ #define RNDr(S, W, i, ii) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i + ii] + Krnd[i + ii]) /* Message schedule computation */ #define SHR32(x, n) (_mm_srli_epi32(x, n)) #define ROTR32(x, n) (_mm_or_si128(SHR32(x, n), _mm_slli_epi32(x, (32-n)))) #define s0_128(x) _mm_xor_si128(_mm_xor_si128( \ ROTR32(x, 7), ROTR32(x, 18)), SHR32(x, 3)) static inline __m128i s1_128_high(__m128i a) { __m128i b; __m128i c; /* ROTR, loading data as {B, B, A, A}; lanes 1 & 3 will be junk. */ b = _mm_shuffle_epi32(a, _MM_SHUFFLE(1, 1, 0, 0)); c = _mm_xor_si128(_mm_srli_epi64(b, 17), _mm_srli_epi64(b, 19)); /* Shift and XOR with rotated data; lanes 1 & 3 will be junk. */ c = _mm_xor_si128(c, _mm_srli_epi32(b, 10)); /* Shuffle good data back and zero unwanted lanes. */ c = _mm_shuffle_epi32(c, _MM_SHUFFLE(2, 0, 2, 0)); c = _mm_slli_si128(c, 8); return (c); } static inline __m128i s1_128_low(__m128i a) { __m128i b; __m128i c; /* ROTR, loading data as {B, B, A, A}; lanes 1 & 3 will be junk. */ b = _mm_shuffle_epi32(a, _MM_SHUFFLE(3, 3, 2, 2)); c = _mm_xor_si128(_mm_srli_epi64(b, 17), _mm_srli_epi64(b, 19)); /* Shift and XOR with rotated data; lanes 1 & 3 will be junk. */ c = _mm_xor_si128(c, _mm_srli_epi32(b, 10)); /* Shuffle good data back and zero unwanted lanes. */ c = _mm_shuffle_epi32(c, _MM_SHUFFLE(2, 0, 2, 0)); c = _mm_srli_si128(c, 8); return (c); } /** * SPAN_ONE_THREE(a, b): * Combine the upper three words of ${a} with the lowest word of ${b}. This * could also be thought of returning bits [159:32] of the 256-bit value * consisting of (b[127:0] a[127:0]). In other words, set: * dst[31:0] := a[63:32] * dst[63:32] := a[95:64] * dst[95:64] := a[127:96] * dst[127:96] := b[31:0] */ #define SPAN_ONE_THREE(a, b) (_mm_shuffle_epi32(_mm_castps_si128( \ _mm_move_ss(_mm_castsi128_ps(a), _mm_castsi128_ps(b))), \ _MM_SHUFFLE(0, 3, 2, 1))) /** * MSG4(X0, X1, X2, X3): * Calculate the next four values of the message schedule. If we define * ${W[j]} as the first unknown value in the message schedule, then the input * arguments are: * X0 = W[j - 16] : W[j - 13] * X1 = W[j - 12] : W[j - 9] * X2 = W[j - 8] : W[j - 5] * X3 = W[j - 4] : W[j - 1] * This function therefore calculates: * X4 = W[j + 0] : W[j + 3] */ static inline __m128i MSG4(__m128i X0, __m128i X1, __m128i X2, __m128i X3) { __m128i X4; __m128i Xj_minus_seven, Xj_minus_fifteen; /* Set up variables which span X values. */ Xj_minus_seven = SPAN_ONE_THREE(X2, X3); Xj_minus_fifteen = SPAN_ONE_THREE(X0, X1); /* Begin computing X4. */ X4 = _mm_add_epi32(X0, Xj_minus_seven); X4 = _mm_add_epi32(X4, s0_128(Xj_minus_fifteen)); /* First half of s1. */ X4 = _mm_add_epi32(X4, s1_128_low(X3)); /* Second half of s1; this depends on the above value of X4. */ X4 = _mm_add_epi32(X4, s1_128_high(X4)); return (X4); } /** * SHA256_Transform_sse2(state, block, W, S): * Compute the SHA256 block compression function, transforming ${state} using * the data in ${block}. This implementation uses x86 SSE2 instructions, and * should only be used if _SSE2 is defined and cpusupport_x86_sse2() returns * nonzero. The arrays W and S may be filled with sensitive data, and should * be cleared by the callee. */ void SHA256_Transform_sse2(uint32_t state[PHP_STATIC_RESTRICT 8], const uint8_t block[PHP_STATIC_RESTRICT 64], uint32_t W[PHP_STATIC_RESTRICT 64], uint32_t S[PHP_STATIC_RESTRICT 8]) { __m128i Y[4]; int i; /* 1. Prepare the first part of the message schedule W. */ Y[0] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[0])); _mm_storeu_si128((__m128i *)&W[0], Y[0]); Y[1] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[16])); _mm_storeu_si128((__m128i *)&W[4], Y[1]); Y[2] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[32])); _mm_storeu_si128((__m128i *)&W[8], Y[2]); Y[3] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[48])); _mm_storeu_si128((__m128i *)&W[12], Y[3]); /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ for (i = 0; i < 64; i += 16) { RNDr(S, W, 0, i); RNDr(S, W, 1, i); RNDr(S, W, 2, i); RNDr(S, W, 3, i); RNDr(S, W, 4, i); RNDr(S, W, 5, i); RNDr(S, W, 6, i); RNDr(S, W, 7, i); RNDr(S, W, 8, i); RNDr(S, W, 9, i); RNDr(S, W, 10, i); RNDr(S, W, 11, i); RNDr(S, W, 12, i); RNDr(S, W, 13, i); RNDr(S, W, 14, i); RNDr(S, W, 15, i); if (i == 48) break; Y[0] = MSG4(Y[0], Y[1], Y[2], Y[3]); _mm_storeu_si128((__m128i *)&W[16 + i + 0], Y[0]); Y[1] = MSG4(Y[1], Y[2], Y[3], Y[0]); _mm_storeu_si128((__m128i *)&W[16 + i + 4], Y[1]); Y[2] = MSG4(Y[2], Y[3], Y[0], Y[1]); _mm_storeu_si128((__m128i *)&W[16 + i + 8], Y[2]); Y[3] = MSG4(Y[3], Y[0], Y[1], Y[2]); _mm_storeu_si128((__m128i *)&W[16 + i + 12], Y[3]); } /* 4. Mix local working variables into global state. */ for (i = 0; i < 8; i++) state[i] += S[i]; } #endif