/*- * Copyright 2018 Tarsnap Backup Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "php_hash.h" #include "php_hash_sha.h" #if defined(PHP_HASH_INTRIN_SHA_NATIVE) || defined(PHP_HASH_INTRIN_SHA_RESOLVER) # include # if defined(PHP_HASH_INTRIN_SHA_RESOLVER) && defined(HAVE_FUNC_ATTRIBUTE_TARGET) static __m128i be32dec_128(const uint8_t * src) __attribute__((target("ssse3"))); void SHA256_Transform_shani(uint32_t state[PHP_STATIC_RESTRICT 8], const uint8_t block[PHP_STATIC_RESTRICT 64]) __attribute__((target("ssse3,sha"))); # endif /* Original implementation from libcperciva follows. * * Modified to use `PHP_STATIC_RESTRICT` for MSVC compatibility. */ /** * This code uses intrinsics from the following feature sets: * SHANI: _mm_sha256msg1_epu32, _mm_sha256msg2_epu32, _mm_sha256rnds2_epu32 * SSSE3: _mm_shuffle_epi8, _mm_alignr_epi8 * SSE2: Everything else * * The SSSE3 intrinsics could be avoided at a slight cost by using a few SSE2 * instructions in their place; we have not done this since to our knowledge * there are presently no CPUs which support the SHANI instruction set but do * not support SSSE3. */ /* Load 32-bit big-endian words. */ static __m128i be32dec_128(const uint8_t * src) { const __m128i SHUF = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3); __m128i x; /* Load four 32-bit words. */ x = _mm_loadu_si128((const __m128i *)src); /* Reverse the order of the bytes in each word. */ return (_mm_shuffle_epi8(x, SHUF)); } /* Convert an unsigned 32-bit immediate into a signed value. */ #define I32(a) ((UINT32_C(a) >= UINT32_C(0x80000000)) ? \ -(int32_t)(UINT32_C(0xffffffff) - UINT32_C(a)) - 1 : (int32_t)INT32_C(a)) /* Load four unsigned 32-bit immediates into a vector register. */ #define IMM4(a, b, c, d) _mm_set_epi32(I32(a), I32(b), I32(c), I32(d)) /* Run four rounds of SHA256. */ #define RND4(S, W, K0, K1, K2, K3) do { \ __m128i M; \ \ /* Add the next four words of message schedule and round constants. */ \ M = _mm_add_epi32(W, IMM4(K3, K2, K1, K0)); \ \ /* Perform two rounds of SHA256, using the low two words in M. */ \ S[1] = _mm_sha256rnds2_epu32(S[1], S[0], M); \ \ /* Shift the two words of M down and perform the next two rounds. */ \ M = _mm_srli_si128(M, 8); \ S[0] = _mm_sha256rnds2_epu32(S[0], S[1], M); \ } while (0) /* Compute the ith set of four words of message schedule. */ #define MSG4(W, i) do { \ W[(i + 0) % 4] = _mm_sha256msg1_epu32(W[(i + 0) % 4], W[(i + 1) % 4]); \ W[(i + 0) % 4] = _mm_add_epi32(W[(i + 0) % 4], \ _mm_alignr_epi8(W[(i + 3) % 4], W[(i + 2) % 4], 4)); \ W[(i + 0) % 4] = _mm_sha256msg2_epu32(W[(i + 0) % 4], W[(i + 3) % 4]); \ } while (0) /* Perform 4 rounds of SHA256 and generate more message schedule if needed. */ #define RNDMSG(S, W, i, K0, K1, K2, K3) do { \ RND4(S, W[i % 4], K0, K1, K2, K3); \ if (i < 12) \ MSG4(W, i + 4); \ } while (0) /** * SHA256_Transform_shani(state, block): * Compute the SHA256 block compression function, transforming ${state} using * the data in ${block}. This implementation uses x86 SHANI and SSSE3 * instructions, and should only be used if CPUSUPPORT_X86_SHANI and _SSSE3 * are defined and cpusupport_x86_shani() and _ssse3() return nonzero. */ void SHA256_Transform_shani(uint32_t state[PHP_STATIC_RESTRICT 8], const uint8_t block[PHP_STATIC_RESTRICT 64]) { __m128i S3210, S7654; __m128i S0123, S4567; __m128i S0145, S2367; __m128i W[4]; __m128i S[2]; /* Load state. */ S3210 = _mm_loadu_si128((const __m128i *)&state[0]); S7654 = _mm_loadu_si128((const __m128i *)&state[4]); /* Shuffle the 8 32-bit values into the order we need them. */ S0123 = _mm_shuffle_epi32(S3210, 0x1B); S4567 = _mm_shuffle_epi32(S7654, 0x1B); S0145 = _mm_unpackhi_epi64(S4567, S0123); S2367 = _mm_unpacklo_epi64(S4567, S0123); /* Load input block; this is the start of the message schedule. */ W[0] = be32dec_128(&block[0]); W[1] = be32dec_128(&block[16]); W[2] = be32dec_128(&block[32]); W[3] = be32dec_128(&block[48]); /* Initialize working variables. */ S[0] = S0145; S[1] = S2367; /* Perform 64 rounds, 4 at a time. */ RNDMSG(S, W, 0, 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5); RNDMSG(S, W, 1, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5); RNDMSG(S, W, 2, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3); RNDMSG(S, W, 3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174); RNDMSG(S, W, 4, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc); RNDMSG(S, W, 5, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da); RNDMSG(S, W, 6, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7); RNDMSG(S, W, 7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967); RNDMSG(S, W, 8, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13); RNDMSG(S, W, 9, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85); RNDMSG(S, W, 10, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3); RNDMSG(S, W, 11, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070); RNDMSG(S, W, 12, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5); RNDMSG(S, W, 13, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3); RNDMSG(S, W, 14, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208); RNDMSG(S, W, 15, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2); /* Mix local working variables into global state. */ S0145 = _mm_add_epi32(S0145, S[0]); S2367 = _mm_add_epi32(S2367, S[1]); /* Shuffle state back to the original word order and store. */ S0123 = _mm_unpackhi_epi64(S2367, S0145); S4567 = _mm_unpacklo_epi64(S2367, S0145); S3210 = _mm_shuffle_epi32(S0123, 0x1B); S7654 = _mm_shuffle_epi32(S4567, 0x1B); _mm_storeu_si128((__m128i *)&state[0], S3210); _mm_storeu_si128((__m128i *)&state[4], S7654); } #endif