/* * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include "internal/nelem.h" #include "testutil.h" static const char *infile; static int test_pathlen(void) { X509 *x = NULL; BIO *b = NULL; long pathlen; int ret = 0; if (!TEST_ptr(b = BIO_new_file(infile, "r")) || !TEST_ptr(x = PEM_read_bio_X509(b, NULL, NULL, NULL)) || !TEST_int_eq(pathlen = X509_get_pathlen(x), 6)) goto end; ret = 1; end: BIO_free(b); X509_free(x); return ret; } #ifndef OPENSSL_NO_RFC3779 static int test_asid(void) { ASN1_INTEGER *val1 = NULL, *val2 = NULL; ASIdentifiers *asid1 = ASIdentifiers_new(), *asid2 = ASIdentifiers_new(), *asid3 = ASIdentifiers_new(), *asid4 = ASIdentifiers_new(); int testresult = 0; if (!TEST_ptr(asid1) || !TEST_ptr(asid2) || !TEST_ptr(asid3)) goto err; if (!TEST_ptr(val1 = ASN1_INTEGER_new()) || !TEST_true(ASN1_INTEGER_set_int64(val1, 64496))) goto err; if (!TEST_true(X509v3_asid_add_id_or_range(asid1, V3_ASID_ASNUM, val1, NULL))) goto err; val1 = NULL; if (!TEST_ptr(val2 = ASN1_INTEGER_new()) || !TEST_true(ASN1_INTEGER_set_int64(val2, 64497))) goto err; if (!TEST_true(X509v3_asid_add_id_or_range(asid2, V3_ASID_ASNUM, val2, NULL))) goto err; val2 = NULL; if (!TEST_ptr(val1 = ASN1_INTEGER_new()) || !TEST_true(ASN1_INTEGER_set_int64(val1, 64496)) || !TEST_ptr(val2 = ASN1_INTEGER_new()) || !TEST_true(ASN1_INTEGER_set_int64(val2, 64497))) goto err; /* * Just tests V3_ASID_ASNUM for now. Could be extended at some point to also * test V3_ASID_RDI if we think it is worth it. */ if (!TEST_true(X509v3_asid_add_id_or_range(asid3, V3_ASID_ASNUM, val1, val2))) goto err; val1 = val2 = NULL; /* Actual subsets */ if (!TEST_true(X509v3_asid_subset(NULL, NULL)) || !TEST_true(X509v3_asid_subset(NULL, asid1)) || !TEST_true(X509v3_asid_subset(asid1, asid1)) || !TEST_true(X509v3_asid_subset(asid2, asid2)) || !TEST_true(X509v3_asid_subset(asid1, asid3)) || !TEST_true(X509v3_asid_subset(asid2, asid3)) || !TEST_true(X509v3_asid_subset(asid3, asid3)) || !TEST_true(X509v3_asid_subset(asid4, asid1)) || !TEST_true(X509v3_asid_subset(asid4, asid2)) || !TEST_true(X509v3_asid_subset(asid4, asid3))) goto err; /* Not subsets */ if (!TEST_false(X509v3_asid_subset(asid1, NULL)) || !TEST_false(X509v3_asid_subset(asid1, asid2)) || !TEST_false(X509v3_asid_subset(asid2, asid1)) || !TEST_false(X509v3_asid_subset(asid3, asid1)) || !TEST_false(X509v3_asid_subset(asid3, asid2)) || !TEST_false(X509v3_asid_subset(asid1, asid4)) || !TEST_false(X509v3_asid_subset(asid2, asid4)) || !TEST_false(X509v3_asid_subset(asid3, asid4))) goto err; testresult = 1; err: ASN1_INTEGER_free(val1); ASN1_INTEGER_free(val2); ASIdentifiers_free(asid1); ASIdentifiers_free(asid2); ASIdentifiers_free(asid3); ASIdentifiers_free(asid4); return testresult; } static struct ip_ranges_st { const unsigned int afi; const char *ip1; const char *ip2; int rorp; } ranges[] = { { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.1", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.2", IPAddressOrRange_addressRange}, { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.3", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.254", IPAddressOrRange_addressRange}, { IANA_AFI_IPV4, "192.168.0.0", "192.168.0.255", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV4, "192.168.0.1", "192.168.0.255", IPAddressOrRange_addressRange}, { IANA_AFI_IPV4, "192.168.0.1", "192.168.0.1", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV4, "192.168.0.0", "192.168.255.255", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV4, "192.168.1.0", "192.168.255.255", IPAddressOrRange_addressRange}, { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::1", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::2", IPAddressOrRange_addressRange}, { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::3", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::fffe", IPAddressOrRange_addressRange}, { IANA_AFI_IPV6, "2001:0db8::0", "2001:0db8::ffff", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::ffff", IPAddressOrRange_addressRange}, { IANA_AFI_IPV6, "2001:0db8::1", "2001:0db8::1", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV6, "2001:0db8::0:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressPrefix}, { IANA_AFI_IPV6, "2001:0db8::1:0", "2001:0db8::ffff:ffff", IPAddressOrRange_addressRange} }; static int check_addr(IPAddrBlocks *addr, int type) { IPAddressFamily *fam; IPAddressOrRange *aorr; if (!TEST_int_eq(sk_IPAddressFamily_num(addr), 1)) return 0; fam = sk_IPAddressFamily_value(addr, 0); if (!TEST_ptr(fam)) return 0; if (!TEST_int_eq(fam->ipAddressChoice->type, IPAddressChoice_addressesOrRanges)) return 0; if (!TEST_int_eq(sk_IPAddressOrRange_num(fam->ipAddressChoice->u.addressesOrRanges), 1)) return 0; aorr = sk_IPAddressOrRange_value(fam->ipAddressChoice->u.addressesOrRanges, 0); if (!TEST_ptr(aorr)) return 0; if (!TEST_int_eq(aorr->type, type)) return 0; return 1; } static int test_addr_ranges(void) { IPAddrBlocks *addr = NULL; ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL; size_t i; int testresult = 0; for (i = 0; i < OSSL_NELEM(ranges); i++) { addr = sk_IPAddressFamily_new_null(); if (!TEST_ptr(addr)) goto end; /* * Has the side effect of installing the comparison function onto the * stack. */ if (!TEST_true(X509v3_addr_canonize(addr))) goto end; ip1 = a2i_IPADDRESS(ranges[i].ip1); if (!TEST_ptr(ip1)) goto end; if (!TEST_true(ip1->length == 4 || ip1->length == 16)) goto end; ip2 = a2i_IPADDRESS(ranges[i].ip2); if (!TEST_ptr(ip2)) goto end; if (!TEST_int_eq(ip2->length, ip1->length)) goto end; if (!TEST_true(memcmp(ip1->data, ip2->data, ip1->length) <= 0)) goto end; if (!TEST_true(X509v3_addr_add_range(addr, ranges[i].afi, NULL, ip1->data, ip2->data))) goto end; if (!TEST_true(X509v3_addr_is_canonical(addr))) goto end; if (!check_addr(addr, ranges[i].rorp)) goto end; sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); addr = NULL; ASN1_OCTET_STRING_free(ip1); ASN1_OCTET_STRING_free(ip2); ip1 = ip2 = NULL; } testresult = 1; end: sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); ASN1_OCTET_STRING_free(ip1); ASN1_OCTET_STRING_free(ip2); return testresult; } static int test_addr_fam_len(void) { int testresult = 0; IPAddrBlocks *addr = NULL; IPAddressFamily *f1 = NULL; ASN1_OCTET_STRING *ip1 = NULL, *ip2 = NULL; unsigned char key[6]; unsigned int keylen; unsigned afi = IANA_AFI_IPV4; /* Create the IPAddrBlocks with a good IPAddressFamily */ addr = sk_IPAddressFamily_new_null(); if (!TEST_ptr(addr)) goto end; ip1 = a2i_IPADDRESS(ranges[0].ip1); if (!TEST_ptr(ip1)) goto end; ip2 = a2i_IPADDRESS(ranges[0].ip2); if (!TEST_ptr(ip2)) goto end; if (!TEST_true(X509v3_addr_add_range(addr, ranges[0].afi, NULL, ip1->data, ip2->data))) goto end; if (!TEST_true(X509v3_addr_is_canonical(addr))) goto end; /* Create our malformed IPAddressFamily */ key[0] = (afi >> 8) & 0xFF; key[1] = afi & 0xFF; key[2] = 0xD; key[3] = 0xE; key[4] = 0xA; key[5] = 0xD; keylen = 6; if ((f1 = IPAddressFamily_new()) == NULL) goto end; if (f1->ipAddressChoice == NULL && (f1->ipAddressChoice = IPAddressChoice_new()) == NULL) goto end; if (f1->addressFamily == NULL && (f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL) goto end; if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen)) goto end; /* Push and transfer memory ownership to stack */ if (!sk_IPAddressFamily_push(addr, f1)) goto end; f1 = NULL; /* Shouldn't be able to canonize this as the len is > 3*/ if (!TEST_false(X509v3_addr_canonize(addr))) goto end; /* Pop and free the new stack element */ IPAddressFamily_free(sk_IPAddressFamily_pop(addr)); /* Create a well-formed IPAddressFamily */ key[0] = (afi >> 8) & 0xFF; key[1] = afi & 0xFF; key[2] = 0x1; keylen = 3; if ((f1 = IPAddressFamily_new()) == NULL) goto end; if (f1->ipAddressChoice == NULL && (f1->ipAddressChoice = IPAddressChoice_new()) == NULL) goto end; if (f1->addressFamily == NULL && (f1->addressFamily = ASN1_OCTET_STRING_new()) == NULL) goto end; if (!ASN1_OCTET_STRING_set(f1->addressFamily, key, keylen)) goto end; /* Mark this as inheritance so we skip some of the is_canonize checks */ f1->ipAddressChoice->type = IPAddressChoice_inherit; /* Push and transfer memory ownership to stack */ if (!sk_IPAddressFamily_push(addr, f1)) goto end; f1 = NULL; /* Should be able to canonize now */ if (!TEST_true(X509v3_addr_canonize(addr))) goto end; testresult = 1; end: /* Free stack and any memory owned by detached element */ IPAddressFamily_free(f1); sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); ASN1_OCTET_STRING_free(ip1); ASN1_OCTET_STRING_free(ip2); return testresult; } static struct extvalues_st { const char *value; int pass; } extvalues[] = { /* No prefix is ok */ { "sbgp-ipAddrBlock = IPv4:192.0.0.1\n", 1 }, { "sbgp-ipAddrBlock = IPv4:192.0.0.0/0\n", 1 }, { "sbgp-ipAddrBlock = IPv4:192.0.0.0/1\n", 1 }, { "sbgp-ipAddrBlock = IPv4:192.0.0.0/32\n", 1 }, /* Prefix is too long */ { "sbgp-ipAddrBlock = IPv4:192.0.0.0/33\n", 0 }, /* Unreasonably large prefix */ { "sbgp-ipAddrBlock = IPv4:192.0.0.0/12341234\n", 0 }, /* Invalid IP addresses */ { "sbgp-ipAddrBlock = IPv4:192.0.0\n", 0 }, { "sbgp-ipAddrBlock = IPv4:256.0.0.0\n", 0 }, { "sbgp-ipAddrBlock = IPv4:-1.0.0.0\n", 0 }, { "sbgp-ipAddrBlock = IPv4:192.0.0.0.0\n", 0 }, { "sbgp-ipAddrBlock = IPv3:192.0.0.0\n", 0 }, /* IPv6 */ /* No prefix is ok */ { "sbgp-ipAddrBlock = IPv6:2001:db8::\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001::db8\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001:db8::/0\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001:db8::/1\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001:db8::/32\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000/32\n", 1 }, { "sbgp-ipAddrBlock = IPv6:2001:db8::/128\n", 1 }, /* Prefix is too long */ { "sbgp-ipAddrBlock = IPv6:2001:db8::/129\n", 0 }, /* Unreasonably large prefix */ { "sbgp-ipAddrBlock = IPv6:2001:db8::/12341234\n", 0 }, /* Invalid IP addresses */ /* Not enough blocks of numbers */ { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000\n", 0 }, /* Too many blocks of numbers */ { "sbgp-ipAddrBlock = IPv6:2001:0db8:0000:0000:0000:0000:0000:0000:0000\n", 0 }, /* First value too large */ { "sbgp-ipAddrBlock = IPv6:1ffff:0db8:0000:0000:0000:0000:0000:0000\n", 0 }, /* First value with invalid characters */ { "sbgp-ipAddrBlock = IPv6:fffg:0db8:0000:0000:0000:0000:0000:0000\n", 0 }, /* First value is negative */ { "sbgp-ipAddrBlock = IPv6:-1:0db8:0000:0000:0000:0000:0000:0000\n", 0 } }; static int test_ext_syntax(void) { size_t i; int testresult = 1; for (i = 0; i < OSSL_NELEM(extvalues); i++) { X509V3_CTX ctx; BIO *extbio = BIO_new_mem_buf(extvalues[i].value, strlen(extvalues[i].value)); CONF *conf; long eline; if (!TEST_ptr(extbio)) return 0 ; conf = NCONF_new_ex(NULL, NULL); if (!TEST_ptr(conf)) { BIO_free(extbio); return 0; } if (!TEST_long_gt(NCONF_load_bio(conf, extbio, &eline), 0)) { testresult = 0; } else { X509V3_set_ctx_test(&ctx); X509V3_set_nconf(&ctx, conf); if (extvalues[i].pass) { if (!TEST_true(X509V3_EXT_add_nconf(conf, &ctx, "default", NULL))) { TEST_info("Value: %s", extvalues[i].value); testresult = 0; } } else { ERR_set_mark(); if (!TEST_false(X509V3_EXT_add_nconf(conf, &ctx, "default", NULL))) { testresult = 0; TEST_info("Value: %s", extvalues[i].value); ERR_clear_last_mark(); } else { ERR_pop_to_mark(); } } } BIO_free(extbio); NCONF_free(conf); } return testresult; } static int test_addr_subset(void) { int i; int ret = 0; IPAddrBlocks *addrEmpty = NULL; IPAddrBlocks *addr[3] = { NULL, NULL }; ASN1_OCTET_STRING *ip1[3] = { NULL, NULL }; ASN1_OCTET_STRING *ip2[3] = { NULL, NULL }; int sz = OSSL_NELEM(addr); for (i = 0; i < sz; ++i) { /* Create the IPAddrBlocks with a good IPAddressFamily */ if (!TEST_ptr(addr[i] = sk_IPAddressFamily_new_null()) || !TEST_ptr(ip1[i] = a2i_IPADDRESS(ranges[i].ip1)) || !TEST_ptr(ip2[i] = a2i_IPADDRESS(ranges[i].ip2)) || !TEST_true(X509v3_addr_add_range(addr[i], ranges[i].afi, NULL, ip1[i]->data, ip2[i]->data))) goto end; } ret = TEST_ptr(addrEmpty = sk_IPAddressFamily_new_null()) && TEST_true(X509v3_addr_subset(NULL, NULL)) && TEST_true(X509v3_addr_subset(NULL, addr[0])) && TEST_true(X509v3_addr_subset(addrEmpty, addr[0])) && TEST_true(X509v3_addr_subset(addr[0], addr[0])) && TEST_true(X509v3_addr_subset(addr[0], addr[1])) && TEST_true(X509v3_addr_subset(addr[0], addr[2])) && TEST_true(X509v3_addr_subset(addr[1], addr[2])) && TEST_false(X509v3_addr_subset(addr[0], NULL)) && TEST_false(X509v3_addr_subset(addr[1], addr[0])) && TEST_false(X509v3_addr_subset(addr[2], addr[1])) && TEST_false(X509v3_addr_subset(addr[0], addrEmpty)); end: sk_IPAddressFamily_pop_free(addrEmpty, IPAddressFamily_free); for (i = 0; i < sz; ++i) { sk_IPAddressFamily_pop_free(addr[i], IPAddressFamily_free); ASN1_OCTET_STRING_free(ip1[i]); ASN1_OCTET_STRING_free(ip2[i]); } return ret; } #endif /* OPENSSL_NO_RFC3779 */ OPT_TEST_DECLARE_USAGE("cert.pem\n") int setup_tests(void) { if (!test_skip_common_options()) { TEST_error("Error parsing test options\n"); return 0; } if (!TEST_ptr(infile = test_get_argument(0))) return 0; ADD_TEST(test_pathlen); #ifndef OPENSSL_NO_RFC3779 ADD_TEST(test_asid); ADD_TEST(test_addr_ranges); ADD_TEST(test_ext_syntax); ADD_TEST(test_addr_fam_len); ADD_TEST(test_addr_subset); #endif /* OPENSSL_NO_RFC3779 */ return 1; }