/* * Copyright 2019-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include #include #include #include #include #include #include "prov/implementations.h" #include "prov/providercommon.h" #include "prov/provider_ctx.h" #include "crypto/rsa.h" #include "crypto/cryptlib.h" #include "internal/param_build_set.h" static OSSL_FUNC_keymgmt_new_fn rsa_newdata; static OSSL_FUNC_keymgmt_new_fn rsapss_newdata; static OSSL_FUNC_keymgmt_gen_init_fn rsa_gen_init; static OSSL_FUNC_keymgmt_gen_init_fn rsapss_gen_init; static OSSL_FUNC_keymgmt_gen_set_params_fn rsa_gen_set_params; static OSSL_FUNC_keymgmt_gen_settable_params_fn rsa_gen_settable_params; static OSSL_FUNC_keymgmt_gen_settable_params_fn rsapss_gen_settable_params; static OSSL_FUNC_keymgmt_gen_fn rsa_gen; static OSSL_FUNC_keymgmt_gen_cleanup_fn rsa_gen_cleanup; static OSSL_FUNC_keymgmt_load_fn rsa_load; static OSSL_FUNC_keymgmt_load_fn rsapss_load; static OSSL_FUNC_keymgmt_free_fn rsa_freedata; static OSSL_FUNC_keymgmt_get_params_fn rsa_get_params; static OSSL_FUNC_keymgmt_gettable_params_fn rsa_gettable_params; static OSSL_FUNC_keymgmt_has_fn rsa_has; static OSSL_FUNC_keymgmt_match_fn rsa_match; static OSSL_FUNC_keymgmt_validate_fn rsa_validate; static OSSL_FUNC_keymgmt_import_fn rsa_import; static OSSL_FUNC_keymgmt_import_types_fn rsa_import_types; static OSSL_FUNC_keymgmt_export_fn rsa_export; static OSSL_FUNC_keymgmt_export_types_fn rsa_export_types; static OSSL_FUNC_keymgmt_query_operation_name_fn rsa_query_operation_name; static OSSL_FUNC_keymgmt_dup_fn rsa_dup; #define RSA_DEFAULT_MD "SHA256" #define RSA_PSS_DEFAULT_MD OSSL_DIGEST_NAME_SHA1 #define RSA_POSSIBLE_SELECTIONS \ (OSSL_KEYMGMT_SELECT_KEYPAIR | OSSL_KEYMGMT_SELECT_OTHER_PARAMETERS) DEFINE_STACK_OF(BIGNUM) DEFINE_SPECIAL_STACK_OF_CONST(BIGNUM_const, BIGNUM) static int pss_params_fromdata(RSA_PSS_PARAMS_30 *pss_params, int *defaults_set, const OSSL_PARAM params[], int rsa_type, OSSL_LIB_CTX *libctx) { if (!ossl_rsa_pss_params_30_fromdata(pss_params, defaults_set, params, libctx)) return 0; /* If not a PSS type RSA, sending us PSS parameters is wrong */ if (rsa_type != RSA_FLAG_TYPE_RSASSAPSS && !ossl_rsa_pss_params_30_is_unrestricted(pss_params)) return 0; return 1; } static void *rsa_newdata(void *provctx) { OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(provctx); RSA *rsa; if (!ossl_prov_is_running()) return NULL; rsa = ossl_rsa_new_with_ctx(libctx); if (rsa != NULL) { RSA_clear_flags(rsa, RSA_FLAG_TYPE_MASK); RSA_set_flags(rsa, RSA_FLAG_TYPE_RSA); } return rsa; } static void *rsapss_newdata(void *provctx) { OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(provctx); RSA *rsa; if (!ossl_prov_is_running()) return NULL; rsa = ossl_rsa_new_with_ctx(libctx); if (rsa != NULL) { RSA_clear_flags(rsa, RSA_FLAG_TYPE_MASK); RSA_set_flags(rsa, RSA_FLAG_TYPE_RSASSAPSS); } return rsa; } static void rsa_freedata(void *keydata) { RSA_free(keydata); } static int rsa_has(const void *keydata, int selection) { const RSA *rsa = keydata; int ok = 1; if (rsa == NULL || !ossl_prov_is_running()) return 0; if ((selection & RSA_POSSIBLE_SELECTIONS) == 0) return 1; /* the selection is not missing */ /* OSSL_KEYMGMT_SELECT_OTHER_PARAMETERS are always available even if empty */ if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) ok = ok && (RSA_get0_n(rsa) != NULL); if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) ok = ok && (RSA_get0_e(rsa) != NULL); if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) ok = ok && (RSA_get0_d(rsa) != NULL); return ok; } static int rsa_match(const void *keydata1, const void *keydata2, int selection) { const RSA *rsa1 = keydata1; const RSA *rsa2 = keydata2; int ok = 1; if (!ossl_prov_is_running()) return 0; /* There is always an |e| */ ok = ok && BN_cmp(RSA_get0_e(rsa1), RSA_get0_e(rsa2)) == 0; if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { int key_checked = 0; if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { const BIGNUM *pa = RSA_get0_n(rsa1); const BIGNUM *pb = RSA_get0_n(rsa2); if (pa != NULL && pb != NULL) { ok = ok && BN_cmp(pa, pb) == 0; key_checked = 1; } } if (!key_checked && (selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { const BIGNUM *pa = RSA_get0_d(rsa1); const BIGNUM *pb = RSA_get0_d(rsa2); if (pa != NULL && pb != NULL) { ok = ok && BN_cmp(pa, pb) == 0; key_checked = 1; } } ok = ok && key_checked; } return ok; } static int rsa_import(void *keydata, int selection, const OSSL_PARAM params[]) { RSA *rsa = keydata; int rsa_type; int ok = 1; int pss_defaults_set = 0; if (!ossl_prov_is_running() || rsa == NULL) return 0; if ((selection & RSA_POSSIBLE_SELECTIONS) == 0) return 0; rsa_type = RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK); if ((selection & OSSL_KEYMGMT_SELECT_OTHER_PARAMETERS) != 0) ok = ok && pss_params_fromdata(ossl_rsa_get0_pss_params_30(rsa), &pss_defaults_set, params, rsa_type, ossl_rsa_get0_libctx(rsa)); if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { int include_private = selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY ? 1 : 0; ok = ok && ossl_rsa_fromdata(rsa, params, include_private); } return ok; } static int rsa_export(void *keydata, int selection, OSSL_CALLBACK *param_callback, void *cbarg) { RSA *rsa = keydata; const RSA_PSS_PARAMS_30 *pss_params = ossl_rsa_get0_pss_params_30(rsa); OSSL_PARAM_BLD *tmpl; OSSL_PARAM *params = NULL; int ok = 1; if (!ossl_prov_is_running() || rsa == NULL) return 0; if ((selection & RSA_POSSIBLE_SELECTIONS) == 0) return 0; tmpl = OSSL_PARAM_BLD_new(); if (tmpl == NULL) return 0; if ((selection & OSSL_KEYMGMT_SELECT_OTHER_PARAMETERS) != 0) ok = ok && (ossl_rsa_pss_params_30_is_unrestricted(pss_params) || ossl_rsa_pss_params_30_todata(pss_params, tmpl, NULL)); if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { int include_private = selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY ? 1 : 0; ok = ok && ossl_rsa_todata(rsa, tmpl, NULL, include_private); } if (!ok || (params = OSSL_PARAM_BLD_to_param(tmpl)) == NULL) { ok = 0; goto err; } ok = param_callback(params, cbarg); OSSL_PARAM_free(params); err: OSSL_PARAM_BLD_free(tmpl); return ok; } #ifdef FIPS_MODULE /* In fips mode there are no multi-primes. */ # define RSA_KEY_MP_TYPES() \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR1, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR2, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT1, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT2, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT1, NULL, 0), #else /* * We allow up to 10 prime factors (starting with p, q). * NOTE: there is only 9 OSSL_PKEY_PARAM_RSA_COEFFICIENT */ # define RSA_KEY_MP_TYPES() \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR1, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR2, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR3, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR4, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR5, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR6, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR7, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR8, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR9, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_FACTOR10, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT1, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT2, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT3, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT4, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT5, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT6, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT7, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT8, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT9, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_EXPONENT10, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT1, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT2, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT3, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT4, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT5, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT6, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT7, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT8, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_COEFFICIENT9, NULL, 0), #endif #define RSA_KEY_TYPES() \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_N, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_E, NULL, 0), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_D, NULL, 0), \ RSA_KEY_MP_TYPES() /* * This provider can export everything in an RSA key, so we use the exact * same type description for export as for import. Other providers might * choose to import full keys, but only export the public parts, and will * therefore have the importkey_types and importkey_types functions return * different arrays. */ static const OSSL_PARAM rsa_key_types[] = { RSA_KEY_TYPES() OSSL_PARAM_END }; /* * We lied about the amount of factors, exponents and coefficients, the * export and import functions can really deal with an infinite amount * of these numbers. However, RSA keys with too many primes are futile, * so we at least pretend to have some limits. */ static const OSSL_PARAM *rsa_imexport_types(int selection) { if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) return rsa_key_types; return NULL; } static const OSSL_PARAM *rsa_import_types(int selection) { return rsa_imexport_types(selection); } static const OSSL_PARAM *rsa_export_types(int selection) { return rsa_imexport_types(selection); } static int rsa_get_params(void *key, OSSL_PARAM params[]) { RSA *rsa = key; const RSA_PSS_PARAMS_30 *pss_params = ossl_rsa_get0_pss_params_30(rsa); int rsa_type = RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK); OSSL_PARAM *p; int empty = RSA_get0_n(rsa) == NULL; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL && (empty || !OSSL_PARAM_set_int(p, RSA_bits(rsa)))) return 0; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL && (empty || !OSSL_PARAM_set_int(p, RSA_security_bits(rsa)))) return 0; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_MAX_SIZE)) != NULL && (empty || !OSSL_PARAM_set_int(p, RSA_size(rsa)))) return 0; /* * For restricted RSA-PSS keys, we ignore the default digest request. * With RSA-OAEP keys, this may need to be amended. */ if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_DEFAULT_DIGEST)) != NULL && (rsa_type != RSA_FLAG_TYPE_RSASSAPSS || ossl_rsa_pss_params_30_is_unrestricted(pss_params))) { if (!OSSL_PARAM_set_utf8_string(p, RSA_DEFAULT_MD)) return 0; } /* * For non-RSA-PSS keys, we ignore the mandatory digest request. * With RSA-OAEP keys, this may need to be amended. */ if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_MANDATORY_DIGEST)) != NULL && rsa_type == RSA_FLAG_TYPE_RSASSAPSS && !ossl_rsa_pss_params_30_is_unrestricted(pss_params)) { const char *mdname = ossl_rsa_oaeppss_nid2name(ossl_rsa_pss_params_30_hashalg(pss_params)); if (mdname == NULL || !OSSL_PARAM_set_utf8_string(p, mdname)) return 0; } return (rsa_type != RSA_FLAG_TYPE_RSASSAPSS || ossl_rsa_pss_params_30_todata(pss_params, NULL, params)) && ossl_rsa_todata(rsa, NULL, params, 1); } static const OSSL_PARAM rsa_params[] = { OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL), OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL), OSSL_PARAM_int(OSSL_PKEY_PARAM_MAX_SIZE, NULL), OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_DEFAULT_DIGEST, NULL, 0), RSA_KEY_TYPES() OSSL_PARAM_END }; static const OSSL_PARAM *rsa_gettable_params(void *provctx) { return rsa_params; } static int rsa_validate(const void *keydata, int selection, int checktype) { const RSA *rsa = keydata; int ok = 1; if (!ossl_prov_is_running()) return 0; if ((selection & RSA_POSSIBLE_SELECTIONS) == 0) return 1; /* nothing to validate */ /* If the whole key is selected, we do a pairwise validation */ if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) == OSSL_KEYMGMT_SELECT_KEYPAIR) { ok = ok && ossl_rsa_validate_pairwise(rsa); } else { if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) ok = ok && ossl_rsa_validate_private(rsa); if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) ok = ok && ossl_rsa_validate_public(rsa); } return ok; } struct rsa_gen_ctx { OSSL_LIB_CTX *libctx; const char *propq; int rsa_type; size_t nbits; BIGNUM *pub_exp; size_t primes; /* For PSS */ RSA_PSS_PARAMS_30 pss_params; int pss_defaults_set; /* For generation callback */ OSSL_CALLBACK *cb; void *cbarg; #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) /* ACVP test parameters */ OSSL_PARAM *acvp_test_params; #endif }; static int rsa_gencb(int p, int n, BN_GENCB *cb) { struct rsa_gen_ctx *gctx = BN_GENCB_get_arg(cb); OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END, OSSL_PARAM_END }; params[0] = OSSL_PARAM_construct_int(OSSL_GEN_PARAM_POTENTIAL, &p); params[1] = OSSL_PARAM_construct_int(OSSL_GEN_PARAM_ITERATION, &n); return gctx->cb(params, gctx->cbarg); } static void *gen_init(void *provctx, int selection, int rsa_type, const OSSL_PARAM params[]) { OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(provctx); struct rsa_gen_ctx *gctx = NULL; if (!ossl_prov_is_running()) return NULL; if ((selection & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) return NULL; if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL) { gctx->libctx = libctx; if ((gctx->pub_exp = BN_new()) == NULL || !BN_set_word(gctx->pub_exp, RSA_F4)) { goto err; } gctx->nbits = 2048; gctx->primes = RSA_DEFAULT_PRIME_NUM; gctx->rsa_type = rsa_type; } else { goto err; } if (!rsa_gen_set_params(gctx, params)) goto err; return gctx; err: if (gctx != NULL) BN_free(gctx->pub_exp); OPENSSL_free(gctx); return NULL; } static void *rsa_gen_init(void *provctx, int selection, const OSSL_PARAM params[]) { return gen_init(provctx, selection, RSA_FLAG_TYPE_RSA, params); } static void *rsapss_gen_init(void *provctx, int selection, const OSSL_PARAM params[]) { return gen_init(provctx, selection, RSA_FLAG_TYPE_RSASSAPSS, params); } /* * This function is common for all RSA sub-types, to detect possible * misuse, such as PSS parameters being passed when a plain RSA key * is generated. */ static int rsa_gen_set_params(void *genctx, const OSSL_PARAM params[]) { struct rsa_gen_ctx *gctx = genctx; const OSSL_PARAM *p; if (ossl_param_is_empty(params)) return 1; if ((p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_BITS)) != NULL) { if (!OSSL_PARAM_get_size_t(p, &gctx->nbits)) return 0; if (gctx->nbits < RSA_MIN_MODULUS_BITS) { ERR_raise(ERR_LIB_PROV, PROV_R_KEY_SIZE_TOO_SMALL); return 0; } } if ((p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_PRIMES)) != NULL && !OSSL_PARAM_get_size_t(p, &gctx->primes)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_RSA_E)) != NULL && !OSSL_PARAM_get_BN(p, &gctx->pub_exp)) return 0; /* Only attempt to get PSS parameters when generating an RSA-PSS key */ if (gctx->rsa_type == RSA_FLAG_TYPE_RSASSAPSS && !pss_params_fromdata(&gctx->pss_params, &gctx->pss_defaults_set, params, gctx->rsa_type, gctx->libctx)) return 0; #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) /* Any ACVP test related parameters are copied into a params[] */ if (!ossl_rsa_acvp_test_gen_params_new(&gctx->acvp_test_params, params)) return 0; #endif return 1; } #define rsa_gen_basic \ OSSL_PARAM_size_t(OSSL_PKEY_PARAM_RSA_BITS, NULL), \ OSSL_PARAM_size_t(OSSL_PKEY_PARAM_RSA_PRIMES, NULL), \ OSSL_PARAM_BN(OSSL_PKEY_PARAM_RSA_E, NULL, 0) /* * The following must be kept in sync with ossl_rsa_pss_params_30_fromdata() * in crypto/rsa/rsa_backend.c */ #define rsa_gen_pss \ OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_RSA_DIGEST, NULL, 0), \ OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_RSA_DIGEST_PROPS, NULL, 0), \ OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_RSA_MASKGENFUNC, NULL, 0), \ OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_RSA_MGF1_DIGEST, NULL, 0), \ OSSL_PARAM_int(OSSL_PKEY_PARAM_RSA_PSS_SALTLEN, NULL) static const OSSL_PARAM *rsa_gen_settable_params(ossl_unused void *genctx, ossl_unused void *provctx) { static OSSL_PARAM settable[] = { rsa_gen_basic, OSSL_PARAM_END }; return settable; } static const OSSL_PARAM *rsapss_gen_settable_params(ossl_unused void *genctx, ossl_unused void *provctx) { static OSSL_PARAM settable[] = { rsa_gen_basic, rsa_gen_pss, OSSL_PARAM_END }; return settable; } static void *rsa_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg) { struct rsa_gen_ctx *gctx = genctx; RSA *rsa = NULL, *rsa_tmp = NULL; BN_GENCB *gencb = NULL; if (!ossl_prov_is_running() || gctx == NULL) return NULL; switch (gctx->rsa_type) { case RSA_FLAG_TYPE_RSA: /* For plain RSA keys, PSS parameters must not be set */ if (!ossl_rsa_pss_params_30_is_unrestricted(&gctx->pss_params)) goto err; break; case RSA_FLAG_TYPE_RSASSAPSS: /* * For plain RSA-PSS keys, PSS parameters may be set but don't have * to, so not check. */ break; default: /* Unsupported RSA key sub-type... */ return NULL; } if ((rsa_tmp = ossl_rsa_new_with_ctx(gctx->libctx)) == NULL) return NULL; gctx->cb = osslcb; gctx->cbarg = cbarg; gencb = BN_GENCB_new(); if (gencb != NULL) BN_GENCB_set(gencb, rsa_gencb, genctx); #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) if (gctx->acvp_test_params != NULL) { if (!ossl_rsa_acvp_test_set_params(rsa_tmp, gctx->acvp_test_params)) goto err; } #endif if (!RSA_generate_multi_prime_key(rsa_tmp, (int)gctx->nbits, (int)gctx->primes, gctx->pub_exp, gencb)) goto err; if (!ossl_rsa_pss_params_30_copy(ossl_rsa_get0_pss_params_30(rsa_tmp), &gctx->pss_params)) goto err; RSA_clear_flags(rsa_tmp, RSA_FLAG_TYPE_MASK); RSA_set_flags(rsa_tmp, gctx->rsa_type); rsa = rsa_tmp; rsa_tmp = NULL; err: BN_GENCB_free(gencb); RSA_free(rsa_tmp); return rsa; } static void rsa_gen_cleanup(void *genctx) { struct rsa_gen_ctx *gctx = genctx; if (gctx == NULL) return; #if defined(FIPS_MODULE) && !defined(OPENSSL_NO_ACVP_TESTS) ossl_rsa_acvp_test_gen_params_free(gctx->acvp_test_params); gctx->acvp_test_params = NULL; #endif BN_clear_free(gctx->pub_exp); OPENSSL_free(gctx); } static void *common_load(const void *reference, size_t reference_sz, int expected_rsa_type) { RSA *rsa = NULL; if (ossl_prov_is_running() && reference_sz == sizeof(rsa)) { /* The contents of the reference is the address to our object */ rsa = *(RSA **)reference; if (RSA_test_flags(rsa, RSA_FLAG_TYPE_MASK) != expected_rsa_type) return NULL; /* We grabbed, so we detach it */ *(RSA **)reference = NULL; return rsa; } return NULL; } static void *rsa_load(const void *reference, size_t reference_sz) { return common_load(reference, reference_sz, RSA_FLAG_TYPE_RSA); } static void *rsapss_load(const void *reference, size_t reference_sz) { return common_load(reference, reference_sz, RSA_FLAG_TYPE_RSASSAPSS); } static void *rsa_dup(const void *keydata_from, int selection) { if (ossl_prov_is_running() /* do not allow creating empty keys by duplication */ && (selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) return ossl_rsa_dup(keydata_from, selection); return NULL; } /* For any RSA key, we use the "RSA" algorithms regardless of sub-type. */ static const char *rsa_query_operation_name(int operation_id) { return "RSA"; } const OSSL_DISPATCH ossl_rsa_keymgmt_functions[] = { { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))rsa_newdata }, { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))rsa_gen_init }, { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))rsa_gen_set_params }, { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, (void (*)(void))rsa_gen_settable_params }, { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))rsa_gen }, { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))rsa_gen_cleanup }, { OSSL_FUNC_KEYMGMT_LOAD, (void (*)(void))rsa_load }, { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))rsa_freedata }, { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))rsa_get_params }, { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))rsa_gettable_params }, { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))rsa_has }, { OSSL_FUNC_KEYMGMT_MATCH, (void (*)(void))rsa_match }, { OSSL_FUNC_KEYMGMT_VALIDATE, (void (*)(void))rsa_validate }, { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))rsa_import }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))rsa_import_types }, { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))rsa_export }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))rsa_export_types }, { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))rsa_dup }, OSSL_DISPATCH_END }; const OSSL_DISPATCH ossl_rsapss_keymgmt_functions[] = { { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))rsapss_newdata }, { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))rsapss_gen_init }, { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))rsa_gen_set_params }, { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, (void (*)(void))rsapss_gen_settable_params }, { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))rsa_gen }, { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))rsa_gen_cleanup }, { OSSL_FUNC_KEYMGMT_LOAD, (void (*)(void))rsapss_load }, { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))rsa_freedata }, { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))rsa_get_params }, { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))rsa_gettable_params }, { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))rsa_has }, { OSSL_FUNC_KEYMGMT_MATCH, (void (*)(void))rsa_match }, { OSSL_FUNC_KEYMGMT_VALIDATE, (void (*)(void))rsa_validate }, { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))rsa_import }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))rsa_import_types }, { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))rsa_export }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))rsa_export_types }, { OSSL_FUNC_KEYMGMT_QUERY_OPERATION_NAME, (void (*)(void))rsa_query_operation_name }, { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))rsa_dup }, OSSL_DISPATCH_END };