=pod =head1 NAME provider-asym_cipher - The asym_cipher library E-E provider functions =head1 SYNOPSIS =for openssl multiple includes #include #include /* * None of these are actual functions, but are displayed like this for * the function signatures for functions that are offered as function * pointers in OSSL_DISPATCH arrays. */ /* Context management */ void *OSSL_FUNC_asym_cipher_newctx(void *provctx); void OSSL_FUNC_asym_cipher_freectx(void *ctx); void *OSSL_FUNC_asym_cipher_dupctx(void *ctx); /* Encryption */ int OSSL_FUNC_asym_cipher_encrypt_init(void *ctx, void *provkey, const OSSL_PARAM params[]); int OSSL_FUNC_asym_cipher_encrypt(void *ctx, unsigned char *out, size_t *outlen, size_t outsize, const unsigned char *in, size_t inlen); /* Decryption */ int OSSL_FUNC_asym_cipher_decrypt_init(void *ctx, void *provkey, const OSSL_PARAM params[]); int OSSL_FUNC_asym_cipher_decrypt(void *ctx, unsigned char *out, size_t *outlen, size_t outsize, const unsigned char *in, size_t inlen); /* Asymmetric Cipher parameters */ int OSSL_FUNC_asym_cipher_get_ctx_params(void *ctx, OSSL_PARAM params[]); const OSSL_PARAM *OSSL_FUNC_asym_cipher_gettable_ctx_params(void *provctx); int OSSL_FUNC_asym_cipher_set_ctx_params(void *ctx, const OSSL_PARAM params[]); const OSSL_PARAM *OSSL_FUNC_asym_cipher_settable_ctx_params(void *provctx); =head1 DESCRIPTION This documentation is primarily aimed at provider authors. See L for further information. The asymmetric cipher (OSSL_OP_ASYM_CIPHER) operation enables providers to implement asymmetric cipher algorithms and make them available to applications via the API functions L, L and other related functions). All "functions" mentioned here are passed as function pointers between F and the provider in L arrays via L arrays that are returned by the provider's provider_query_operation() function (see L). All these "functions" have a corresponding function type definition named B, and a helper function to retrieve the function pointer from an L element named B. For example, the "function" OSSL_FUNC_asym_cipher_newctx() has these: typedef void *(OSSL_FUNC_asym_cipher_newctx_fn)(void *provctx); static ossl_inline OSSL_FUNC_asym_cipher_newctx_fn OSSL_FUNC_asym_cipher_newctx(const OSSL_DISPATCH *opf); L arrays are indexed by numbers that are provided as macros in L, as follows: OSSL_FUNC_asym_cipher_newctx OSSL_FUNC_ASYM_CIPHER_NEWCTX OSSL_FUNC_asym_cipher_freectx OSSL_FUNC_ASYM_CIPHER_FREECTX OSSL_FUNC_asym_cipher_dupctx OSSL_FUNC_ASYM_CIPHER_DUPCTX OSSL_FUNC_asym_cipher_encrypt_init OSSL_FUNC_ASYM_CIPHER_ENCRYPT_INIT OSSL_FUNC_asym_cipher_encrypt OSSL_FUNC_ASYM_CIPHER_ENCRYPT OSSL_FUNC_asym_cipher_decrypt_init OSSL_FUNC_ASYM_CIPHER_DECRYPT_INIT OSSL_FUNC_asym_cipher_decrypt OSSL_FUNC_ASYM_CIPHER_DECRYPT OSSL_FUNC_asym_cipher_get_ctx_params OSSL_FUNC_ASYM_CIPHER_GET_CTX_PARAMS OSSL_FUNC_asym_cipher_gettable_ctx_params OSSL_FUNC_ASYM_CIPHER_GETTABLE_CTX_PARAMS OSSL_FUNC_asym_cipher_set_ctx_params OSSL_FUNC_ASYM_CIPHER_SET_CTX_PARAMS OSSL_FUNC_asym_cipher_settable_ctx_params OSSL_FUNC_ASYM_CIPHER_SETTABLE_CTX_PARAMS An asymmetric cipher algorithm implementation may not implement all of these functions. In order to be a consistent set of functions a provider must implement OSSL_FUNC_asym_cipher_newctx and OSSL_FUNC_asym_cipher_freectx. It must also implement both of OSSL_FUNC_asym_cipher_encrypt_init and OSSL_FUNC_asym_cipher_encrypt, or both of OSSL_FUNC_asym_cipher_decrypt_init and OSSL_FUNC_asym_cipher_decrypt. OSSL_FUNC_asym_cipher_get_ctx_params is optional but if it is present then so must OSSL_FUNC_asym_cipher_gettable_ctx_params. Similarly, OSSL_FUNC_asym_cipher_set_ctx_params is optional but if it is present then so must OSSL_FUNC_asym_cipher_settable_ctx_params. An asymmetric cipher algorithm must also implement some mechanism for generating, loading or importing keys via the key management (OSSL_OP_KEYMGMT) operation. See L for further details. =head2 Context Management Functions OSSL_FUNC_asym_cipher_newctx() should create and return a pointer to a provider side structure for holding context information during an asymmetric cipher operation. A pointer to this context will be passed back in a number of the other asymmetric cipher operation function calls. The parameter I is the provider context generated during provider initialisation (see L). OSSL_FUNC_asym_cipher_freectx() is passed a pointer to the provider side asymmetric cipher context in the I parameter. This function should free any resources associated with that context. OSSL_FUNC_asym_cipher_dupctx() should duplicate the provider side asymmetric cipher context in the I parameter and return the duplicate copy. =head2 Encryption Functions OSSL_FUNC_asym_cipher_encrypt_init() initialises a context for an asymmetric encryption given a provider side asymmetric cipher context in the I parameter, and a pointer to a provider key object in the I parameter. The I, if not NULL, should be set on the context in a manner similar to using OSSL_FUNC_asym_cipher_set_ctx_params(). The key object should have been previously generated, loaded or imported into the provider using the key management (OSSL_OP_KEYMGMT) operation (see L). OSSL_FUNC_asym_cipher_encrypt() performs the actual encryption itself. A previously initialised asymmetric cipher context is passed in the I parameter. The data to be encrypted is pointed to by the I parameter which is I bytes long. Unless I is NULL, the encrypted data should be written to the location pointed to by the I parameter and it should not exceed I bytes in length. The length of the encrypted data should be written to I<*outlen>. If I is NULL then the maximum length of the encrypted data should be written to I<*outlen>. =head2 Decryption Functions OSSL_FUNC_asym_cipher_decrypt_init() initialises a context for an asymmetric decryption given a provider side asymmetric cipher context in the I parameter, and a pointer to a provider key object in the I parameter. The I, if not NULL, should be set on the context in a manner similar to using OSSL_FUNC_asym_cipher_set_ctx_params(). The key object should have been previously generated, loaded or imported into the provider using the key management (OSSL_OP_KEYMGMT) operation (see L). OSSL_FUNC_asym_cipher_decrypt() performs the actual decryption itself. A previously initialised asymmetric cipher context is passed in the I parameter. The data to be decrypted is pointed to by the I parameter which is I bytes long. Unless I is NULL, the decrypted data should be written to the location pointed to by the I parameter and it should not exceed I bytes in length. The length of the decrypted data should be written to I<*outlen>. If I is NULL then the maximum length of the decrypted data should be written to I<*outlen>. =head2 Asymmetric Cipher Parameters See L for further details on the parameters structure used by the OSSL_FUNC_asym_cipher_get_ctx_params() and OSSL_FUNC_asym_cipher_set_ctx_params() functions. OSSL_FUNC_asym_cipher_get_ctx_params() gets asymmetric cipher parameters associated with the given provider side asymmetric cipher context I and stores them in I. Passing NULL for I should return true. OSSL_FUNC_asym_cipher_set_ctx_params() sets the asymmetric cipher parameters associated with the given provider side asymmetric cipher context I to I. Any parameter settings are additional to any that were previously set. Passing NULL for I should return true. Parameters currently recognised by built-in asymmetric cipher algorithms are as follows. Not all parameters are relevant to, or are understood by all asymmetric cipher algorithms: =over 4 =item "pad-mode" (B) OR The type of padding to be used. The interpretation of this value will depend on the algorithm in use. =item "digest" (B) Gets or sets the name of the OAEP digest algorithm used when OAEP padding is in use. =item "digest" (B) Gets or sets the name of the digest algorithm used by the algorithm (where applicable). =item "digest-props" (B) Gets or sets the properties to use when fetching the OAEP digest algorithm. =item "digest-props" (B) Gets or sets the properties to use when fetching the cipher digest algorithm. =item "mgf1-digest" (B) Gets or sets the name of the MGF1 digest algorithm used when OAEP or PSS padding is in use. =item "mgf1-digest-props" (B) Gets or sets the properties to use when fetching the MGF1 digest algorithm. =item "oaep-label" (B) Gets the OAEP label used when OAEP padding is in use. =item "oaep-label" (B) Sets the OAEP label used when OAEP padding is in use. =item "tls-client-version" (B) The TLS protocol version first requested by the client. =item "tls-negotiated-version" (B) The negotiated TLS protocol version. =item "implicit-rejection" (B) Gets of sets the use of the implicit rejection mechanism for RSA PKCS#1 v1.5 decryption. When set (non zero value), the decryption API will return a deterministically random value if the PKCS#1 v1.5 padding check fails. This makes exploitation of the Bleichenbacher significantly harder, even if the code using the RSA decryption API is not implemented in side-channel free manner. Set by default. Requires provider support. =back The OpenSSL FIPS provider also supports the following parameters: =over 4 =item "fips-indicator" (B) A getter that returns 1 if the operation is FIPS approved, or 0 otherwise. This may be used after calling either OSSL_FUNC_asym_cipher_encrypt() or OSSL_FUNC_asym_cipher_decrypt(). It may return 0 if "key-check" is set to 0. =item "key-check" (B) If required this parameter should be set using either OSSL_FUNC_asym_cipher_encrypt_init() or OSSL_FUNC_asym_cipher_decrypt_init(). The default value of 1 causes an error during the init if the key is not FIPS approved (e.g. The key has a security strength of less than 112 bits). Setting this to 0 will ignore the error and set the approved "fips-indicator" to 0. This option breaks FIPS compliance if it causes the approved "fips-indicator" to return 0. =back OSSL_FUNC_asym_cipher_gettable_ctx_params() and OSSL_FUNC_asym_cipher_settable_ctx_params() get a constant L array that describes the gettable and settable parameters, i.e. parameters that can be used with OSSL_FUNC_asym_cipherget_ctx_params() and OSSL_FUNC_asym_cipher_set_ctx_params() respectively. =head1 RETURN VALUES OSSL_FUNC_asym_cipher_newctx() and OSSL_FUNC_asym_cipher_dupctx() should return the newly created provider side asymmetric cipher context, or NULL on failure. All other functions should return 1 for success or 0 on error. =head1 SEE ALSO L =head1 HISTORY The provider ASYM_CIPHER interface was introduced in OpenSSL 3.0. The Asymmetric Cipher Parameters "fips-indicator" and "key-check" were added in OpenSSL 3.4. =head1 COPYRIGHT Copyright 2019-2024 The OpenSSL Project Authors. All Rights Reserved. Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut