/* +----------------------------------------------------------------------+ | Zend Engine | +----------------------------------------------------------------------+ | Copyright (c) Zend Technologies Ltd. (http://www.zend.com) | +----------------------------------------------------------------------+ | This source file is subject to version 2.00 of the Zend license, | | that is bundled with this package in the file LICENSE, and is | | available through the world-wide-web at the following url: | | http://www.zend.com/license/2_00.txt. | | If you did not receive a copy of the Zend license and are unable to | | obtain it through the world-wide-web, please send a note to | | license@zend.com so we can mail you a copy immediately. | +----------------------------------------------------------------------+ | Authors: David Wang | | Dmitry Stogov | +----------------------------------------------------------------------+ */ /** * zend_gc_collect_cycles * ====================== * * Colors and its meaning * ---------------------- * * BLACK (GC_BLACK) - In use or free. * GREY (GC_GREY) - Possible member of cycle. * WHITE (GC_WHITE) - Member of garbage cycle. * PURPLE (GC_PURPLE) - Possible root of cycle. * * Colors described in the paper but not used * ------------------------------------------ * * GREEN - Acyclic * RED - Candidate cycle undergoing * ORANGE - Candidate cycle awaiting epoch boundary. * * * Flow * ===== * * The garbage collect cycle starts from 'gc_mark_roots', which traverses the * possible roots, and calls mark_grey for roots are marked purple with * depth-first traverse. * * After all possible roots are traversed and marked, * gc_scan_roots will be called, and each root will be called with * gc_scan(root->ref) * * gc_scan checks the colors of possible members. * * If the node is marked as grey and the refcount > 0 * gc_scan_black will be called on that node to scan it's subgraph. * otherwise (refcount == 0), it marks the node white. * * A node MAY be added to possible roots when ZEND_UNSET_VAR happens or * zend_assign_to_variable is called only when possible garbage node is * produced. * gc_possible_root() will be called to add the nodes to possible roots. * * * For objects, we call their get_gc handler (by default 'zend_std_get_gc') to * get the object properties to scan. * * * @see http://researcher.watson.ibm.com/researcher/files/us-bacon/Bacon01Concurrent.pdf */ #include "zend.h" #include "zend_API.h" #include "zend_compile.h" #include "zend_errors.h" #include "zend_fibers.h" #include "zend_hrtime.h" #include "zend_portability.h" #include "zend_types.h" #include "zend_weakrefs.h" #include "zend_string.h" #ifndef GC_BENCH # define GC_BENCH 0 #endif #ifndef ZEND_GC_DEBUG # define ZEND_GC_DEBUG 0 #endif /* GC_INFO layout */ #define GC_ADDRESS 0x0fffffu #define GC_COLOR 0x300000u #define GC_BLACK 0x000000u /* must be zero */ #define GC_WHITE 0x100000u #define GC_GREY 0x200000u #define GC_PURPLE 0x300000u /* Debug tracing */ #if ZEND_GC_DEBUG > 1 # define GC_TRACE(format, ...) fprintf(stderr, format "\n", ##__VA_ARGS__); # define GC_TRACE_REF(ref, format, ...) \ do { \ gc_trace_ref((zend_refcounted *) ref); \ fprintf(stderr, format "\n", ##__VA_ARGS__); \ } while (0) # define GC_TRACE_SET_COLOR(ref, color) \ GC_TRACE_REF(ref, "->%s", gc_color_name(color)) #else # define GC_TRACE_REF(ref, format, ...) # define GC_TRACE_SET_COLOR(ref, new_color) # define GC_TRACE(str) #endif /* GC_INFO access */ #define GC_REF_ADDRESS(ref) \ (((GC_TYPE_INFO(ref)) & (GC_ADDRESS << GC_INFO_SHIFT)) >> GC_INFO_SHIFT) #define GC_REF_COLOR(ref) \ (((GC_TYPE_INFO(ref)) & (GC_COLOR << GC_INFO_SHIFT)) >> GC_INFO_SHIFT) #define GC_REF_CHECK_COLOR(ref, color) \ ((GC_TYPE_INFO(ref) & (GC_COLOR << GC_INFO_SHIFT)) == ((color) << GC_INFO_SHIFT)) #define GC_REF_SET_INFO(ref, info) do { \ GC_TYPE_INFO(ref) = \ (GC_TYPE_INFO(ref) & (GC_TYPE_MASK | GC_FLAGS_MASK)) | \ ((info) << GC_INFO_SHIFT); \ } while (0) #define GC_REF_SET_COLOR(ref, c) do { \ GC_TRACE_SET_COLOR(ref, c); \ GC_TYPE_INFO(ref) = \ (GC_TYPE_INFO(ref) & ~(GC_COLOR << GC_INFO_SHIFT)) | \ ((c) << GC_INFO_SHIFT); \ } while (0) #define GC_REF_SET_BLACK(ref) do { \ GC_TRACE_SET_COLOR(ref, GC_BLACK); \ GC_TYPE_INFO(ref) &= ~(GC_COLOR << GC_INFO_SHIFT); \ } while (0) #define GC_REF_SET_PURPLE(ref) do { \ GC_TRACE_SET_COLOR(ref, GC_PURPLE); \ GC_TYPE_INFO(ref) |= (GC_COLOR << GC_INFO_SHIFT); \ } while (0) /* bit stealing tags for gc_root_buffer.ref */ #define GC_BITS 0x3 #define GC_ROOT 0x0 /* possible root of circular garbage */ #define GC_UNUSED 0x1 /* part of linked list of unused buffers */ #define GC_GARBAGE 0x2 /* garbage to delete */ #define GC_DTOR_GARBAGE 0x3 /* garbage on which only the dtor should be invoked */ #define GC_GET_PTR(ptr) \ ((void*)(((uintptr_t)(ptr)) & ~GC_BITS)) #define GC_IS_ROOT(ptr) \ ((((uintptr_t)(ptr)) & GC_BITS) == GC_ROOT) #define GC_IS_UNUSED(ptr) \ ((((uintptr_t)(ptr)) & GC_BITS) == GC_UNUSED) #define GC_IS_GARBAGE(ptr) \ ((((uintptr_t)(ptr)) & GC_BITS) == GC_GARBAGE) #define GC_IS_DTOR_GARBAGE(ptr) \ ((((uintptr_t)(ptr)) & GC_BITS) == GC_DTOR_GARBAGE) #define GC_MAKE_GARBAGE(ptr) \ ((void*)(((uintptr_t)(ptr)) | GC_GARBAGE)) #define GC_MAKE_DTOR_GARBAGE(ptr) \ ((void*)(((uintptr_t)(ptr)) | GC_DTOR_GARBAGE)) /* GC address conversion */ #define GC_IDX2PTR(idx) (GC_G(buf) + (idx)) #define GC_PTR2IDX(ptr) ((ptr) - GC_G(buf)) #define GC_IDX2LIST(idx) ((void*)(uintptr_t)(((idx) * sizeof(void*)) | GC_UNUSED)) #define GC_LIST2IDX(list) (((uint32_t)(uintptr_t)(list)) / sizeof(void*)) /* GC buffers */ #define GC_INVALID 0 #define GC_FIRST_ROOT 1 #define GC_DEFAULT_BUF_SIZE (16 * 1024) #define GC_BUF_GROW_STEP (128 * 1024) #define GC_MAX_UNCOMPRESSED (512 * 1024) #define GC_MAX_BUF_SIZE 0x40000000 #define GC_THRESHOLD_DEFAULT (10000 + GC_FIRST_ROOT) #define GC_THRESHOLD_STEP 10000 #define GC_THRESHOLD_MAX 1000000000 #define GC_THRESHOLD_TRIGGER 100 /* GC flags */ #define GC_HAS_DESTRUCTORS (1<<0) /* Weak maps */ #define Z_FROM_WEAKMAP_KEY (1<<0) #define Z_FROM_WEAKMAP (1<<1) /* The WeakMap entry zv is reachable from roots by following the virtual * reference from the a WeakMap key to the entry */ #define GC_FROM_WEAKMAP_KEY(zv) \ (Z_TYPE_INFO_P((zv)) & (Z_FROM_WEAKMAP_KEY << Z_TYPE_INFO_EXTRA_SHIFT)) #define GC_SET_FROM_WEAKMAP_KEY(zv) do { \ zval *_z = (zv); \ Z_TYPE_INFO_P(_z) = Z_TYPE_INFO_P(_z) | (Z_FROM_WEAKMAP_KEY << Z_TYPE_INFO_EXTRA_SHIFT); \ } while (0) #define GC_UNSET_FROM_WEAKMAP_KEY(zv) do { \ zval *_z = (zv); \ Z_TYPE_INFO_P(_z) = Z_TYPE_INFO_P(_z) & ~(Z_FROM_WEAKMAP_KEY << Z_TYPE_INFO_EXTRA_SHIFT); \ } while (0) /* The WeakMap entry zv is reachable from roots by following the reference from * the WeakMap */ #define GC_FROM_WEAKMAP(zv) \ (Z_TYPE_INFO_P((zv)) & (Z_FROM_WEAKMAP << Z_TYPE_INFO_EXTRA_SHIFT)) #define GC_SET_FROM_WEAKMAP(zv) do { \ zval *_z = (zv); \ Z_TYPE_INFO_P(_z) = Z_TYPE_INFO_P(_z) | (Z_FROM_WEAKMAP << Z_TYPE_INFO_EXTRA_SHIFT); \ } while (0) #define GC_UNSET_FROM_WEAKMAP(zv) do { \ zval *_z = (zv); \ Z_TYPE_INFO_P(_z) = Z_TYPE_INFO_P(_z) & ~(Z_FROM_WEAKMAP << Z_TYPE_INFO_EXTRA_SHIFT); \ } while (0) /* unused buffers */ #define GC_HAS_UNUSED() \ (GC_G(unused) != GC_INVALID) #define GC_FETCH_UNUSED() \ gc_fetch_unused() #define GC_LINK_UNUSED(root) \ gc_link_unused(root) #define GC_HAS_NEXT_UNUSED_UNDER_THRESHOLD() \ (GC_G(first_unused) < GC_G(gc_threshold)) #define GC_HAS_NEXT_UNUSED() \ (GC_G(first_unused) != GC_G(buf_size)) #define GC_FETCH_NEXT_UNUSED() \ gc_fetch_next_unused() ZEND_API int (*gc_collect_cycles)(void); typedef struct _gc_root_buffer { zend_refcounted *ref; } gc_root_buffer; typedef struct _zend_gc_globals { gc_root_buffer *buf; /* preallocated arrays of buffers */ bool gc_enabled; bool gc_active; /* GC currently running, forbid nested GC */ bool gc_protected; /* GC protected, forbid root additions */ bool gc_full; uint32_t unused; /* linked list of unused buffers */ uint32_t first_unused; /* first unused buffer */ uint32_t gc_threshold; /* GC collection threshold */ uint32_t buf_size; /* size of the GC buffer */ uint32_t num_roots; /* number of roots in GC buffer */ uint32_t gc_runs; uint32_t collected; zend_hrtime_t activated_at; zend_hrtime_t collector_time; zend_hrtime_t dtor_time; zend_hrtime_t free_time; uint32_t dtor_idx; /* root buffer index */ uint32_t dtor_end; zend_fiber *dtor_fiber; bool dtor_fiber_running; #if GC_BENCH uint32_t root_buf_length; uint32_t root_buf_peak; uint32_t zval_possible_root; uint32_t zval_buffered; uint32_t zval_remove_from_buffer; uint32_t zval_marked_grey; #endif } zend_gc_globals; #ifdef ZTS static int gc_globals_id; static size_t gc_globals_offset; #define GC_G(v) ZEND_TSRMG_FAST(gc_globals_offset, zend_gc_globals *, v) #else #define GC_G(v) (gc_globals.v) static zend_gc_globals gc_globals; #endif #if GC_BENCH # define GC_BENCH_INC(counter) GC_G(counter)++ # define GC_BENCH_DEC(counter) GC_G(counter)-- # define GC_BENCH_PEAK(peak, counter) do { \ if (GC_G(counter) > GC_G(peak)) { \ GC_G(peak) = GC_G(counter); \ } \ } while (0) #else # define GC_BENCH_INC(counter) # define GC_BENCH_DEC(counter) # define GC_BENCH_PEAK(peak, counter) #endif #define GC_STACK_SEGMENT_SIZE (((4096 - ZEND_MM_OVERHEAD) / sizeof(void*)) - 2) typedef struct _gc_stack gc_stack; struct _gc_stack { gc_stack *prev; gc_stack *next; zend_refcounted *data[GC_STACK_SEGMENT_SIZE]; }; #define GC_STACK_DCL(init) \ gc_stack *_stack = init; \ size_t _top = 0; #define GC_STACK_PUSH(ref) \ gc_stack_push(&_stack, &_top, ref); #define GC_STACK_POP() \ gc_stack_pop(&_stack, &_top) static zend_never_inline gc_stack* gc_stack_next(gc_stack *stack) { if (UNEXPECTED(!stack->next)) { gc_stack *segment = emalloc(sizeof(gc_stack)); segment->prev = stack; segment->next = NULL; stack->next = segment; } return stack->next; } static zend_always_inline void gc_stack_push(gc_stack **stack, size_t *top, zend_refcounted *ref) { if (UNEXPECTED(*top == GC_STACK_SEGMENT_SIZE)) { (*stack) = gc_stack_next(*stack); (*top) = 0; } (*stack)->data[(*top)++] = ref; } static zend_always_inline zend_refcounted* gc_stack_pop(gc_stack **stack, size_t *top) { if (UNEXPECTED((*top) == 0)) { if (!(*stack)->prev) { return NULL; } else { (*stack) = (*stack)->prev; (*top) = GC_STACK_SEGMENT_SIZE - 1; return (*stack)->data[GC_STACK_SEGMENT_SIZE - 1]; } } else { return (*stack)->data[--(*top)]; } } static void gc_stack_free(gc_stack *stack) { gc_stack *p = stack->next; while (p) { stack = p->next; efree(p); p = stack; } } static zend_always_inline uint32_t gc_compress(uint32_t idx) { if (EXPECTED(idx < GC_MAX_UNCOMPRESSED)) { return idx; } return (idx % GC_MAX_UNCOMPRESSED) | GC_MAX_UNCOMPRESSED; } static zend_always_inline gc_root_buffer* gc_decompress(zend_refcounted *ref, uint32_t idx) { gc_root_buffer *root = GC_IDX2PTR(idx); if (EXPECTED(GC_GET_PTR(root->ref) == ref)) { return root; } while (1) { idx += GC_MAX_UNCOMPRESSED; ZEND_ASSERT(idx < GC_G(first_unused)); root = GC_IDX2PTR(idx); if (GC_GET_PTR(root->ref) == ref) { return root; } } } static zend_always_inline uint32_t gc_fetch_unused(void) { uint32_t idx; gc_root_buffer *root; ZEND_ASSERT(GC_HAS_UNUSED()); idx = GC_G(unused); root = GC_IDX2PTR(idx); ZEND_ASSERT(GC_IS_UNUSED(root->ref)); GC_G(unused) = GC_LIST2IDX(root->ref); return idx; } static zend_always_inline void gc_link_unused(gc_root_buffer *root) { root->ref = GC_IDX2LIST(GC_G(unused)); GC_G(unused) = GC_PTR2IDX(root); } static zend_always_inline uint32_t gc_fetch_next_unused(void) { uint32_t idx; ZEND_ASSERT(GC_HAS_NEXT_UNUSED()); idx = GC_G(first_unused); GC_G(first_unused) = GC_G(first_unused) + 1; return idx; } #if ZEND_GC_DEBUG > 1 static const char *gc_color_name(uint32_t color) { switch (color) { case GC_BLACK: return "black"; case GC_WHITE: return "white"; case GC_GREY: return "grey"; case GC_PURPLE: return "purple"; default: return "unknown"; } } static void gc_trace_ref(zend_refcounted *ref) { if (GC_TYPE(ref) == IS_OBJECT) { zend_object *obj = (zend_object *) ref; fprintf(stderr, "[%p] rc=%d addr=%d %s object(%s)#%d ", ref, GC_REFCOUNT(ref), GC_REF_ADDRESS(ref), gc_color_name(GC_REF_COLOR(ref)), obj->ce->name->val, obj->handle); } else if (GC_TYPE(ref) == IS_ARRAY) { zend_array *arr = (zend_array *) ref; fprintf(stderr, "[%p] rc=%d addr=%d %s array(%d) ", ref, GC_REFCOUNT(ref), GC_REF_ADDRESS(ref), gc_color_name(GC_REF_COLOR(ref)), zend_hash_num_elements(arr)); } else { fprintf(stderr, "[%p] rc=%d addr=%d %s %s ", ref, GC_REFCOUNT(ref), GC_REF_ADDRESS(ref), gc_color_name(GC_REF_COLOR(ref)), GC_TYPE(ref) == IS_REFERENCE ? "reference" : zend_get_type_by_const(GC_TYPE(ref))); } } #endif static zend_always_inline void gc_remove_from_roots(gc_root_buffer *root) { GC_LINK_UNUSED(root); GC_G(num_roots)--; GC_BENCH_DEC(root_buf_length); } static void root_buffer_dtor(zend_gc_globals *gc_globals) { if (gc_globals->buf) { free(gc_globals->buf); gc_globals->buf = NULL; } } static void gc_globals_ctor_ex(zend_gc_globals *gc_globals) { gc_globals->gc_enabled = 0; gc_globals->gc_active = 0; gc_globals->gc_protected = 1; gc_globals->gc_full = 0; gc_globals->buf = NULL; gc_globals->unused = GC_INVALID; gc_globals->first_unused = GC_INVALID; gc_globals->gc_threshold = GC_INVALID; gc_globals->buf_size = GC_INVALID; gc_globals->num_roots = 0; gc_globals->gc_runs = 0; gc_globals->collected = 0; gc_globals->collector_time = 0; gc_globals->dtor_time = 0; gc_globals->free_time = 0; gc_globals->activated_at = 0; gc_globals->dtor_idx = GC_FIRST_ROOT; gc_globals->dtor_end = 0; gc_globals->dtor_fiber = NULL; gc_globals->dtor_fiber_running = false; #if GC_BENCH gc_globals->root_buf_length = 0; gc_globals->root_buf_peak = 0; gc_globals->zval_possible_root = 0; gc_globals->zval_buffered = 0; gc_globals->zval_remove_from_buffer = 0; gc_globals->zval_marked_grey = 0; #endif } void gc_globals_ctor(void) { #ifdef ZTS ts_allocate_fast_id(&gc_globals_id, &gc_globals_offset, sizeof(zend_gc_globals), (ts_allocate_ctor) gc_globals_ctor_ex, (ts_allocate_dtor) root_buffer_dtor); #else gc_globals_ctor_ex(&gc_globals); #endif } void gc_globals_dtor(void) { #ifndef ZTS root_buffer_dtor(&gc_globals); #endif } void gc_reset(void) { if (GC_G(buf)) { GC_G(gc_active) = 0; GC_G(gc_protected) = 0; GC_G(gc_full) = 0; GC_G(unused) = GC_INVALID; GC_G(first_unused) = GC_FIRST_ROOT; GC_G(num_roots) = 0; GC_G(gc_runs) = 0; GC_G(collected) = 0; GC_G(collector_time) = 0; GC_G(dtor_time) = 0; GC_G(free_time) = 0; GC_G(dtor_idx) = GC_FIRST_ROOT; GC_G(dtor_end) = 0; GC_G(dtor_fiber) = NULL; GC_G(dtor_fiber_running) = false; #if GC_BENCH GC_G(root_buf_length) = 0; GC_G(root_buf_peak) = 0; GC_G(zval_possible_root) = 0; GC_G(zval_buffered) = 0; GC_G(zval_remove_from_buffer) = 0; GC_G(zval_marked_grey) = 0; #endif } GC_G(activated_at) = zend_hrtime(); } ZEND_API bool gc_enable(bool enable) { bool old_enabled = GC_G(gc_enabled); GC_G(gc_enabled) = enable; if (enable && !old_enabled && GC_G(buf) == NULL) { GC_G(buf) = (gc_root_buffer*) pemalloc(sizeof(gc_root_buffer) * GC_DEFAULT_BUF_SIZE, 1); GC_G(buf)[0].ref = NULL; GC_G(buf_size) = GC_DEFAULT_BUF_SIZE; GC_G(gc_threshold) = GC_THRESHOLD_DEFAULT; gc_reset(); } return old_enabled; } ZEND_API bool gc_enabled(void) { return GC_G(gc_enabled); } ZEND_API bool gc_protect(bool protect) { bool old_protected = GC_G(gc_protected); GC_G(gc_protected) = protect; return old_protected; } ZEND_API bool gc_protected(void) { return GC_G(gc_protected); } static void gc_grow_root_buffer(void) { size_t new_size; if (GC_G(buf_size) >= GC_MAX_BUF_SIZE) { if (!GC_G(gc_full)) { zend_error(E_WARNING, "GC buffer overflow (GC disabled)\n"); GC_G(gc_active) = 1; GC_G(gc_protected) = 1; GC_G(gc_full) = 1; return; } } if (GC_G(buf_size) < GC_BUF_GROW_STEP) { new_size = GC_G(buf_size) * 2; } else { new_size = GC_G(buf_size) + GC_BUF_GROW_STEP; } if (new_size > GC_MAX_BUF_SIZE) { new_size = GC_MAX_BUF_SIZE; } GC_G(buf) = perealloc(GC_G(buf), sizeof(gc_root_buffer) * new_size, 1); GC_G(buf_size) = new_size; } static void gc_adjust_threshold(int count) { uint32_t new_threshold; /* TODO Very simple heuristic for dynamic GC buffer resizing: * If there are "too few" collections, increase the collection threshold * by a fixed step */ if (count < GC_THRESHOLD_TRIGGER || GC_G(num_roots) >= GC_G(gc_threshold)) { /* increase */ if (GC_G(gc_threshold) < GC_THRESHOLD_MAX) { new_threshold = GC_G(gc_threshold) + GC_THRESHOLD_STEP; if (new_threshold > GC_THRESHOLD_MAX) { new_threshold = GC_THRESHOLD_MAX; } if (new_threshold > GC_G(buf_size)) { gc_grow_root_buffer(); } if (new_threshold <= GC_G(buf_size)) { GC_G(gc_threshold) = new_threshold; } } } else if (GC_G(gc_threshold) > GC_THRESHOLD_DEFAULT) { new_threshold = GC_G(gc_threshold) - GC_THRESHOLD_STEP; if (new_threshold < GC_THRESHOLD_DEFAULT) { new_threshold = GC_THRESHOLD_DEFAULT; } GC_G(gc_threshold) = new_threshold; } } static zend_never_inline void ZEND_FASTCALL gc_possible_root_when_full(zend_refcounted *ref) { uint32_t idx; gc_root_buffer *newRoot; ZEND_ASSERT(GC_TYPE(ref) == IS_ARRAY || GC_TYPE(ref) == IS_OBJECT); ZEND_ASSERT(GC_INFO(ref) == 0); if (GC_G(gc_enabled) && !GC_G(gc_active)) { GC_ADDREF(ref); gc_adjust_threshold(gc_collect_cycles()); if (UNEXPECTED(GC_DELREF(ref) == 0)) { rc_dtor_func(ref); return; } else if (UNEXPECTED(GC_INFO(ref))) { return; } } if (GC_HAS_UNUSED()) { idx = GC_FETCH_UNUSED(); } else if (EXPECTED(GC_HAS_NEXT_UNUSED())) { idx = GC_FETCH_NEXT_UNUSED(); } else { gc_grow_root_buffer(); if (UNEXPECTED(!GC_HAS_NEXT_UNUSED())) { return; } idx = GC_FETCH_NEXT_UNUSED(); } newRoot = GC_IDX2PTR(idx); newRoot->ref = ref; /* GC_ROOT tag is 0 */ GC_TRACE_SET_COLOR(ref, GC_PURPLE); idx = gc_compress(idx); GC_REF_SET_INFO(ref, idx | GC_PURPLE); GC_G(num_roots)++; GC_BENCH_INC(zval_buffered); GC_BENCH_INC(root_buf_length); GC_BENCH_PEAK(root_buf_peak, root_buf_length); } ZEND_API void ZEND_FASTCALL gc_possible_root(zend_refcounted *ref) { uint32_t idx; gc_root_buffer *newRoot; if (UNEXPECTED(GC_G(gc_protected))) { return; } GC_BENCH_INC(zval_possible_root); if (EXPECTED(GC_HAS_UNUSED())) { idx = GC_FETCH_UNUSED(); } else if (EXPECTED(GC_HAS_NEXT_UNUSED_UNDER_THRESHOLD())) { idx = GC_FETCH_NEXT_UNUSED(); } else { gc_possible_root_when_full(ref); return; } ZEND_ASSERT(GC_TYPE(ref) == IS_ARRAY || GC_TYPE(ref) == IS_OBJECT); ZEND_ASSERT(GC_INFO(ref) == 0); newRoot = GC_IDX2PTR(idx); newRoot->ref = ref; /* GC_ROOT tag is 0 */ GC_TRACE_SET_COLOR(ref, GC_PURPLE); idx = gc_compress(idx); GC_REF_SET_INFO(ref, idx | GC_PURPLE); GC_G(num_roots)++; GC_BENCH_INC(zval_buffered); GC_BENCH_INC(root_buf_length); GC_BENCH_PEAK(root_buf_peak, root_buf_length); } static void ZEND_FASTCALL gc_extra_root(zend_refcounted *ref) { uint32_t idx; gc_root_buffer *newRoot; if (EXPECTED(GC_HAS_UNUSED())) { idx = GC_FETCH_UNUSED(); } else if (EXPECTED(GC_HAS_NEXT_UNUSED())) { idx = GC_FETCH_NEXT_UNUSED(); } else { gc_grow_root_buffer(); if (UNEXPECTED(!GC_HAS_NEXT_UNUSED())) { /* TODO: can this really happen? */ return; } idx = GC_FETCH_NEXT_UNUSED(); } ZEND_ASSERT(GC_TYPE(ref) == IS_ARRAY || GC_TYPE(ref) == IS_OBJECT); ZEND_ASSERT(GC_REF_ADDRESS(ref) == 0); newRoot = GC_IDX2PTR(idx); newRoot->ref = ref; /* GC_ROOT tag is 0 */ idx = gc_compress(idx); GC_REF_SET_INFO(ref, idx | GC_REF_COLOR(ref)); GC_G(num_roots)++; GC_BENCH_INC(zval_buffered); GC_BENCH_INC(root_buf_length); GC_BENCH_PEAK(root_buf_peak, root_buf_length); } static zend_never_inline void ZEND_FASTCALL gc_remove_compressed(zend_refcounted *ref, uint32_t idx) { gc_root_buffer *root = gc_decompress(ref, idx); gc_remove_from_roots(root); } ZEND_API void ZEND_FASTCALL gc_remove_from_buffer(zend_refcounted *ref) { gc_root_buffer *root; uint32_t idx = GC_REF_ADDRESS(ref); GC_BENCH_INC(zval_remove_from_buffer); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_TRACE_SET_COLOR(ref, GC_BLACK); } GC_REF_SET_INFO(ref, 0); /* Perform decompression only in case of large buffers */ if (UNEXPECTED(GC_G(first_unused) >= GC_MAX_UNCOMPRESSED)) { gc_remove_compressed(ref, idx); return; } ZEND_ASSERT(idx); root = GC_IDX2PTR(idx); gc_remove_from_roots(root); } static void gc_scan_black(zend_refcounted *ref, gc_stack *stack) { HashTable *ht; Bucket *p; zval *zv; uint32_t n; GC_STACK_DCL(stack); tail_call: if (GC_TYPE(ref) == IS_OBJECT) { zend_object *obj = (zend_object*)ref; if (EXPECTED(!(OBJ_FLAGS(ref) & IS_OBJ_FREE_CALLED))) { zval *table; int len; if (UNEXPECTED(GC_FLAGS(obj) & IS_OBJ_WEAKLY_REFERENCED)) { zend_weakmap_get_object_key_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n-=2) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); zval *weakmap = zv+1; ZEND_ASSERT(Z_REFCOUNTED_P(weakmap)); if (Z_OPT_REFCOUNTED_P(entry)) { GC_UNSET_FROM_WEAKMAP_KEY(entry); if (GC_REF_CHECK_COLOR(Z_COUNTED_P(weakmap), GC_GREY)) { /* Weakmap was scanned in gc_mark_roots, we must * ensure that it's eventually scanned in * gc_scan_roots as well. */ if (!GC_REF_ADDRESS(Z_COUNTED_P(weakmap))) { gc_extra_root(Z_COUNTED_P(weakmap)); } } else if (/* GC_REF_CHECK_COLOR(Z_COUNTED_P(weakmap), GC_BLACK) && */ !GC_FROM_WEAKMAP(entry)) { /* Both the entry weakmap and key are BLACK, so we * can mark the entry BLACK as well. * !GC_FROM_WEAKMAP(entry) means that the weakmap * was already scanned black (or will not be * scanned), so it's our responsibility to mark the * entry */ ZEND_ASSERT(GC_REF_CHECK_COLOR(Z_COUNTED_P(weakmap), GC_BLACK)); ref = Z_COUNTED_P(entry); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } } zv+=2; } } if (UNEXPECTED(obj->handlers->get_gc == zend_weakmap_get_gc)) { zend_weakmap_get_key_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n-=2) { ZEND_ASSERT(Z_TYPE_P(zv+1) == IS_PTR); zval *key = zv; zval *entry = (zval*) Z_PTR_P(zv+1); if (Z_OPT_REFCOUNTED_P(entry)) { GC_UNSET_FROM_WEAKMAP(entry); if (GC_REF_CHECK_COLOR(Z_COUNTED_P(key), GC_GREY)) { /* Key was scanned in gc_mark_roots, we must * ensure that it's eventually scanned in * gc_scan_roots as well. */ if (!GC_REF_ADDRESS(Z_COUNTED_P(key))) { gc_extra_root(Z_COUNTED_P(key)); } } else if (/* GC_REF_CHECK_COLOR(Z_COUNTED_P(key), GC_BLACK) && */ !GC_FROM_WEAKMAP_KEY(entry)) { /* Both the entry weakmap and key are BLACK, so we * can mark the entry BLACK as well. * !GC_FROM_WEAKMAP_KEY(entry) means that the key * was already scanned black (or will not be * scanned), so it's our responsibility to mark the * entry */ ZEND_ASSERT(GC_REF_CHECK_COLOR(Z_COUNTED_P(key), GC_BLACK)); ref = Z_COUNTED_P(entry); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } } zv += 2; } goto next; } ht = obj->handlers->get_gc(obj, &table, &len); n = len; zv = table; if (UNEXPECTED(ht)) { GC_ADDREF(ht); if (!GC_REF_CHECK_COLOR(ht, GC_BLACK)) { GC_REF_SET_BLACK(ht); for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } zv++; } goto handle_ht; } } handle_zvals: for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); zv++; while (--n) { if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } zv++; } goto tail_call; } } zv++; } } } else if (GC_TYPE(ref) == IS_ARRAY) { ZEND_ASSERT((zend_array*)ref != &EG(symbol_table)); ht = (zend_array*)ref; handle_ht: n = ht->nNumUsed; zv = ht->arPacked; if (HT_IS_PACKED(ht)) { goto handle_zvals; } p = (Bucket*)zv; for (; n != 0; n--) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); p++; while (--n) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } p++; } goto tail_call; } } p++; } } else if (GC_TYPE(ref) == IS_REFERENCE) { if (Z_REFCOUNTED(((zend_reference*)ref)->val)) { ref = Z_COUNTED(((zend_reference*)ref)->val); GC_ADDREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); goto tail_call; } } } next: ref = GC_STACK_POP(); if (ref) { goto tail_call; } } static void gc_mark_grey(zend_refcounted *ref, gc_stack *stack) { HashTable *ht; Bucket *p; zval *zv; uint32_t n; GC_STACK_DCL(stack); tail_call: GC_BENCH_INC(zval_marked_grey); if (GC_TYPE(ref) == IS_OBJECT) { zend_object *obj = (zend_object*)ref; if (EXPECTED(!(OBJ_FLAGS(ref) & IS_OBJ_FREE_CALLED))) { zval *table; int len; if (UNEXPECTED(GC_FLAGS(obj) & IS_OBJ_WEAKLY_REFERENCED)) { zend_weakmap_get_object_key_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n-=2) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); zval *weakmap = zv+1; ZEND_ASSERT(Z_REFCOUNTED_P(weakmap)); if (Z_REFCOUNTED_P(entry)) { GC_SET_FROM_WEAKMAP_KEY(entry); ref = Z_COUNTED_P(entry); /* Only DELREF if the contribution from the weakmap has * not been cancelled yet */ if (!GC_FROM_WEAKMAP(entry)) { GC_DELREF(ref); } if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); GC_STACK_PUSH(ref); } } zv+=2; } } if (UNEXPECTED(obj->handlers->get_gc == zend_weakmap_get_gc)) { zend_weakmap_get_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n--) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); if (Z_REFCOUNTED_P(entry)) { GC_SET_FROM_WEAKMAP(entry); ref = Z_COUNTED_P(entry); /* Only DELREF if the contribution from the weakmap key * has not been cancelled yet */ if (!GC_FROM_WEAKMAP_KEY(entry)) { GC_DELREF(ref); } if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); GC_STACK_PUSH(ref); } } zv++; } goto next; } ht = obj->handlers->get_gc(obj, &table, &len); n = len; zv = table; if (UNEXPECTED(ht)) { GC_DELREF(ht); if (!GC_REF_CHECK_COLOR(ht, GC_GREY)) { GC_REF_SET_COLOR(ht, GC_GREY); for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_DELREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); GC_STACK_PUSH(ref); } } zv++; } goto handle_ht; } } handle_zvals: for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_DELREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); zv++; while (--n) { if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_DELREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); GC_STACK_PUSH(ref); } } zv++; } goto tail_call; } } zv++; } } } else if (GC_TYPE(ref) == IS_ARRAY) { ZEND_ASSERT(((zend_array*)ref) != &EG(symbol_table)); ht = (zend_array*)ref; handle_ht: n = ht->nNumUsed; if (HT_IS_PACKED(ht)) { zv = ht->arPacked; goto handle_zvals; } p = ht->arData; for (; n != 0; n--) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_DELREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); p++; while (--n) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_DELREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); GC_STACK_PUSH(ref); } } p++; } goto tail_call; } } p++; } } else if (GC_TYPE(ref) == IS_REFERENCE) { if (Z_REFCOUNTED(((zend_reference*)ref)->val)) { ref = Z_COUNTED(((zend_reference*)ref)->val); GC_DELREF(ref); if (!GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_GREY); goto tail_call; } } } next: ref = GC_STACK_POP(); if (ref) { goto tail_call; } } /* Two-Finger compaction algorithm */ static void gc_compact(void) { if (GC_G(num_roots) + GC_FIRST_ROOT != GC_G(first_unused)) { if (GC_G(num_roots)) { gc_root_buffer *free = GC_IDX2PTR(GC_FIRST_ROOT); gc_root_buffer *scan = GC_IDX2PTR(GC_G(first_unused) - 1); gc_root_buffer *end = GC_IDX2PTR(GC_G(num_roots)); uint32_t idx; zend_refcounted *p; while (free < scan) { while (!GC_IS_UNUSED(free->ref)) { free++; } while (GC_IS_UNUSED(scan->ref)) { scan--; } if (scan > free) { p = scan->ref; free->ref = p; p = GC_GET_PTR(p); idx = gc_compress(GC_PTR2IDX(free)); GC_REF_SET_INFO(p, idx | GC_REF_COLOR(p)); free++; scan--; if (scan <= end) { break; } } } } GC_G(unused) = GC_INVALID; GC_G(first_unused) = GC_G(num_roots) + GC_FIRST_ROOT; } } static void gc_mark_roots(gc_stack *stack) { gc_root_buffer *current, *last; gc_compact(); current = GC_IDX2PTR(GC_FIRST_ROOT); last = GC_IDX2PTR(GC_G(first_unused)); while (current != last) { if (GC_IS_ROOT(current->ref)) { if (GC_REF_CHECK_COLOR(current->ref, GC_PURPLE)) { GC_REF_SET_COLOR(current->ref, GC_GREY); gc_mark_grey(current->ref, stack); } } current++; } } static void gc_scan(zend_refcounted *ref, gc_stack *stack) { HashTable *ht; Bucket *p; zval *zv; uint32_t n; GC_STACK_DCL(stack); tail_call: if (!GC_REF_CHECK_COLOR(ref, GC_WHITE)) { goto next; } if (GC_REFCOUNT(ref) > 0) { if (!GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_REF_SET_BLACK(ref); if (UNEXPECTED(!_stack->next)) { gc_stack_next(_stack); } /* Split stack and reuse the tail */ _stack->next->prev = NULL; gc_scan_black(ref, _stack->next); _stack->next->prev = _stack; } goto next; } if (GC_TYPE(ref) == IS_OBJECT) { zend_object *obj = (zend_object*)ref; if (EXPECTED(!(OBJ_FLAGS(ref) & IS_OBJ_FREE_CALLED))) { zval *table; int len; if (UNEXPECTED(GC_FLAGS(obj) & IS_OBJ_WEAKLY_REFERENCED)) { zend_weakmap_get_object_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n--) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); if (Z_OPT_REFCOUNTED_P(entry)) { ref = Z_COUNTED_P(entry); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); GC_STACK_PUSH(ref); } } zv++; } } ht = obj->handlers->get_gc(obj, &table, &len); n = len; zv = table; if (UNEXPECTED(ht)) { if (GC_REF_CHECK_COLOR(ht, GC_GREY)) { GC_REF_SET_COLOR(ht, GC_WHITE); GC_STACK_PUSH((zend_refcounted *) ht); for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); GC_STACK_PUSH(ref); } } zv++; } goto handle_ht; } } handle_zvals: for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); zv++; while (--n) { if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); GC_STACK_PUSH(ref); } } zv++; } goto tail_call; } } zv++; } } } else if (GC_TYPE(ref) == IS_ARRAY) { ht = (HashTable *)ref; ZEND_ASSERT(ht != &EG(symbol_table)); handle_ht: n = ht->nNumUsed; if (HT_IS_PACKED(ht)) { zv = ht->arPacked; goto handle_zvals; } p = ht->arData; for (; n != 0; n--) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); p++; while (--n) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); GC_STACK_PUSH(ref); } } p++; } goto tail_call; } } p++; } } else if (GC_TYPE(ref) == IS_REFERENCE) { if (Z_REFCOUNTED(((zend_reference*)ref)->val)) { ref = Z_COUNTED(((zend_reference*)ref)->val); if (GC_REF_CHECK_COLOR(ref, GC_GREY)) { GC_REF_SET_COLOR(ref, GC_WHITE); goto tail_call; } } } next: ref = GC_STACK_POP(); if (ref) { goto tail_call; } } static void gc_scan_roots(gc_stack *stack) { uint32_t idx, end; gc_root_buffer *current; /* Root buffer might be reallocated during gc_scan, * make sure to reload pointers. */ idx = GC_FIRST_ROOT; end = GC_G(first_unused); while (idx != end) { current = GC_IDX2PTR(idx); if (GC_IS_ROOT(current->ref)) { if (GC_REF_CHECK_COLOR(current->ref, GC_GREY)) { GC_REF_SET_COLOR(current->ref, GC_WHITE); gc_scan(current->ref, stack); } } idx++; } /* Scan extra roots added during gc_scan */ while (idx != GC_G(first_unused)) { current = GC_IDX2PTR(idx); if (GC_IS_ROOT(current->ref)) { if (GC_REF_CHECK_COLOR(current->ref, GC_GREY)) { GC_REF_SET_COLOR(current->ref, GC_WHITE); gc_scan(current->ref, stack); } } idx++; } } static void gc_add_garbage(zend_refcounted *ref) { uint32_t idx; gc_root_buffer *buf; if (GC_HAS_UNUSED()) { idx = GC_FETCH_UNUSED(); } else if (GC_HAS_NEXT_UNUSED()) { idx = GC_FETCH_NEXT_UNUSED(); } else { gc_grow_root_buffer(); if (UNEXPECTED(!GC_HAS_NEXT_UNUSED())) { return; } idx = GC_FETCH_NEXT_UNUSED(); } buf = GC_IDX2PTR(idx); buf->ref = GC_MAKE_GARBAGE(ref); idx = gc_compress(idx); GC_REF_SET_INFO(ref, idx | GC_BLACK); GC_G(num_roots)++; } static int gc_collect_white(zend_refcounted *ref, uint32_t *flags, gc_stack *stack) { int count = 0; HashTable *ht; Bucket *p; zval *zv; uint32_t n; GC_STACK_DCL(stack); tail_call: /* don't count references for compatibility ??? */ if (GC_TYPE(ref) != IS_REFERENCE) { count++; } if (GC_TYPE(ref) == IS_OBJECT) { zend_object *obj = (zend_object*)ref; if (EXPECTED(!(OBJ_FLAGS(ref) & IS_OBJ_FREE_CALLED))) { int len; zval *table; /* optimization: color is GC_BLACK (0) */ if (!GC_INFO(ref)) { gc_add_garbage(ref); } if (!(OBJ_FLAGS(obj) & IS_OBJ_DESTRUCTOR_CALLED) && (obj->handlers->dtor_obj != zend_objects_destroy_object || obj->ce->destructor != NULL)) { *flags |= GC_HAS_DESTRUCTORS; } if (UNEXPECTED(GC_FLAGS(obj) & IS_OBJ_WEAKLY_REFERENCED)) { zend_weakmap_get_object_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n--) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); if (Z_REFCOUNTED_P(entry) && GC_FROM_WEAKMAP_KEY(entry)) { GC_UNSET_FROM_WEAKMAP_KEY(entry); GC_UNSET_FROM_WEAKMAP(entry); ref = Z_COUNTED_P(entry); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } zv++; } } if (UNEXPECTED(obj->handlers->get_gc == zend_weakmap_get_gc)) { zend_weakmap_get_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n--) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); if (Z_REFCOUNTED_P(entry) && GC_FROM_WEAKMAP(entry)) { GC_UNSET_FROM_WEAKMAP_KEY(entry); GC_UNSET_FROM_WEAKMAP(entry); ref = Z_COUNTED_P(entry); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } zv++; } goto next; } ht = obj->handlers->get_gc(obj, &table, &len); n = len; zv = table; if (UNEXPECTED(ht)) { GC_ADDREF(ht); if (GC_REF_CHECK_COLOR(ht, GC_WHITE)) { GC_REF_SET_BLACK(ht); for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } zv++; } goto handle_ht; } } handle_zvals: for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); zv++; while (--n) { if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } zv++; } goto tail_call; } } zv++; } } } else if (GC_TYPE(ref) == IS_ARRAY) { /* optimization: color is GC_BLACK (0) */ if (!GC_INFO(ref)) { gc_add_garbage(ref); } ht = (zend_array*)ref; handle_ht: n = ht->nNumUsed; if (HT_IS_PACKED(ht)) { zv = ht->arPacked; goto handle_zvals; } p = ht->arData; for (; n != 0; n--) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); p++; while (--n) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); GC_STACK_PUSH(ref); } } p++; } goto tail_call; } } p++; } } else if (GC_TYPE(ref) == IS_REFERENCE) { if (Z_REFCOUNTED(((zend_reference*)ref)->val)) { ref = Z_COUNTED(((zend_reference*)ref)->val); GC_ADDREF(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); goto tail_call; } } } next: ref = GC_STACK_POP(); if (ref) { goto tail_call; } return count; } static int gc_collect_roots(uint32_t *flags, gc_stack *stack) { uint32_t idx, end; zend_refcounted *ref; int count = 0; gc_root_buffer *current = GC_IDX2PTR(GC_FIRST_ROOT); gc_root_buffer *last = GC_IDX2PTR(GC_G(first_unused)); /* remove non-garbage from the list */ while (current != last) { if (GC_IS_ROOT(current->ref)) { if (GC_REF_CHECK_COLOR(current->ref, GC_BLACK)) { GC_REF_SET_INFO(current->ref, 0); /* reset GC_ADDRESS() and keep GC_BLACK */ gc_remove_from_roots(current); } } current++; } gc_compact(); /* Root buffer might be reallocated during gc_collect_white, * make sure to reload pointers. */ idx = GC_FIRST_ROOT; end = GC_G(first_unused); while (idx != end) { current = GC_IDX2PTR(idx); ref = current->ref; ZEND_ASSERT(GC_IS_ROOT(ref)); current->ref = GC_MAKE_GARBAGE(ref); if (GC_REF_CHECK_COLOR(ref, GC_WHITE)) { GC_REF_SET_BLACK(ref); count += gc_collect_white(ref, flags, stack); } idx++; } return count; } static int gc_remove_nested_data_from_buffer(zend_refcounted *ref, gc_root_buffer *root, gc_stack *stack) { HashTable *ht; Bucket *p; zval *zv; uint32_t n; int count = 0; GC_STACK_DCL(stack); tail_call: if (root) { root = NULL; count++; } else if (GC_REF_ADDRESS(ref) != 0 && GC_REF_CHECK_COLOR(ref, GC_BLACK)) { GC_TRACE_REF(ref, "removing from buffer"); GC_REMOVE_FROM_BUFFER(ref); count++; } else if (GC_TYPE(ref) == IS_REFERENCE) { if (Z_REFCOUNTED(((zend_reference*)ref)->val)) { ref = Z_COUNTED(((zend_reference*)ref)->val); goto tail_call; } goto next; } else { goto next; } if (GC_TYPE(ref) == IS_OBJECT) { zend_object *obj = (zend_object*)ref; if (EXPECTED(!(OBJ_FLAGS(ref) & IS_OBJ_FREE_CALLED))) { int len; zval *table; if (UNEXPECTED(GC_FLAGS(obj) & IS_OBJ_WEAKLY_REFERENCED)) { zend_weakmap_get_object_entry_gc(obj, &table, &len); n = len; zv = table; for (; n != 0; n--) { ZEND_ASSERT(Z_TYPE_P(zv) == IS_PTR); zval *entry = (zval*) Z_PTR_P(zv); if (Z_OPT_REFCOUNTED_P(entry)) { ref = Z_COUNTED_P(entry); GC_STACK_PUSH(ref); } zv++; } } ht = obj->handlers->get_gc(obj, &table, &len); n = len; zv = table; if (UNEXPECTED(ht)) { for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); GC_STACK_PUSH(ref); } zv++; } if (GC_REF_ADDRESS(ht) != 0 && GC_REF_CHECK_COLOR(ht, GC_BLACK)) { GC_TRACE_REF(ht, "removing from buffer"); GC_REMOVE_FROM_BUFFER(ht); } goto handle_ht; } handle_zvals: for (; n != 0; n--) { if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); zv++; while (--n) { if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_STACK_PUSH(ref); } zv++; } goto tail_call; } zv++; } } } else if (GC_TYPE(ref) == IS_ARRAY) { ht = (zend_array*)ref; handle_ht: n = ht->nNumUsed; if (HT_IS_PACKED(ht)) { zv = ht->arPacked; goto handle_zvals; } p = ht->arData; for (; n != 0; n--) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { ref = Z_COUNTED_P(zv); p++; while (--n) { zv = &p->val; if (Z_TYPE_P(zv) == IS_INDIRECT) { zv = Z_INDIRECT_P(zv); } if (Z_REFCOUNTED_P(zv)) { zend_refcounted *ref = Z_COUNTED_P(zv); GC_STACK_PUSH(ref); } p++; } goto tail_call; } p++; } } next: ref = GC_STACK_POP(); if (ref) { goto tail_call; } return count; } static void zend_get_gc_buffer_release(void); static void zend_gc_check_root_tmpvars(void); static void zend_gc_remove_root_tmpvars(void); static zend_internal_function gc_destructor_fiber; static ZEND_COLD ZEND_NORETURN void gc_create_destructor_fiber_error(void) { zend_error_noreturn(E_ERROR, "Unable to create destructor fiber"); } static ZEND_COLD ZEND_NORETURN void gc_start_destructor_fiber_error(void) { zend_error_noreturn(E_ERROR, "Unable to start destructor fiber"); } static zend_always_inline zend_result gc_call_destructors(uint32_t idx, uint32_t end, zend_fiber *fiber) { gc_root_buffer *current; zend_refcounted *p; /* The root buffer might be reallocated during destructors calls, * make sure to reload pointers as necessary. */ while (idx != end) { current = GC_IDX2PTR(idx); if (GC_IS_DTOR_GARBAGE(current->ref)) { p = GC_GET_PTR(current->ref); /* Mark this is as a normal root for the next GC run */ current->ref = p; /* Double check that the destructor hasn't been called yet. It * could have already been invoked indirectly by some other * destructor. */ if (!(OBJ_FLAGS(p) & IS_OBJ_DESTRUCTOR_CALLED)) { if (fiber != NULL) { GC_G(dtor_idx) = idx; } zend_object *obj = (zend_object*)p; GC_TRACE_REF(obj, "calling destructor"); GC_ADD_FLAGS(obj, IS_OBJ_DESTRUCTOR_CALLED); GC_ADDREF(obj); obj->handlers->dtor_obj(obj); GC_TRACE_REF(obj, "returned from destructor"); GC_DELREF(obj); if (UNEXPECTED(fiber != NULL && GC_G(dtor_fiber) != fiber)) { /* We resumed after suspension */ gc_check_possible_root((zend_refcounted*)&obj->gc); return FAILURE; } } } idx++; } return SUCCESS; } static zend_fiber *gc_create_destructor_fiber(void) { zval zobj; zend_fiber *fiber; GC_TRACE("starting destructor fiber"); if (UNEXPECTED(object_init_ex(&zobj, zend_ce_fiber) == FAILURE)) { gc_create_destructor_fiber_error(); } fiber = (zend_fiber *)Z_OBJ(zobj); fiber->fci.size = sizeof(fiber->fci); fiber->fci_cache.function_handler = (zend_function*) &gc_destructor_fiber; GC_G(dtor_fiber) = fiber; if (UNEXPECTED(zend_fiber_start(fiber, NULL) == FAILURE)) { gc_start_destructor_fiber_error(); } return fiber; } static zend_never_inline void gc_call_destructors_in_fiber(uint32_t end) { ZEND_ASSERT(!GC_G(dtor_fiber_running)); zend_fiber *fiber = GC_G(dtor_fiber); GC_G(dtor_idx) = GC_FIRST_ROOT; GC_G(dtor_end) = GC_G(first_unused); if (UNEXPECTED(!fiber)) { fiber = gc_create_destructor_fiber(); } else { zend_fiber_resume(fiber, NULL, NULL); } for (;;) { /* At this point, fiber has executed until suspension */ GC_TRACE("resumed from destructor fiber"); if (UNEXPECTED(GC_G(dtor_fiber_running))) { /* Fiber was suspended by a destructor. Start a new one for the * remaining destructors. */ GC_TRACE("destructor fiber suspended by destructor"); GC_G(dtor_fiber) = NULL; GC_G(dtor_idx)++; /* We do not own the fiber anymore. It may be collected if the * application does not reference it. */ zend_object_release(&fiber->std); fiber = gc_create_destructor_fiber(); continue; } else { /* Fiber suspended itself after calling all destructors */ GC_TRACE("destructor fiber suspended itself"); break; } } } ZEND_API int zend_gc_collect_cycles(void) { int total_count = 0; bool should_rerun_gc = 0; bool did_rerun_gc = 0; zend_hrtime_t start_time = zend_hrtime(); if (GC_G(num_roots) && GC_G(gc_active)) { zend_gc_remove_root_tmpvars(); } rerun_gc: if (GC_G(num_roots)) { int count; gc_root_buffer *current, *last; zend_refcounted *p; uint32_t gc_flags = 0; uint32_t idx, end; gc_stack stack; stack.prev = NULL; stack.next = NULL; if (GC_G(gc_active)) { GC_G(collector_time) += zend_hrtime() - start_time; return 0; } GC_TRACE("Collecting cycles"); GC_G(gc_runs)++; GC_G(gc_active) = 1; GC_TRACE("Marking roots"); gc_mark_roots(&stack); GC_TRACE("Scanning roots"); gc_scan_roots(&stack); GC_TRACE("Collecting roots"); count = gc_collect_roots(&gc_flags, &stack); if (!GC_G(num_roots)) { /* nothing to free */ GC_TRACE("Nothing to free"); gc_stack_free(&stack); GC_G(gc_active) = 0; goto finish; } end = GC_G(first_unused); if (gc_flags & GC_HAS_DESTRUCTORS) { GC_TRACE("Calling destructors"); /* During a destructor call, new externally visible references to nested data may * be introduced. These references can be introduced in a way that does not * modify any refcounts, so we have no real way to detect this situation * short of rerunning full GC tracing. What we do instead is to only run * destructors at this point and automatically re-run GC afterwards. */ should_rerun_gc = 1; /* Mark all roots for which a dtor will be invoked as DTOR_GARBAGE. Additionally * color them purple. This serves a double purpose: First, they should be * considered new potential roots for the next GC run. Second, it will prevent * their removal from the root buffer by nested data removal. */ idx = GC_FIRST_ROOT; current = GC_IDX2PTR(GC_FIRST_ROOT); while (idx != end) { if (GC_IS_GARBAGE(current->ref)) { p = GC_GET_PTR(current->ref); if (GC_TYPE(p) == IS_OBJECT && !(OBJ_FLAGS(p) & IS_OBJ_DESTRUCTOR_CALLED)) { zend_object *obj = (zend_object *) p; if (obj->handlers->dtor_obj != zend_objects_destroy_object || obj->ce->destructor) { current->ref = GC_MAKE_DTOR_GARBAGE(obj); GC_REF_SET_COLOR(obj, GC_PURPLE); } else { GC_ADD_FLAGS(obj, IS_OBJ_DESTRUCTOR_CALLED); } } } current++; idx++; } /* Remove nested data for objects on which a destructor will be called. * This will not remove the objects themselves, as they have been colored * purple. */ idx = GC_FIRST_ROOT; current = GC_IDX2PTR(GC_FIRST_ROOT); while (idx != end) { if (GC_IS_DTOR_GARBAGE(current->ref)) { p = GC_GET_PTR(current->ref); count -= gc_remove_nested_data_from_buffer(p, current, &stack); } current++; idx++; } /* Actually call destructors. */ zend_hrtime_t dtor_start_time = zend_hrtime(); if (EXPECTED(!EG(active_fiber))) { gc_call_destructors(GC_FIRST_ROOT, end, NULL); } else { gc_call_destructors_in_fiber(end); } GC_G(dtor_time) += zend_hrtime() - dtor_start_time; if (GC_G(gc_protected)) { /* something went wrong */ zend_get_gc_buffer_release(); GC_G(collector_time) += zend_hrtime() - start_time; return 0; } } gc_stack_free(&stack); /* Destroy zvals. The root buffer may be reallocated. */ GC_TRACE("Destroying zvals"); zend_hrtime_t free_start_time = zend_hrtime(); idx = GC_FIRST_ROOT; while (idx != end) { current = GC_IDX2PTR(idx); if (GC_IS_GARBAGE(current->ref)) { p = GC_GET_PTR(current->ref); GC_TRACE_REF(p, "destroying"); if (GC_TYPE(p) == IS_OBJECT) { zend_object *obj = (zend_object*)p; EG(objects_store).object_buckets[obj->handle] = SET_OBJ_INVALID(obj); GC_TYPE_INFO(obj) = GC_NULL | (GC_TYPE_INFO(obj) & ~GC_TYPE_MASK); /* Modify current before calling free_obj (bug #78811: free_obj() can cause the root buffer (with current) to be reallocated.) */ current->ref = GC_MAKE_GARBAGE(((char*)obj) - obj->handlers->offset); if (!(OBJ_FLAGS(obj) & IS_OBJ_FREE_CALLED)) { GC_ADD_FLAGS(obj, IS_OBJ_FREE_CALLED); GC_ADDREF(obj); obj->handlers->free_obj(obj); GC_DELREF(obj); } ZEND_OBJECTS_STORE_ADD_TO_FREE_LIST(obj->handle); } else if (GC_TYPE(p) == IS_ARRAY) { zend_array *arr = (zend_array*)p; GC_TYPE_INFO(arr) = GC_NULL | (GC_TYPE_INFO(arr) & ~GC_TYPE_MASK); /* GC may destroy arrays with rc>1. This is valid and safe. */ HT_ALLOW_COW_VIOLATION(arr); zend_hash_destroy(arr); } } idx++; } /* Free objects */ current = GC_IDX2PTR(GC_FIRST_ROOT); last = GC_IDX2PTR(end); while (current != last) { if (GC_IS_GARBAGE(current->ref)) { p = GC_GET_PTR(current->ref); GC_LINK_UNUSED(current); GC_G(num_roots)--; efree(p); } current++; } GC_G(free_time) += zend_hrtime() - free_start_time; GC_TRACE("Collection finished"); GC_G(collected) += count; total_count += count; GC_G(gc_active) = 0; } gc_compact(); /* Objects with destructors were removed from this GC run. Rerun GC right away to clean them * up. We do this only once: If we encounter more destructors on the second run, we'll not * run GC another time. */ if (should_rerun_gc && !did_rerun_gc) { did_rerun_gc = 1; goto rerun_gc; } finish: zend_get_gc_buffer_release(); /* Prevent GC from running during zend_gc_check_root_tmpvars, before * gc_threshold is adjusted, as this may result in unbounded recursion */ GC_G(gc_active) = 1; zend_gc_check_root_tmpvars(); GC_G(gc_active) = 0; GC_G(collector_time) += zend_hrtime() - start_time; return total_count; } ZEND_API void zend_gc_get_status(zend_gc_status *status) { status->active = GC_G(gc_active); status->gc_protected = GC_G(gc_protected); status->full = GC_G(gc_full); status->runs = GC_G(gc_runs); status->collected = GC_G(collected); status->threshold = GC_G(gc_threshold); status->buf_size = GC_G(buf_size); status->num_roots = GC_G(num_roots); status->application_time = zend_hrtime() - GC_G(activated_at); status->collector_time = GC_G(collector_time); status->dtor_time = GC_G(dtor_time); status->free_time = GC_G(free_time); } ZEND_API zend_get_gc_buffer *zend_get_gc_buffer_create(void) { /* There can only be one get_gc() call active at a time, * so there only needs to be one buffer. */ zend_get_gc_buffer *gc_buffer = &EG(get_gc_buffer); gc_buffer->cur = gc_buffer->start; return gc_buffer; } ZEND_API void zend_get_gc_buffer_grow(zend_get_gc_buffer *gc_buffer) { size_t old_capacity = gc_buffer->end - gc_buffer->start; size_t new_capacity = old_capacity == 0 ? 64 : old_capacity * 2; gc_buffer->start = erealloc(gc_buffer->start, new_capacity * sizeof(zval)); gc_buffer->end = gc_buffer->start + new_capacity; gc_buffer->cur = gc_buffer->start + old_capacity; } static void zend_get_gc_buffer_release(void) { zend_get_gc_buffer *gc_buffer = &EG(get_gc_buffer); efree(gc_buffer->start); gc_buffer->start = gc_buffer->end = gc_buffer->cur = NULL; } /* TMPVAR operands are destroyed using zval_ptr_dtor_nogc(), because they usually cannot contain * cycles. However, there are some rare exceptions where this is possible, in which case we rely * on the producing code to root the value. If a GC run occurs between the rooting and consumption * of the value, we would end up leaking it. To avoid this, root all live TMPVAR values here. */ static void zend_gc_check_root_tmpvars(void) { zend_execute_data *ex = EG(current_execute_data); for (; ex; ex = ex->prev_execute_data) { zend_function *func = ex->func; if (!func || !ZEND_USER_CODE(func->type)) { continue; } uint32_t op_num = ex->opline - ex->func->op_array.opcodes; for (uint32_t i = 0; i < func->op_array.last_live_range; i++) { const zend_live_range *range = &func->op_array.live_range[i]; if (range->start > op_num) { break; } if (range->end <= op_num) { continue; } uint32_t kind = range->var & ZEND_LIVE_MASK; if (kind == ZEND_LIVE_TMPVAR || kind == ZEND_LIVE_LOOP) { uint32_t var_num = range->var & ~ZEND_LIVE_MASK; zval *var = ZEND_CALL_VAR(ex, var_num); if (Z_REFCOUNTED_P(var)) { gc_check_possible_root(Z_COUNTED_P(var)); } } } } } static void zend_gc_remove_root_tmpvars(void) { zend_execute_data *ex = EG(current_execute_data); for (; ex; ex = ex->prev_execute_data) { zend_function *func = ex->func; if (!func || !ZEND_USER_CODE(func->type)) { continue; } uint32_t op_num = ex->opline - ex->func->op_array.opcodes; for (uint32_t i = 0; i < func->op_array.last_live_range; i++) { const zend_live_range *range = &func->op_array.live_range[i]; if (range->start > op_num) { break; } if (range->end <= op_num) { continue; } uint32_t kind = range->var & ZEND_LIVE_MASK; if (kind == ZEND_LIVE_TMPVAR || kind == ZEND_LIVE_LOOP) { uint32_t var_num = range->var & ~ZEND_LIVE_MASK; zval *var = ZEND_CALL_VAR(ex, var_num); if (Z_REFCOUNTED_P(var)) { GC_REMOVE_FROM_BUFFER(Z_COUNTED_P(var)); } } } } } #if GC_BENCH void gc_bench_print(void) { fprintf(stderr, "GC Statistics\n"); fprintf(stderr, "-------------\n"); fprintf(stderr, "Runs: %d\n", GC_G(gc_runs)); fprintf(stderr, "Collected: %d\n", GC_G(collected)); fprintf(stderr, "Root buffer length: %d\n", GC_G(root_buf_length)); fprintf(stderr, "Root buffer peak: %d\n\n", GC_G(root_buf_peak)); fprintf(stderr, " Possible Remove from Marked\n"); fprintf(stderr, " Root Buffered buffer grey\n"); fprintf(stderr, " -------- -------- ----------- ------\n"); fprintf(stderr, "ZVAL %8d %8d %9d %8d\n", GC_G(zval_possible_root), GC_G(zval_buffered), GC_G(zval_remove_from_buffer), GC_G(zval_marked_grey)); } #endif #ifdef ZTS size_t zend_gc_globals_size(void) { return sizeof(zend_gc_globals); } #endif static ZEND_FUNCTION(gc_destructor_fiber) { uint32_t idx, end; zend_fiber *fiber = GC_G(dtor_fiber); ZEND_ASSERT(fiber != NULL); ZEND_ASSERT(fiber == EG(active_fiber)); for (;;) { GC_G(dtor_fiber_running) = true; idx = GC_G(dtor_idx); end = GC_G(dtor_end); if (UNEXPECTED(gc_call_destructors(idx, end, fiber) == FAILURE)) { /* We resumed after being suspended by a destructor */ return; } /* We have called all destructors. Suspend fiber until the next GC run */ GC_G(dtor_fiber_running) = false; zend_fiber_suspend(fiber, NULL, NULL); if (UNEXPECTED(fiber->flags & ZEND_FIBER_FLAG_DESTROYED)) { /* Fiber is being destroyed by shutdown sequence */ if (GC_G(dtor_fiber) == fiber) { GC_G(dtor_fiber) = NULL; } GC_DELREF(&fiber->std); gc_check_possible_root((zend_refcounted*)&fiber->std.gc); return; } } } static zend_internal_function gc_destructor_fiber = { .type = ZEND_INTERNAL_FUNCTION, .fn_flags = ZEND_ACC_PUBLIC, .handler = ZEND_FN(gc_destructor_fiber), }; void gc_init(void) { gc_destructor_fiber.function_name = zend_string_init_interned( "gc_destructor_fiber", strlen("gc_destructor_fiber"), true); }