Lines Matching refs:a

13  int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
15 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
17 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
19 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
21 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
24 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
26 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
28 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
31 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
34 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
37 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
39 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
41 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
43 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
46 int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
50 BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
51 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
53 BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
54 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
56 BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
57 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
60 BN_sqr() takes the square of I<a> and places the result in I<r>
61 (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
62 This function is faster than BN_mul(r,a,a).
64 BN_div() divides I<a> by I<d> and places the result in I<dv> and the
65 remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
67 The result is rounded towards zero; thus if I<a> is negative, the
73 BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
76 BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
79 BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
82 BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
83 remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
84 the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
89 BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
92 BN_mod_sqrt() returns the modular square root of I<a> such that
93 C<in^2 = a (mod p)>. The modulus I<p> must be a
98 BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
99 (C<r=a^p>). This function is faster than repeated applications of
102 BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
107 BN_gcd() computes the greatest common divisor of I<a> and I<b> and
108 places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
111 For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
125 not a prime), or NULL.
128 value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
141 this file except in compliance with the License. You can obtain a copy